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1 Introduction  

The use of Single Arm Trials (SATs) in pharmaceutical research is increasing (Patel et 

al., 2021; Ribeiro et al., 2022). However, applying SATs to generate evidence is a 

double-edged sword. On the one hand, it bears the potential of making research and 

drug development more efficient by producing faster results with less expenditure. On 

the other hand, it bears the risk of drawing more false conclusions from clinical trials. 

Authorities call for more rigor in the analysis of SATs (IQWiG, 2022b). Trial analysts 

and sponsors often face missing data problems. Multiple stakeholders in 

pharmaceutical research call for validation of new methodology to make new methods 

of evidence generation ready to apply in practice (Eichler et al., 2020). 

 

Following this call, this thesis investigates a framework for drug development programs 

called ³7KUHVKROG-&URVVLQJ´ (TC) (Eichler et al., 2016), which centers around the 

concept of SATs. Its aim is to increase efficiency in pharmaceutical research, which 

may be achieved by arriving faster at decisions about the efficacy of the study drug.  

 

The structure of the thesis is as follows. In Section 2 concepts of trial design are 

introduced. Differences between the gold standard design of the Randomized 

Controlled Trial (RCT) and the SAT design are explained. The problem of potential bias 

in the analysis of SATs becomes apparent. Section 3 discusses a recent rating of the 

HYLGHQFH�RQ�D�QHZ�GUXJ�FDOOHG�³,GHFDEWDJHQ�YLFOHXFHO´��,GH-Cel), where the relevant 

evidence consisted exclusively of SAT results. The bias problem outlined in Section 2 

becomes salient in this example case. Section 4 introduces the statistical concepts of 

hypothesis testing, the t-distribution, as well as a derivative called the rescaled t-

distribution, and a method for bias adjustment called Matching-Adjusted Indirect 

Comparison (MAIC). In Section 5, TC as described in the literature, is explained and its 

problems are pointed out. In this thesis these problems are categorized and coined as 

Variance-Adjustment Problem (VAP) and Bias-Adjustment Problem (BAP). A solution 

to the VAP is proposed. The BAP is a more fundamental problem in SAT designs. 

Nonetheless, addressing bias by MAIC is investigated. Section 6 outlines the 

conclusions of this thesis and discusses open points of debate. 
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2 Trial Design and Potential for Bias 

2.1 Defining a Treatment Effect 

In clinical trials the scientific interest is not only in association between treatment and 

endpoint, but in their causal relation. A causal treatment effect permits assertions like 

³LPSURYHPHQW�FDXVHG�E\�WKH�WUHDWPHQW´��$VVRFLDWLYH�DVVHUWLRQV�OLNH�³LPSURYHPHQW�

IROORZHG�E\�WKH�WUHDWPHQW´�DUH�XVXDOO\�Lnsufficient for assessing new drugs (IQWiG, 

2020, p. 11). For estimating a causal effect, a comparison of patients¶�RXWFRPHV�EHIRUH�

and after treatment is applied is inappropriate. TKH�SDWLHQW¶V�outcome may follow a 

systematic trend or may be due to the phenomenon of regression to the mean (Senn, 

1997, chap. 3), which cannot be disentangled from the causal effect in a pre-post-

comparison. 

 

To understand the causal notion of a treatment effect it is useful to think of the 

counterfactual outcome of a patient, which would result had no treatment been given 

(Rubin, 1974). By definition, the counterfactual outcome is unobservable. Hence the 

counterfactual is required to be estimated. This is usually done by not treating all 

patients with the study drug, but assigning some patients to the control group. The 

control group can be used to estimate the counterfactual for the treatment group. 

Performing the comparison on a group level is in line with the principles of evidence-

based medicine, stating that statements on individual patients are impossible, while 

statements on groups of patients are possible (IQWiG, 2022a, p. 7).  

 

In practice, different control conditions or counterfactuals may be of interest. The 

simplest one may be refusing treatment. In some settings the control condition of 

interest may be giving a placebo, which is a pseudo-treatment without true biological 

effect. Placebos are used to eliminate the influence of knowledge about the treatment 

status by patient or investigator (Piantadosi, 2005, sec. Appendix B.3). Further control 

conditions are an alternative drug under investigation or the standard of care. 

 

The scientific question of interest, including the control condition, can be 

operationalized by defining an estimand. The International Council for Harmonisation of 

Technical Requirements for Pharmaceuticals for Human Use (ICH) defines an 

estimand as a precise description of the treatment effect, constituted by five attributes 

(ICH E9 R1, 2019): Population, Endpoint, Summary Measure, Treatment and 
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Intercurrent Events. Of special interest in this thesis will be two of the attributes: the 

specification of the patient population and the summary measure for comparing patient 

observations of the respective trial arm. The definitions of the endpoint and of the 

treatment will be assumed as given in the following. Strategies for handling intercurrent 

events will neither be investigated in this thesis. If correctly specified, the estimand 

corresponds to the causal effect, which is of scientific interest. The conduct of the trial 

will focus in large parts on estimating this quantity. 

2.2 Bias  

Bias is a property of a point estimator Ü� for an estimand Ü. It denotes the difference 

between the expected value of the estimator and the estimated quantity or estimand: 

>E=OkÜ�o L 'cÜ�g F Ü (Casella and Berger, 2002, chap. 7). Bias is the systematic 

deviation of the estimation result from the unknown truth.  

 

To illustrate the concept of bias, consider the causal quantity of interest in a trial is the 

effect of receiving treatment compared to receiving placebo. Imagine a trial, that failed 

to assign placebo as control condition. Patients know about their treatment status, as 

well as investigators, which gives rise to a possible placebo effect. Estimating a 

treatment effect by comparing treatment and control group yields an effect estimate, 

that is an intermingled quantity, consisting of the causal treatment effect and the 

placebo effect. However, the relative magnitudes are unknown and not estimable in 

this setting. Consider a moderately sized positive effect estimate. The causal effect 

may constitute a large share of the estimate, while the placebo effect constitutes a 

small share of the estimate. However, it may also be vice versa. The causal effect is 

relatively small, while the placebo effect is relatively large. Given a positive effect 

estimate, the causal effect may even be zero or negative, masked by a large placebo 

effect. 

 

Based on the effect estimate, multiple magnitudes of the true causal effect are 

plausible, depending on the unknown amount of bias. These different magnitudes 

would yield qualitatively different trial results. Hence the effect estimate comes with 

uncertainty in the presence of potential bias. Bias must be addressed already prior to 

statistical analysis by a good trial design (Piantadosi, 2005, chap. 7). Interest in clinical 

research is often in small treatment effects (Piantadosi, 2005, chap. 2). This makes the 

task of disentangling causal effect from biasing factors especially important, since 
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already small bias has a substantial influence in the effect estimate and can drastically 

change the conclusion of the trial. 

 

A systematic way to assess the risk of bias of a study requires a classification of 

different bias sources. The ROBINS-I tool (Sterne et al., 2016) is a framework targeting 

risk of bias assessment specifically in intervention studies. The tool categorizes 

potential bias into different bias sources, that may arise at different stages of the trial, 

namely pre-intervention, at-intervention and post-intervention. Of special importance in 

this thesis are the bias sources arising at the pre-intervention stage: selection bias and 

confounding bias, which are explained in the subsections below. The ROBINS-I tool is 

used for orientation in assessing the bias potential of a trial by the ³Institut für Qualität 

und Wirtschaftlichkeit im Gesundheitswesen³��,4:L*) (IQWiG, 2022a, p. 172). The 

IQWiG is a scientific institute, that regularly performs evidence ratings of clinical trials in 

Germany to support decisions within the national health care system. 

 

2.2.1 Confounding 

 

Figure 1: Confounding 
An arrow in this graph represents a causal effect of one variable on another. The direction of causality is 
indicated by the tip of the arrow. Group Assignment has a causal influence on the Endpoint. 
Simultaneously, Disease Status has an influence on both Group Assignment and the Endpoint. 
Differences in the Endpoint between groups cannot be interpreted to be caused by Group Assignment, 
since the change may be due to the difference between the groups with respect to the confounder 
³'LVHDVH�6WDWXV´��7KH�FDXVDO�HIIHFW�RI�*URXS�$VVLJQPHQW�RQ�WKH�(QGSRLQW�FDQQRW�EH�HVWLPDWHG�XQELDVHG� 

Confounding occurs if an interference factor of the design has influence on the 

assignment of patients into the trial arms, as well as on the measured outcome variable 

(Hernán, 2014). Consider the case where patients may have a mild or severe disease 

status at baseline. Let the endpoint be some measurement of the disease status after 
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treatment has been applied. Likely��WKH�LQWHUIHUHQFH�IDFWRU�³'LVHDVH�VWDWXV�DW�EDVHOLQH´�

has an influence on the endpoint. Let ³'LVHDVH�VWDWXV�DW�EDVHOLQH´�be encoded as a 

binary variable. Assume the distribution of disease status differs between the groups. 

For example, the control group contains a larger share of severely diseased patients, 

whereas in the treatment group the share of mildly diseased patients is higher. In this 

case the baseline variable not just associated with the endpoint, but additionally with 

treatment assignment. Therefore, it confounds the estimation and a potentially biased 

effect estimate results. A causal diagram similar to (Tennant et al., 2021) and following 

the conventions of (Pearl, 1995), the confounding scenario looks as displayed in Figure 

1. 

 

2.2.2 Selection Bias 

If there are systematic differences between trial arms with respect to the definition of 

the inclusion and exclusion criteria of patients, the resulting bias is referred to as 

selection bias by the ROBINS-I-tool. An example is comparing a group of prevalent 

users of a treatment to a control group (Sterne et al., 2016). The correct design is 

comparing new users of a treatment to the control group. The reason is that patients 

who initially do not respond well to the treatment tend to select out of the group of 

prevalent users. This makes prevalent users systematically better off than new users, 

which overestimates the treatment effect of interest. 

 

2.3 Dramatic Effects 

If the causal treatment effect is large, bias is of less concern. The reason is that small 

or moderate bias does not qualitatively change the trial result in the presence of a large 

causal effect. 6XFK�D�VHWWLQJ�LV�UHIHUUHG�WR�DV�³dramatic effect´ (IQWiG, 2022a, p. 59 f.). 

If an exceptionally large treatment effect is estimated, it is deemed implausible to be 

caused exclusively by biasing factors. In this case it is deemed plausible, that at least 

some part of the possibly biased large effect estimate is due to a causal treatment 

effect. 

 

The IQWiG refrains from following a strict definition of dramatic effects. However, for 

orientation they consider an estimated relative risk of 10 accompanied by a significance 

level of 1% as an indication for a dramatic treatment effect (IQWiG, 2022a, p. 59 f.). In 

these cases, the IQWiG may consider even a pre-post comparison of patients as 
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sufficient evidence for its decisions. At the same time, it points out that dramatic 

treatment effects sizes are very rare in modern medicine.  

 

2.4 Randomized Controlled Trial (RCT) 

 

Figure 2: RCT Design 
In the RCT design recruited patients get assigned into treatment group and control group by a random 
allocation process.  

A trial design that minimizes the potential for bias is the RCT. It has two central 

features: 

x Parallel Control Units, and a 

x Randomized Group Assignment. 

The partition of a single patient cohort intro treatment and control arm ensures that the 

same population criteria apply to both arms, which rules out selection bias. The 

randomized assignment of recruited patients into treatment arm or control arm of the 

trial eliminates systematic differences between trial arms with respect to baseline 

characteristics of the patients. This holds for observable differences in terms of 

measured baseline characteristics, but also for unobserved characteristics (Piantadosi, 

2005, chap. 3). If no systematic differences between groups exist, there is no factor 

influencing the group assignment and therefore no systematic confounding. Note that 

due to the random group assignment, there may be baseline differences between arms 

which are due to random deviations between patients.  

 

The minimization of bias sources qualifies the RCT design for investigating medical 

treatment with a small effect size, that would be masked if bias was present. 
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2.5 Single Arm Trial (SAT) 

 

 

Figure 3: SAT Design 
In the SAT design all patients recruited are treated by the study drug. This implies that only a treatment 
group is available, while a control group is missing, 

 

A Single Arm Trial is conceptually simpler than an RCT. All patients recruited receive 

the treatment under investigation. This implies that the trial consists of a single 

treatment arm, a control arm is missing. A pre-post comparison would be possible 

based on the treatment arm only. This is prone to bias. It cannot disentangle the causal 

treatment effect from systematic time trends of the disease (Senn, 1997, chap. 3). 

 

Another possibility for making a comparison based on a SAT is to use an external 

control cohort. For instance, it may be a patient cohort of another trial investigating a 

similar patient population or a patient registry. This corresponds to the idea of an 

unanchored Indirect Treatment Comparison (ITC) (Bucher et al., 1997). A SAT 

performed like this is missing the two central features of the RCT, namely: 

x parallel control units, and 

x randomized group assignment. 

This gives rise to the potential for bias in the SAT design. To assess it, a rigorous 

assessment of the patient groups must be performed. Following the ROBINS-I tool 

confounding and selection bias must be assessed at the pre-intervention stage. 

Selection bias is assessed by ensuring that the same criteria for including and 

excluding patients apply for the study-internal treatment arm and for the study-external 

control arm. Usually this is done by subsetting the external control group to eligible 

patients fulfilling the treatment group population criteria. The risk of confounding can be 
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addressed by systematically determining all relevant confounders for the comparison. 

The possibility of adjusting for them depends on the data availability of confounding 

information in the trial arms. Measured confounding can be adjusted for, the risk of 

unmeasured confounding eventually remains unaddressed. 

 

Depending on the success of mitigating bias one of the two scenarios illustrated in 

Figure 4 can result. On the left-hand side a successful application of a SAT is 

illustrated. Selection bias is addressed by using the same population criteria for 

treatment and control arm. This makes the trial arms structurally comparable. Still, 

confounding bias must be addressed in the statistical analysis. This is required since 

patients are not randomly assigned to treatment and control group, but follow an 

unknown allocation process as illustrated by the question mark. Adjusting for 

confounding bias requires a model for the unknown allocation process in the statistical 

analysis. In many cases this is done by using so called Propensity Scores (Austin, 

2011). In this thesis, however, another method called MAIC (Signorovitch et al., 2010) 

is used for confounder adjustment. MAIC is designed to be applicable even if data 

availability of the external control group is limited. 

 

If mitigating bias in a SAT fails, the right-hand side illustration in Figure 4 is more 

adequate. In some cases it may be impossible to apply the same population criteria to 

the two trial arms, which makes them structurally incomparable. In some scenarios 

structural comparability may be given, but missing data on confounding factors 

prohibits the adjustment for confounding bias, which also results in an invalid 

comparison of the trial arms. 

 

Figure 4: Valid (left) and Invalid (right) SAT 
On the left-hand side a valid SAT is illustrated. Trial arms are structurally comparable. In contrast, to the 
RCT patients are not assigned to the groups via a random allocation mechanism. The allocation 
mechanism in a SAT is unknown. This requires the modelling of the unknown process prior to treatment 
effect estimation. On the right-hand side an invalid SAT is illustrated. The trial arms are incomparable, 
which may be due to selection or confounding bias. An unbiased treatment effect cannot be estimated. 
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Even if selection and confounding bias are addressed properly, the SAT still lacks 

some characteristics of a RCT. Treatment allocation can usually not be concealed. This 

makes patients and physicians prone to confirmation bias, which results if the endpoint 

measurement is influences their expectations. For some endpoints it may be possible 

to blind the investigator (Ford and Norrie, 2016), for instance if the endpoint is 

radiological imaging. An option to mitigate the influence of allocation knowledge is 

FKRRVLQJ�DQ�REMHFWLYH�HQGSRLQW��VXFK�DV�³RYHUDOO�VXUYLYDO´ RU�³HPHUJHQF\�KRVSLWDO�

DGPLVVLRQV´�(Ford and Norrie, 2016).  

 

Using patient cohorts of different data sources demands checking for coherent 

definitions of variables and coding schemes between the sources. Hernán and Robins 

set the example of using a database of health care claims as external data source 

(Hernán and Robins, 2016). Let patients with breast cancer be the relevant population. 

A breast cancer diagnosis in the external data base may represent a true diagnosis for 

some patients, while other breast cancer diagnosis may represent a suspicion of the 

physician, which is recorded in order to perform more diagnostic tests (Hernán and 

Robins, 2016). Applying this population criterion to the external database in this 

example requires a preceding validation of the variable definition. 

 

If there is a time lack in observing treatment and control arm, a changing standard of 

care may bias the trial result. This is of special concern in indications with rapid 

development of treatments. For instance, in the 1990s and 2000s the standard of care 

in treating AIDS has been improving rapidly, such that historical controls would have 

been inadequate as control group (Piantadosi, 2005, chap. 2). The reason is that 

historical controls are systematically worse-off due to the lower standard of care. A 

comparison with the treatment group would overestimate the causal treatment effect. 

 

In order to minimize these further bias sources, the idea of emulating a target trial is 

very useful (Hernán and Robins, 2016). The idea has been developed for application in 

observational database studies. It can be of equal use in single arm intervention 

studies, that use observational data as control group. (Hernán and Robins, 2016) call 

for framing the scientific question as one that would be answered by a RCT, while 

subsequently emulating the RCT.  
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Designing a trial as single armed can yield advantages in certain research settings. If 

the treatment under investigation is highly promising in easing or even curing a 

disease, the assignment of patients to the control group may be ethically questionable. 

Additionally, patients or physicians may be unwilling to consent to randomized 

treatment assignment. This consideration is even more serious if the disease to be 

treated is known to have a severe progression. Not assigning control condition does 

not raise the ethical problems of refusing treatment. Additionally, a single treatment 

group can be populated much faster than populating two trial arms with patients.  

 

 

2.6 Benefit Assessment 

In the European Union (EU), decisions on marketing authorization of a drug are made 

centralized by the European Medicines Agency (EMA). The process of benefit 

assessment starts after the approval process. In Section 3 an example of a benefit 

assessment process is discussed. Benefit assessment is not centralized, but organized 

nationally in the European Union. Benefit assessment serves as the basis of price 

setting of drugs, as well as for deciding whether the national health system funds the 

drug or not. For a detailed description of this process see (Leverkus and ChuangæStein, 

2016). The authority in Germany for deciding on the benefit of a drug is the 

³*HPHLQVDPHU�%XQGHVDXVVFKXVV´��*-BA). The IQWiG is a research institute, which 

has been awarded a general mandate by the G-BA for several tasks including benefit 

assessment.  

 

Benefit assessment concerns the comparison of a new drug to the best available 

alternative. Hence, not only efficacy, but also efficiency of a treatment over another 

treatment is of interest. The evidence is usually generated by the drug manufacturer 

conducting clinical trials and describing evidence in a submission to the G-BA or 

IQWiG. On the basis of this submission the authority performs an evidence rating and 

decides on the benefit of the study drug. Guidelines for evidence rating are the code of 

procedure of the GBA (G-BA, 2008) and the general methods of the IQWiG (IQWiG, 

2022a). 
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2.7 Rating Evidence 

Benefit assessment requires evidence rating. Rating evidence is a complex task. There 

is no scientific consensus on which rating scheme to use. Note that the rating schemes 

of the GRADE working group receive lots of support and claim theirs being the new 

consensus (Guyatt et al., 2008). The IQWiG, in contrast, uses a conventional hierarchy 

of study designs for orientation. They do not describe their scheme explicitly but refer 

to the scheme used by the G-BA (G-BA, 2008), which matches in large parts with the 

conventional pyramid scheme for evidence rating displayed in Figure 5.  

 

Figure 5: Evidence Hierarchy (Phillips, 2014) 
Highest evidence quality in this scheme draws on systematic reviews and meta-analysis, which are 
summaries of multiple individually conducted trials. RCTs possess highest evidence rating, followed by 
non-interventional study designs, such as cohort, case-control, and cross-sectional studies. Case series 
and expert opinions are located at the bottom of the pyramid, illustrating the lower evidence ratings. 

The highest evidence quality is deemed for review studies, that summarize individual 

trials. These are meta-analysis, which are not discussed in this thesis. Of individual trial 

designs the RCT is deemed to have best evidence quality. This is due to the low 

potential for bias as explained above. In contrast to RCT and SAT as described above, 

cohort, case-control and cross-sectional studies are no intervention studies, which 

makes these designs unusable for estimating the effect of a new medical treatment. 

Case series are located close to the bottom of the pyramid scheme, indicating low 

evidence quality.  

 

The conventional pyramid scheme fails in rating evidence quality of non-randomized 

intervention trials, such as a SAT. The evidence quality of non-randomized trials is 

largely dependent on its potential for bias. As mentioned above, the IQWiG points out 
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that in case of dramatic effects also case series may be used as a control in an 

intervention trial (IQWiG, 2022a, p. 59 f.). This fact should make clear that this 

hierarchy is not strictly applied but the evidence rating is very much dependent on the 

concrete research setting.  

 

A very useful way to think about evidence quality is suggested by the European 

network for Health Technology Assessment (EUnetHTA). Evidence quality can be 

thought of in three dimensions: internal validity, statistical precision and external validity 

(EUnetHTA, 2021).  

Up to this point this thesis discussed points considering the internal validity of a trial, 

that is the potential for bias and comparability of trial arms. Low internal validity leads to 

systematic errors in the results drawn from a trial. However, even in the absence of 

systematic errors or bias, random errors may still occur in the analysis of a trial 

(Piantadosi, 2005, chap. 7). Addressing the rate or probability of random errors can be 

summarized by the concept of Statistical precision. The two-sample t-test, a statistical 

method to quantify random error rates, is introduced in Section 4. External validity 

captures the notion of transferability of trial results to clinical practice. This concept is 

not of central concern in this thesis, but common arguments on external validity are 

discussed in Section 6.  

 

2.8 Categorizing External Data 

Multiple sources for external control cohorts are available to compare the SAT 

treatment arm against. One option is to use the control group of a past RCT cohort. 

This may come with limited information on possible confounding variables since 

confounding bias is of less concerns in RCTs than in non-randomized designs. RCTs 

are interventional trials, in which a treatment is experimentally applied. If the study drug 

is to be compared against the best available alternative, the treatment arm of the 

approval trial of the best alternative may yield a good comparator. Cohorts from current 

or past cohort studies or case-control studies, in contrast, are non-interventional. Data 

taken from VWXGLHV�FDQ�EH�FODVVLILHG�DV�³5HVHDUFK�'DWD´��IRllowing the scheme of 

Franklin and Schneeweiss (2017). 

 

On the other side of this scheme is transactional data, which arise automatically if 

patients make use of the national health system (Franklin and Schneeweiss, 2017). 

Data of this category is often referred tR�DV�³5HDO�:RUOG�'DWD´��8VH�RI�³5HDO�:RUOG�
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(YLGHQFH´�LV�GHHPHG�WR�LQFUHDVH�H[WHUQDO�YDOLGLW\��ZKLFK�LV�GLVFXVVHG�LQ�6HFWLRQ�6 of 

this thesis. Examples of transactional data are patient cohorts constructed from health 

insurance claims or from patient-generated data via health apps. Often times, only 

surrogate endpoints are available, requiring validation studies in advance of using 

transactional data (Chen et al., 2021). It is deemed of lower quality than research data. 

 

Patient registries vary in their quality. Some can be categorized as research data, 

some rather as transactional data. Some registries even bear the potential of being a 

complete survey of the patient population (Chen et al., 2021). 

 

An important distinction regards the availability of the data to the trial conductor. The 

external data may be fully available as individual-participant-data (IPD) or more 

restricted in the form of aggregate data (AGD), which could be for example summary 

statistics from the publication of a past trial. All methods discussed in the following work 

under the restricted availability of external control data as AGD. Note that data for the 

treatment group is actively collected within the SAT and therefore is available as IPD. 
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3 SATs in Benefit Assessment: Example Case ³Ide-Cel´ 

In this section, the benefit assessment of a drug called Idecabtagen Vicleucel (Ide-Cel) 

for the German health system is presented. It was performed by the G-BA and 

published in April 2022. A courtesy translation exists (G-BA, 2022a), however only the 

German version (G-BA, 2022b) is legally binding. The Ide-Cel case exemplifies many 

considerations explained in Section 2 of this thesis, especially the difficulties of 

generating evidence by the SAT design. 

3.1 Patient Population 

Ide-Cel is a treatment for multiple myeloma (MM), a cancer disease of the plasma cells, 

a type of white blood cells. The patient population targeted by this treatment consists of 

³adults with relapsed and refractory multiple myeloma who have received at least three 

prior therapies, including an immunomodulatory agent, a proteasome inhibitor and an 

anti-CD38 antibody and have demonstrated disease progression on the last therapy.³�

(G-BA, 2022a) Due to this narrow selection, a small patient population with relapsed or 

refractory multiple myeloma results.  

 

3.2 Result of Benefit Assessment 

7KH�*%$¶V�final judgement is granting an non-quantifiable benefit of Ide-Cel (G-BA, 

2022b). However, the decision was not based on the submission by the drug 

manufacturer, but by WKH�VR�FDOOHG�³oUSKDQ�GUXJ´�VWDWXV�(EMA, 2018) of Ide-Cel. For 

orphan drugs, benefit is granted based on the earlier approval of the drug for marketing 

authorization. 

1RQHWKHOHVV�WKH�PDQXIDFWXUHU¶V�submission was assessed by the G-BA to eventually 

quantify the benefit of Ide-Cel. The PDQXIDFWXUHU¶V�VXEPLVVLRQ consisted of evidence 

based on SATs and was considered unsuitable for quantifying the benefit. 

 

The main argument for rejecting the evidence of the submission is the incomparability 

of trial arms. The comparisons presented in the submission are indirect, which means 

that trial arms consist of cohorts from different studies. For indirect comparisons to be 

valid, the analysis must ensure the trial arms to be both 

x structurally sufficiently similar, and 

x adjusted for all relevant confounders (G-BA, 2022b). 

Note that this argument can be illustrated with categories of ROBINS-I at the pre-

intervention stage described in Section 2.2: selection bias and confounding bias. 
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Selection bias arises due to differences between trial arms with respect to inclusion 

and exclusion criteria of patients, while confounding occurs if differences exist with 

respect to baseline characteristics. 

 

3.3 Orphan Drug Status 

The orphan status is granted by an EMA-committee for medicinal products fulfilling 

certain criteria. An overview can be found on the EMA-website (EMA, 2018), while the 

legally binding definition is found in the corresponding EU regulation (European 

Parliament, 1999). The criteria may be summarized as follows: 

x The targeted disease is life-threatening or chronically debilitating 

x Either the prevalence of the disease is 0.05% or less in the EU or the probability 

of marketing revenue justifying the investment in drug development is low 

x No satisfactory alternative medicinal product exists. 

Note that the orphan drug status can still be granted if the third condition is not fulfilled, 

that is alternative products exist. However, in this case the product under investigation 

must prove a benefit over the alternative. In the case of Ide-Cel the benefit argument 

went the conventional way: orphan drug status was granted and based on this the 

benefit of the drug. 

 

3.4 Safety Assessment 

Assessment of safety is rejected by the GBA. Non-adjusted comparisons of incidence 

rates of adverse events were presented by the manufacturer. Effect estimators were 

not calculated. Without adjustment sufficient structural equality of the patient 

populations cannot be assumed. 

3.5 Efficacy Assessment 

The evidence on efficacy considered by the G-BA consists in three ITCs based on four 

patient cohorts, which are the treatment FRKRUW�FDOOHG�³KarMMa´�DQG�WKUHH�H[WHUQDO�

control cohorts: 

x NDS-MM-003 (in the following NDS), 

x PREAMBLE, and 

x MM-007 (in the following OPTIMISMM) 

The KarMMa cohort is extracted from the SAT used for approving Ide-Cel for marketing 

authorization by the EMA. The NDS-cohort is collected retrospectively from clinical 

centers and research databases. The PREAMBLE cohort is collected prospectively in 
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different study sLWHV�LQFOXGLQJ�XQLYHUVLW\�KRVSLWDOV�DQG�GRFWRU¶V�SUDFWLces. The 

OPTIMISMM-cohort is taken from an RCT. Three unanchored ITCs are performed, 

comparing KarMMa to each one of the external control cohorts. 

 

Further comparisons were included in the PDQXIDFWXUHU¶V�VXEPLVVLRQ, which were 

judged as irrelevant for benefit assessment by the GBA. These consisted in an ITC of 

WKH�SDWLHQW�FRKRUW�IURP�WKH�³&5%-���´-trial, which was a supplementary study in the 

approval process of IdeCel. The GBA criticized that the estimate for the endpoint 

overall survival, which is central for efficacy assessment, is invalid. 

 

Each ITC performed consists of two steps��,Q�D�ILUVW�VWHS��³HOLJLEOH´�SDWLHQWV�RI�WKH�

external control cohort are subsetted from the cohort. Eligible patients match the 

population criteria of the KarMMa trial as much as possible. This step aims at reducing 

differences with respect to population criteria between trial arms, that is reducing 

selection bias. The KarMMa-population is roughly defined as patients with MM that 

received at least three prior therapies and are refractory to the last. For more detailed 

inclusion and exclusion criteria see (G-BA, 2022b). The second step consists in 

statistical analysis, that adjusts for available information on confounders. Data on the 

external control cohorts were available as IPD. This is why the trial conductors chose 

Propensity Score methods for confounder adjustment in the analysis of the trial, which 

is considered adequate by the G-BA (G-BA, 2022b). Propensity Score methods are not 

considered in this thesis. Instead the MAIC method for confounder adjustment is 

described and investigated in Section 5. MAIC is applicable in case of AGD-availability 

of the external control cohort, while Propensity Score methods are a common choice in 

case of IPD availability. 

 

 

3.5.1 Determining Relevant Confounders 

Prior to data analysis, relevant confounders were required to be determined by the 

manufacturer. This was performed by a two-track strategy consisting of systematic 

literature research and expert interviews. The G-BA questions the completeness of the 

list of relevant confounders presented by the manufacturer. This critique is based on 

differences in results between literature research and expert interviews and on 

shortcomings of the literature research. The G-BA doubts that the literature research 

has been too narrow. The research consisted in screening 63 publications, including 
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meta-analyses, ITCs and other studies. Confounders used in these studies were 

collected and reported. The G-BA finds that this procedure is limited to finding only 

confounders with data availability. Lastly, the G-BA finds inconsistencies in the 

resulting list of relevant confounders as presented by the manufacturer and the sources 

used to determining them (G-BA, 2022b). 

 

The critique of limiting confounder research to ones with data availability is an 

interesting one, since confounders without data availability could not possibly be 

adjusted for. Reporting relevant confounders without data availability would create 

problems further down the pipeline of evidence generation. Obviously, the 

manufacturer is not able to adjust the analysis for confounders without data availability. 

An analysis unadjusted for relevant confounders would also be unacceptable for the G-

BA. 

 

3.5.2 ITC ± KarMMa vs. NDS 

The NDS-cohort includes past trial data, as well as data from scientific databases, 

which is collected retrospectively. It may be the case that individual patients may have 

entered both cohorts NDA and KarMMa simultaneously. The reason is overlap in the 

enrolment of subjects, which applies to 10 percent of KarMMa patients and 23 percent 

of NDS patients. However, due to these low shares the bias arising due to overlap is 

considered insignificant (G-BA, 2022a). Considering confounding bias, the G-BA 

criticizes that some confounders identified as relevant by manufacturer did not enter 

the analysis. confounders with a share of more than 30 percent missing data were not 

included. 

 

3.5.3 ITC ± KarMMa vs. PREAMBLE 

The PREAMBLE cohort is taken from a prospective cohort study aiming to investigate 

everyday clinical health care of MM patients. An exclusion criterion is the enrollment of 

the patient in a clinical trial. Hence recruitment-overlap with KarMMa is no concern. 

Data on country and setting in which patient recruitment took place (clinical center, 

family practice, etc.) is missing. Potential for selection bias arises in the process of 

matching KarMMa-population criteria due to missing data. Potential for confounding 

bias is present as well. Some confounders do not enter analysis due to missing data. 

Additionally, the distribution of ³F\WRJHQHWLJ ULVN´��D confounder that entered analysis, is 

not reported for the trial arms after confounder adjustment. 
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3.5.4 ITC ± KarMMa vs. OPTIMISMM 

OPTIMISMM is a RCT cohort. Applying the KarMMa population criteria would result in 

few eligible patients for comparison. The manufacturer solved this problem by applying 

the KarMMa criteria in a less strict way. Patients who fulfill the criteria not yet at 

baseline, but eventually during the follow-up period are also included in the 

comparison. The problem was mainly caused by the KarMMa-criterion of having 

received at least three prior treatments. The G-BA states that this approach is 

adequate in principle, while raising the risk of bias (G-BA, 2022b). Potential for 

confounding bias arises in this ITC as well, due to the missing adjustment for some 

relevant confounders. 

 

3.6 Summary 

The main argument for excluding the evidence on efficacy of Ide-Cel based on the 

unanchored ITCs presented above is the potential for bias. As mentioned above for a 

valid unanchored ITC trial arms need to be both 

x structurally sufficiently similar, and 

x adjusted for all relevant confounders (G-BA, 2022b). 

The former point refers to selection bias, while the ladder refers to confounding bias. 

For either ITC it is possible that patients in the highly selected KarMMa-cohort are 

systematically better-off than patients of the less selected external control cohorts, 

which would lead to an overestimation of the treatment effect. Matching the KarMMa 

population criteria is limited due to missing information and insufficient reporting by the 

manufacturer. It cannot be excluded that KarMMa patients are, due to narrow selection 

criteria, systematically better-off than patients of the control cohorts. Missing data 

prohibits the adjustment for identified relevant (measured) confounders. Additionally, 

the G-BA questions if the list of relevant confounders determined by the drug 

manufacturer is complete. This gives rise to the potential for unmeasured confounding. 

These bias concerns would be less grave in the case of dramatic effects. However, 

estimated treatment effects are moderate, and bias concerns receive a high weight in 

the judgement. Therefore, a quantification of the benefit is not possible based on the 

evidence presented in the submission (G-BA, 2022b). 
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4 Statistical Foundations 

Error in trial results can be categorized as systematic and random error (Piantadosi, 

2005, chap. 7). Section 2 introduced concepts of bias and design to assess systematic 

error in a trial. This section, in contrast, introduces the statistical concepts to address 

random error in a trial. Following the categories suggested by the EUnetHTA, 

addressing systematic error corresponds to judging internal validity of a trial, while 

addressing random error corresponds to judging statistical precision of a trial 

(EUnetHTA, 2021). 

 

4.1 Hypothesis Tests  

A hypothesis test is a statistical framework for making binary. The decision may for 

instance be whether a study drug is efficacious or not. Two competing statistical 

hypotheses are stated, which are referred to as null (*4) and alternative hypothesis 

(*5) (Piantadosi, 2005, chap. 7). In the following, one-sided hypotheses are formulated: 

*4ã       äçåØÔç F äÛÜæç Q râ ������*5ã       äçåØÔç F äÛÜæç P r 

Initially, the null hypothesis is assumed to be true. The plausibility of this assumption is 

assessed by a test statistic, which is a summary of the available data (Piantadosi, 

2005, chap. 7). To quantify the probability of observing a certain test statistic value 

under *4, the distribution of the test statistic under the null must be known or 

approximable. A decision boundary is set in advance based on this distribution. If a test 

statistic beyond the decision boundary is observed, the null hypothesis is judged 

implausible and is rejected. 

 

A hypothesis test allows the quantification of random decision error. Type-I- and type-

II-error are distinguished (Piantadosi, 2005, chap. 7). A type-I-error or false positive 

occurs if the null is true, but falsely rejected. This corresponds to judging an 

inefficacious drug as efficacious. A type-II-error or false negative occurs if the 

alternative is true, but the null is falsely retained This corresponds to judging an 

efficacious drug as inefficacious.  

 

The probability of type-I-error is required to be controlled in a trial, for instance the G-

BA requires a significance level of Ù L täw¨ for one-sided hypothesis tests (G-BA, 

2008). The significance level corresponds to the upper bound for the permissible 

probability of type-I-error (Searle and Gruber, 2016, chap. 3). If the distribution of the 
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test statistic under the null hypothesis is known, the type-I-error probability can be 

controlled by setting the respective :s F Ù;-quantile as a decision boundary. This is the 

case for the two-sample t-test, which is described in the following section.  

 

In contrast, addressing the probability of type-II-error is rather in the trial VSRQVRU¶V�

interest (ICH E9, 1998, p. 18). It is more convenient to refer to the power of a trial, 

which is the complement of type-II-error probability, in the sense that both add up to 

one. In the following parts of this thesis the power target is set to 80%, following the 

specification in Eichler et al. (2016). The first step in powering a trial is to formulate the 

alternative hypothesis explicitly. This involves consultation of experts on the question of 

which effect size is of clinical relevance. The minimum clinically relevant effect size ÜÛ 

is used: 

*5ã       äçåØÔç F äÛÜæç L ÜÛ 

The distribution of the test statistic under the alternative is different than under the null. 

It is dependent on the sample size of the trial. Powering a hypothesis test corresponds 

to collecting sufficient datapoints. In the tests discussed in this thesis closed form 

sample size formulae are available. These are useful approximations of the 

observations needed to achieve the power target of 80%. 

 

4.2 Two-Sample T-Test 

A t-test arises if means are compared between two groups, where endpoints are 

normally distributed. Consider a model where observations scatter with equal 

measurement variance ê6 around a group-specific mean äÜ (Büning, 2002). 

UÜáÝ L äÜ E  ÝÜáÝ ��1��0:äÜ áê6;â ���������E� L PNA=PáDEOPâ ��F L sá å áJÜ  

For constructing the test statistic sample means are required. Since the sample mean 

is a linear combination of normally distributed variables, it is itself normally distributed 

(Büning 2002): 

U$Ü L s

JÜ
Í UÜáÝ

áÔ

Ý@5

��1   0 läÜ áê6 Û s
JÜ
p â ��������E� L PNA=PáDEOPâ ��F L sá å áJÜ 

Given the independence of the samples, the distribution of the sample mean difference 

is as follows: 

U$çåØÔç F U$ÛÜæç ��1   0:äçåØÔç F äÛÜæç áê6 Û : s

JçåØÔç
E s

JÛÜæç
;; 
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A standardization by the correct variance would result in a standard normally 

distributed quantity under the null: 

< L  
U$çåØÔç F U$ÛÜæç

ê§ 
s

JçåØÔç
E s
JÛÜæç

    

*4
1
 

  � 0:rás; 

The random variable < contains the unknown population parameter ê L ¾ê6. An 

estimate for the measurement variance ê6�is needed. In case of equal variance across 

groups a pooled estimate can be used (Büning 2002): 

5ãââßØ×
6 L s

0 F tÍÍ kUÜáÝ F U$Üo~áÔ

Ý@5
Ü

â ��������0 L �JçåØÔç E JÛÜæç � 
Note that a pooled estimate can be calculated from group-wise variance estimates by 

the following formula (Büning 2002): 

5ãââßØ×
6 L :JçåØÔç F s; Û  5çåØÔç

6
  E   :JÛÜæç F s; Û  5ÛÜæç

6

0 F t á 

SDANA����5Ü
6 L s

JÜ F sÍkUÜáÝ F U$Üo6
áÔ

Ý@5

 

The ratio of the sample variance and the population variance multiplied by the degrees 

of freedom used in estimation is chi-square-distributed, with the respective degrees of 

freedom (Rencher and Schaalje, 2008, chap. 7): 

8 L :0 F t; 5ãââßØ×6

ê6
��1���ï~:@B L 0 F t; 

A central t-distribution arises for a ratio term that includes, both < and 8, given their 

independence (Johnson, Kotz and Balakrishnan, 1995, chap. 28). Precisely, the term 

corresponds to the standardized means difference <, divided by the root of the chi-

square distributed variable 8, divided by its degrees of freedom: 

6 L <

§ 8
@B

���

*4
1
 

����P:@B L 0 F t; 
If the terms for <, 8 and @B are inserted, 6 reduces to the sample mean difference 

U$çåØÔç F U$ÛÜæç divided by its standard error OAÞ:U$çåØÔç F U$ÛÜæç;. 6 corresponds to the test 

statistic of the two-sample t-test. 

6 L <

§ 8
@B

L U$çåØÔç F U$ÛÜæç
ê§ 

s
JçåØÔç

E s
JÛÜæç

Û¨ :0 F t; Û ê6
:0 F t; Û 5ãââßØ×6

L U$çåØÔç F U$ÛÜæç
OAÞ:U$çåØÔç F U$ÛÜæç;á 

SDANA���OAÞ:U$çåØÔç F U$ÛÜæç; L 5ãââßØ×¨ 
s

JçåØÔç
E s

JÛÜæç
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Using the (sF Ù)-quantile of the t-distribution as decision boundary results in a 

constant type-I-error probability under the model assumptions: 

6ÖåÜç L P?5:sF Ùá@B L 0 F t;â ��������2k6 P 6ÖåÜç�*4o L Ù 

Power and the probability of type-II-error are conditional probabilities given the 

alternative: 

2k6 P 6ÖåÜç�*5o L s F P:6ÖåÜç á  J?L L ô; 
In case the alternative distribution is true, the test statistic 6 calculated as above 

follows a non-central t-distribution. It is additionally parametrized by a non-centrality 

parameter (ncp) ô. The expectation of the sample mean difference changes under the 

alternative. 

U$çåØÔç F U$ÛÜæç �*51
 

�� 0:ÜÛáê6 Û : s

JçåØÔç
E s

JÛÜæç
;; 

The effect size under the alternative ÜÛ must be subtracted before standardizing to 

arrive at a standard-normally distributed variable. 

<" L  
U$çåØÔç F U$ÛÜæç F ÜÛ
ê§ 

s
JçåØÔç

E s
JÛÜæç

    

*5
1
 

  � 0:rás; 

To arrive at the same test statistic as described above a non-centrality parameter ô 

must be added in a subsequent step. 

6 L <ñ E ô
§ 8
@B

L
É
ÇU$çåØÔç F U$ÛÜæç F ÜÛ
ê§ 

s
JçåØÔç

E s
JÛÜæç

E ÜÛ

ê§ 
s

JçåØÔç
E s
JÛÜæçÌ

Ê Û¨:0 F t; Û ê6:0 F t; Û 56  

L U$çåØÔç F U$ÛÜæç
5ãââßØ×§ s

JçåØÔç
E s
JÛÜæç

��������SDANA���ô L ÜÛ

ê§ 
s

JçåØÔç
E s
JÛÜæç

 

This results in the test statistic following a non-central t-distribution with 0 F t degrees 

of freedom and ncp ô under the alternative (Johnson, Kotz and Balakrishnan, 1995, 

chap. 31): 

6����
*5
1
 

����P

É
Ç@B L 0 F táJ?L L ÜÛ

ê§ 
s

JçåØÔç
E s
JÛÜæçÌ

Ê 
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Since the distribution of the test statistic under the alternative is dependent on sample 

size, probability of type-II-error and power are dependent on sample size as well. A 

sample size calculation is done to ensure the targeted power of a trial. 

 

 

 

Figure 6: Approximate Sample Size over Group Size Ratio for the Two-Sample t-Test 
This plot displays the approximate required treatment group sample size over different group size ratios. 
Different lines correspond to different alternaWLYH�HIIHFW�VL]HV�³GHOWD´��$�VPDOO�DOWHUQDWLYH�LPSOLHV�ODUJH�
sample size requirements. A large alternative implies smaller sample size requirements. Note that the 
approximate required control group size can is not displayed explicitly, but can be derived by multiplying 
the treatment group size by the corresponding group size ratio. 

 

A closed form sample size formula for the two-sample t-test can be derived 

(Piantadosi, 2005, chap. 7) if quantiles of the normal distribution <� L 0?5:s F rärtw; 
and <	 L 0?5:sF rät; are used, where 0?5:; denotes the quantile function of the 
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standard-normal distribution. An exact calculation using the quantiles of the t-

distribution does not yield a closed sample size formula. The group size ratio is 

denoted by N. 

JçåØÔç R å>5

å
Û
kÓ�>Ó�o.�.

�Û
. â ������N L áÓÔÞß

áßÝÐÌß

 

Figure 7: Approximate Sample Size over Historical Group Size for the Two-Sample t-Test 
This plot displays the approximate required treatment group sample size over different historical group 
VL]HV��'LIIHUHQW�OLQHV�FRUUHVSRQG�WR�GLIIHUHQW�DOWHUQDWLYH�HIIHFW�VL]HV�³GHOWD´��$�VPDOO�DOWHUQDWLYH�LPSOLHV�ODUJH�
sample size requirements. A large alternative implies smaller sample size requirements. Note that the 
group size ratio is not displayed explicitly, but can be derived by dividing the historical group size by the 
corresponding treatment group size. 

Figure 6 displays the relation between group size ratio and approximate required 

treatment group size for 80% power, plotted for different alternatives. 
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In RCTs the group size ratio is under the influence of the trial designer. In contrast, in 

SATs a fixed size historical control cohort may be given, and treatment group size must 

be determined based on it. In this case it may be better to express the formula in terms 

of JÛÜæç: 

JçåØÔç R s

ÜÛ
6

:<� E <	o6ê6 F
s

JÛÜæç

 

Figure 7 displays the relation of the approximate required treatment group size and the 

historical sample size for 80% power, plotted for different alternatives. 

 

Figure 8: Power Curves for the Two-Sample t-Test for JçåØÔç L sxr and ê L s 
The different power curves represent different group sizes used to conduct a two-sample t-test. The 
historical group size is given in the legend, while the treatment group size is equal for all curves. For very 
small population differences, power is close to zero in all settings. Power increases sharply for larger effect 
sizes if very large historical samples are used (blue curve). Power increases less rapidly if a relatively 
small historical group is used in the trial (red curve). 
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A power curve displays the power of a trial over the true effect size, that is the 

population difference as defined by the estimand. The power curves for the two-sample 

t-test in Figure 8 illustrate a property of designs with imbalanced group sizes. For the 

balanced case with both groups containing 160 patients, an effect size of 0.31 can be 

powered at 80%. For a historical control cohort of double this size, power gains are 

substantial, allowing an effect size of 0.28 to be powered. However, power gains 

become smaller if the external control group is further increased. A large external 

control group of 1600 patients permits powering of 0.24, while a very large historical 

control group of 160,000 patients permits an alternative of 0.23. Marginal power gains 

of additional external control units are ceteris paribus decreasing. 

 

4.3 Rescaled T-Distribution 

A relevant distribution in Section 5.3 of this thesis is the rescaled or non-standardized t-

distribution. Note that it is different from the non-central t-distribution. Every probability 

distribution can be extended to a location-scale-family (Casella and Berger, 2002, 

chap. 3). A location-scale-family is a set of distributions, that only differ in expectation 

and variance. The normal distribution, for example, is immediately parametrized with 

location parameter ä, and scale parameter ê6. The t-distribution, in contrast, is 

parametrized differently by degrees of freedom. Multiplying a t-distributed random 

variable 6 with a constant factor Û results in a variable following a rescaled t-

distribution. 

6 Û Û�����
*4
1
 

     Pßæ:@B L 0 F tá O?=HA L Ûá HK? L r; 
With probability density B:P; and cumulative probability distribution (:P; of the 

conventional (central) t-distribution, the density @:T; and distribution 2:T; of the 

rescaled t-distribution can be calculated as follows (Casella and Berger, 2002, chap. 3): 

@:T�Û; L s

Û
B l6 L P

Û
p â ��������2:T�Û; L ( l6 L P

Û
p 

A rescaled t-distribution can arise if the two-sample t-test statistic is studentized by the 

standard error of the treatment mean: OAÞ:U$çåØÔç; L 5çåØÔç§ 
5

áßÝÐÌß
, instead of the 

standard error of the sample mean difference OAÞ:U$çåØÔç F U$ÛÜæç; L 5ãââßØ×§ 
5

áßÝÐÌß
E 5

áÓÔÞß
. 

Note that the former uses a different measurement variance estimate (5çåØÔç
6 ) than the 

latter (5ãââßØ×
6 ). 5çåØÔç

6  is based on observations from the treatment group only, whereas 
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the pooled sample variance estimated 5ãââßØ×
6  described above is based on both 

groups. Call this differently studentized test statistic 3. It is calculated as follows: 

3 L U$çåØÔç F U$ÛÜæç
OAÞ:U$çåØÔç; L :U$çåØÔç F U$ÛÜæç;�¥JçåØÔç

5çåØÔç
 

Numerator and denominator can be expanded by a scaling factor Û L §sE  
áßÝÐÌß

áÓÔÞß
: 

3 L U$çåØÔç F U$ÛÜæç
5çåØÔç§ 

s
JçåØÔç

§sE  
JçåØÔç
JÛÜæç

Û ¨sE  
JçåØÔç

JÛÜæç
L 6 Û Û 

The test statistic 3 can be factored into two quantities: 6 and Û. The latter factor Û is a 

constant quantity, which acts as a scaling factor. The former factor 6 is a sample 

quantity, that is a random variable, and can be shown to be t-distributed with JçåØÔç F s 

degrees of freedom. This is shown in the following by bringing 6 into the ratio form 

described in Section 244.2. Recap that the ratio of a standard-normally distributed 

variable and the root of a chi-square distributed variable divided by its degrees of 

freedom is t-distributed: 

6 L U$çåØÔç F U$ÛÜæç
5çåØÔç§ 

s
JçåØÔç

§sE  
JçåØÔç
JÛÜæç

L U$çåØÔç F U$ÛÜæç
5çåØÔç§ s

JçåØÔç
E  
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JÛÜæç

L U$çåØÔç F U$ÛÜæç
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JçåØÔç

E s
JÛÜæç
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L U$çåØÔç F U$ÛÜæç
ê§ 

s
JçåØÔç

E s
JÛÜæç

Û¨ :JçåØÔç F s; Û ê6:JçåØÔç F s; Û 5çåØÔç6
 

L � <
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JçåØÔç F s

����
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1
 

    P:@B L JçåØÔç F s; 
This derivation is based on the assumption that 5çåØÔç

6 , divided by the true variance ê6 

and multiplied by its degrees of freedom, is also chi-square distributed: 

8" L :JçåØÔç F s; 5çåØÔç6

ê6
��1���ï~:@B L JçåØÔç F s; 

What follows is that 3 can be represented as a t-distributed variable 6 multiplied by a 

constant factor Û. Therefore 3 follows a rescaled t-distribution with scaling factor Û: 

3   

*4
1
 

   Pßæ:@B L JçåØÔç F sá  O?=HA L Ûá  HK? L r; 
The finding that an incorrectly studentized sample mean difference 3 L ì$ßÝÐÌß?ì$ÓÔÞß

æØÞ:ì$ßÝÐÌß;  

follows a rescaled t-distribution will be of central importance in Section 5.3. 
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4.4 Confounder Adjustment by MAIC 

Confounding arises due to differences between trial arms with respect to baseline 

characteristics (Sterne et al., 2016), as described in Section 2.2.1. To address 

confounding, baseline variables need to be modeled. A method to adjust for 

confounding, that is applicable in the case of restricted data availability, is MAIC. It was 

first suggested by Signorovitch et al. (2010) and extensively investigated by Cheng, 

Ayyagari and Signorovitch (2020). In the following a simple confounding scenario is 

outlined. The performance of MAIC in this scenario is investigated in Section 5.6. 

 

Figure 9: Confounding by a Binary Baseline, èÛÜæç L räyw, èçåØÔç L rätw 
Red datapoints represent mildly diseased patients, blue datapoints represent severely diseased patients. 
The red stratum is larger in the control group, whereas the blue stratum is larger in the treatment group. 
Comparing corresponding stratum means in each group yields the colored dashed lines. These 
corresponds to the conditional treatment effect. Comparing the marginal means in each group yields the 
solid black line. It corresponds to the marginal treatment effect. A different slope results than for the 
conditional treatment effect. 

Consider the case of a comparison between treatment and control arm, that is 

FRQIRXQGHG�E\�D�ELQDU\�YDULDEOH�³GLVHDVH�VWDWXV�DW�EDVHOLQH´ ZLWK�IDFWRU�OHYHOV�³PLOG´�
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DQG�³VHYHUH´. Let the baseline distribution of the confounder be different with respect to 

the trial arm: patients in the treatment arm are worse-off on average, while patients in 

the control arm are healthier on average. This is due to the higher share of mildly 

diseased patients in the control arm, while the treatment arm contains more severely 

diseased patients. The subgroups formed by mild and severe disease status are also 

referred to as strata. 

In Figure 9 data is simulated and visualized under the assumption of equal treatment 

effects within strata. That is, a patient with severe disease status gets on average the 

same improvement of the endpoint as a patient with mild disease status. This is 

illustrated by the red and blue dashed lines displaying the same slope. If the naïve 

group means are compared, a smaller slope results, which is visualized by the solid 

black line. 

 

Figure 10: Confounding by a Binary Baseline - Restricted Data Availability - èÛÜæç L räyw, èçåØÔç L rätw. 
Information on the treatment group is available as IPD, while information on the control group is available 
as AGD. The marginal control mean is reported, which is represented by the black dot. The black line 
corresponds to the marginal treatment effect. 



34 
 

The naïve group means or marginal means are calculated equal as described in 

Section 4.2: 

U$Ü L s

JÜ
Í UÜáÝ

áÔ

Ý@5

â �����E� L PNA=PáDEOPâ ��F L sá å áJÜ  

The conditional stratum means are calculated using only datapoints in the respective 

subgroup: 

U$Ü�Þ L s

JÜáÞ
ÍUÜáÞáÝ

áÔáÖ

Ý@5

â �����G� L IEH@á OARANA 

The conditional treatment effect cannot be estimated unbiased if the marginal group 

means are compared. The marginal treatment effect underestimates the conditional 

treatment effect, that is of interest.  

 

In case of restricted data availability on the external control group, the information may 

be visualized as displayed in Figure 10. A possibility to correct for confounding bias 

without IPD of the external control group is using MAIC. In the present case information 

on the historical control group consists in the marginal control mean U$ÛÜæç, as well an 

estimate of the relative stratum sizes within the historical control group èÝDEOP. The latter 

quantity is explained in detail below. Correction for confounding corresponds to an 

upwards correction of the marginal treatment mean in the treatment group, which is 

performed by a reweighting procedure, that is described in the following. 

 

Call the binary confounder ³mild_status_base´�ZLWK�FRGLQJ�³�´�UHSUHVHQWLQJ�³PLOG´��DQG�

³�´�UHSUHVHQWLQJ�³VHYHUH´��7KH�GLVWULEXWLRQ�RI�GLVHDVH�VWDWXV�ZLWKLQ�D�WULDO�DUP�FDQ�EH�

described by the Bernoulli distribution: 

IEH@4OP=PQO4>=OADEOPáF��1���>ANJ:èDEOP; 
IEH@4OP=PQO4>=OAPNA=PáF��1���>ANJ:èPNA=P; 

F� L sá å áJE 

Hence èÛÜæç denotes the probability of a patient in the historical population being mildly 

diseases, while sF èÛÜæç is the probability of a patient in the historical population being 

severely diseased. For the treatment the analogous consideration holds. Each trial arm 

is divided into two strata following the baseline parameters èDEOP and èPNA=P, which are 

specific for the respective trial arm. The case of a single binary confounder is especially 

convenient, since the relative stratum sizes correspond to the estimates for the 
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baseline parameters. These are then used to estimate the treatment group mean in the 

historical population. 

èÝDEOP L áÓÔÞßáØÔ×Ï

áÓÔÞß
;   èÝPNA=P L áPNA=PáØÔ×Ï

áPNA=P
 

U$àçåØÔç:ÛÜæç; L èÝDEOP Û U$çåØÔç�àÜß× E :sF èÝDEOP; Û U$çåØÔç�æØéØåØ 
Note that èÝDEOP is itself a sample quantity and therefore a random variable subject to 

sampling variation. The resulting distribution of the reweighted treatment mean 

U$àçåØÔç:ÛÜæç; is a complex term. It can be simplified if stratum weights are assumed fix 

and known in advance: 

%5ã     èÝDEOP L  èÛÜæç 

U$çåØÔç:ÛÜæç; L èÛÜæç Û U$çåØÔç�àÜß× E :sF èÛÜæç; Û U$çåØÔç�æØéØåØ  

The fix-weights-assumption is false in practice but may yield a good approximation if 

baseline parameters are not too close to the boundary values and group sizes are 

sufficiently large. A simulation study in Section 5.6 checks for robustness of this 

assumption. 

 

The probability of a control patient having a mild-form-disease at baseline is higher 

than the corresponding probability in the control group: èçåØÔç O èÛÜæç. This imbalance is 

solved by upweighting the smaller treatment group stratum of patients with mild 

disease form on the one hand (èÛÜæç Û U$çåØÔç�àÜß×), while downweighing the larger 

stratum of severely diseased patients (:sF èÛÜæç; Û U$çåØÔç�æØéØåØ).  
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5 Extending the Threshold-Crossing Analysis Framework 

This section is structured as follows. Sections 5.1 introduces the TC framework as 

outlined in the proposing article of Eichler et al. (2016), while Section 0 describes the 

simulation study performed in the proposing article. Subsequently in Section 5.3, the 

central problem of this simulation study, which is coined Variance-Adjustment Problem 

(VAP) in this thesis, is explained and solved by using the rescaled t-distribution 

introduced in Section 4.3. In Section 5.4, the TC framework is extended to include 

heteroscedastic settings. In Section 5.5 the second problem of TC, which is coined 

Bias-Adjustment Problem (BAP) here, is discussed. In Section 5.6 the performance of 

MAIC as a solution to the BAP in a simple design as described in Section 4.4 is 

assessed.  

 

5.1 Introduction to TC 

TC is a framework for evidence generation in early phases of drug development 

programs. It aims for fast decisions in drug development programs, where large effects 

or no effects exist. 7KH�DXWKRUV�DUJXH��³This is welcome because it is more important to 

provide timely access to highly beneficial than incremental treatments, and to terminate 

quickly and economically nonviable assets.´�(Eichler et al., 2016) This way TC is 

proposed to increase efficiency of pharmaceutical research. Its central feature is the 

use a SAT to assess the efficacy of the drug under investigation. External data is used 

as control arm. An outcome threshold is set based on the external control group 

information. If the treatment group outcome summary crosses the threshold, the drug 

may be judged effective. Otherwise, the drug is investigated in a further trial, which 

may be a RCT if practical or another SAT if not. Additionally, a futility threshold is set. If 

the treatment group outcome summary undercuts this futility threshold, the drug may 

be judged ineffective, and the drug development program is terminated. The TC 

framework as outlined in the proposing article by Eichler et al. (2016) is illustrated in 

Figure 11 and Figure 12. 
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Figure 11: TC Framework - Drug Development Program (Eichler et al. 2016) 
The decision framework starts after the conduct of an initial SAT (yellow arrow), as described in Figure 12. 
Drug effectiveness may be concluded if the prespecified threshold is crossed (green line). Similarly, 
ineffectiveness may be concluded if a futility threshold is undercut (red line). Inconclusive cases in 
between (black line) enter a second trial, which may be an RCT if applicable or a SAT if an RCT is 
inapplicable. The second SAT is evaluated by a second threshold. If crossed (green line), efficacy is 
concluded, if not crossed (red line) inefficacy is concluded. 

Performing a trial with single arm design comes with a high potential for bias. However, 

the SURSRVLQJ�DUWLFOH�GHPDQGV��WKDW�³HYHQ�LQ�WKH�OLJKW�RI�SRWHQWLDO�ELDVHV��WKH�HYLGHQFH-

VXSSRUWLQJ�HIILFDF\�RI�WKH�GUXJ�VKRXOG�EH�XQHTXLYRFDO�´�(Eichler et al., 2016) Sufficient 

certainty of results in the light of potentially biased effect estimates is possible in the 

case of dramatic effects (IQWiG, 2022a). The authors of the proposing article state that 

drugs with dramatic effects are rare, but they argue that they will be increasing in the 

upcoming years due to developments in cell-based and gene therapy, as well as 

personalized medicine (Eichler et al., 2016). Additionally, applying RCT designs for 

investigating efficacy of drugs in these fields by is limited (Eichler et al., 2016). 

 

Figure 12: TC framework ± Trial Conduct (Eichler et al. 2016) 
This graph represents the step-by-step procedure for the trial conduct of the initial SAT in the TC 
framework. Blue arrows represent the transition to the next step. The yellow arrow represents the transition 
to the larger decision framework illustrated in Figure 11. Steps 1-4 constitute the prespecification of the 
estimand, the statistical analysis plan, the selection procedure for the external control group, as well as the 
threshold. The trial is conducted in Step 5. Sensitivity analyses follow in Step 6. The yellow arrow indicates 
the transition to subsequent steps, as outlined in Figure 11. 
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The conduct of the initial SAT is done in seven steps as illustrated in Figure 12. Steps 1 

and 2 constitute the prespecification of the trial: Step 1 prespecifies the estimand, while 

Step 2 prespecifies the estimation, that is the statistical methods for analysis. In Step 3 

the external control group is selected according to population criteria prespecified in 

Step 1. The estimation of the counterfactual corresponds to calculating the outcome 

summary measure of the control group. Based on this summary, the threshold is set in 

Step 4. The authors propose to perform this step in close coordination with authorities 

(Eichler et al., 2016). Step 5 consists in the patient recruitment and treatment 

intervention. A potential crossing of the efficacy or futility threshold will manifest during 

this step. In Step 6 sensitivity analyses are performed to check for robustness of the 

methods used for in the main analysis. The implications of the trial for the drug 

development process are considered in Step 7. This step builds the bridge to the larger 

process of the drug development program illustrated in Figure 11. 

 

5.2 Simulation Results of Eichler et al. (2016) 

Eichler et al. (2016) use simulation studies to assess empirical type-I-error and power 

of a SAT. A simulation study is a computer experiment, where datapoints are sampled 

from a known data-generating process (Morris, White and Crowther, 2019). The 

statistical method under investigation is applied on these simulated datasets. The 

results of the method can be evaluated, since the true data-generating process is 

known. A single simulation run consists of an artificial dataset with group sizes denoted 

in the following as JçåØÔç and JÛÜæç. By conducting multiple simulation runs, the rates of 

correct and incorrect results of the statistical method can be evaluated. The number of 

total simulation runs will be denoted as JæÜà. If data under the null hypothesis is 

generated, the rate of false rejection corresponds to the empirical type-I-error rate. In 

contrast, if data under the alternative is generated, the rate of correct rejections 

corresponds to the empirical power (Morris, White and Crowther, 2019).  

 

In the investigated simulation designs on TC in Eichler et al. (2016), empirical type-I-

error rate is not controlled. Either type-I-error inflation or -deflation is observed. The 

simulation designs consist of sampling two groups from a normal distribution (Eichler et 

al., 2016). Observations scatter with equal measurement variance ê6 around a group-

specific mean äÜ. 

UÜáÝ L äÜ E  ÝÜáÝ ��1��0:äÜ áê6;â ��������E� L PNA=PáDEOPâ �F L sá å áJÜ  
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ÝÜáÝ  1 0:ráê6; 
Two simulation designs are investigated, FDOOHG�³QR�VKLIW�LQ�WLPH´�DQG�³VKLIW�LQ�WLPH´��7KH 

former design corresponds to an unbiased setting, the ladder to a biased one. The 

estimand Ü is defined as the standardized difference between the true treatment mean 

äçåØÔç and the true counterfactual äÖÙ, as would be measured by a parallel control 

group in an RCT.  

Ü L äçåØÔç F äÖÙ
ê

 

Unit-variance is assumed for convenience: ê6 L s. Empirical type-I-error rate and 

empirical power are investigated. For measuring the former, data is sampled under the 

null hypothesis, which corresponds to Ü L r. For measuring empirical power, a small 

standardized effect size is set: Ü L rät. Note that group sizes JÜ may differ in size, 

leading to a possibly unbalanced design. 

 

Since an external control group is used only observations of äÛÜæç are available, while 

äÖÙ cannot be assessed directly. In the unbiased design (³QR�VKLIW�LQ�WLPH´� the historical 

group can be used for unbiased estimation of the true counterfactual äÛÜæç. In the 

biased design (³VKLIW�LQ�WLPH´�, external control observations systematically differ from 

the true counterfactual: 

x Unbiased design: äÛÜæç L äÖÙ 

x Biased design: äÛÜæç E > L äÖÙ 

The hypothesis corresponding to the defined estimand is the following: 

*4ã       äçåØÔç F äÖÙ Q r 

The significance level is set according to convention for one-sided tests as Ù L täw¨. In 

Eichler et al. (2016), the conduct of this test is operationalized by setting a threshold 

PDN and testing the treatment arm against it: 

*4
çÛåã    äçåØÔç F PDN Q r 

For conducting the test, sample means U$Ü and sample variances 5Ü
6 and a threshold PDN 

are required. Three different approaches of setting the threshold are discussed: 

x Unadjusted:   PDNèáÔ×Ý ��������L U$ÛÜæç 
x Variance-adjusted:   PDNéÔåäÔ×Ý ������L U$ÛÜæç E 5

6
%+ÛÜæç 

x Variance- & bias-adjusted: PDN×âèÕßØ äÔ×Ý L U$ÛÜæç E 5

6
%+ÛÜæç E > Û Ü 

o With bias adjustment parameter >�ó�<räsárätáräu= 
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The calculation of the length of the historical confidence interval %+ÛÜæç will not be 

discussed here, since this approach is shown to be redundant in the following section. 

 

The test statistic is not explicitly described in Eichler et al. (2016), but the authors 

presumably use the studentized difference of treatment group mean to threshold. The 

quantity used for studentizing presumably is the standard error of the treatment group 

mean. This test statistic is referred to as 3 in the following. 

3 L U$çåØÔç  �  PDN

OAÞ:U$çåØÔç; á    ����OAÞ:U$çåØÔç; L 5çåØÔç¥JçåØÔç 
The decision boundary 3ÖåÜç presumably is the :s F Ù;-quantile of the t-distribution with 

JçåØÔç F s degrees of freedom. These presumptions on the use of test statistic 3 and 

decision boundary 3ÖåÜç, which are not explicitly described by Eichler et al. (2016), 

correspond to the conventional choices given a one-sample t-test of the treatment 

group against a constant value. 

 

Empirical type-I-error rate is displayed for the two designs in the following graphs. Note 

that the different colored lines correspond to different approaches for setting the 

threshold. The unadjusted threshold PDNèáÔ×Ý is depicted in blue, the variance-adjusted 

threshold PDNéÔåäÔ×Ý �in black, and the double-adjusted thresholds PDN×âèÕßØ äÔ×Ý in yellow, 

green and grey. The parallel group trial permits type-I-error control and is depicted in 

red. 

 

Figure 13: Simulation Results in Eichler et al. (2016) 
In both plots type-I-error rate is depicted over different historical control group sizes. This is done for five 
different approaches of setting the threshold, as well as a conventional RCT design for benchmarking (red 
lines). In panel c (left-hand side) the results of simulating an unbiaseG�GHVLJQ�FDOOHG�³1R�VKLIW�LQ�WLPH´�are 
depicted. In panel d (right-KDQG�VLGH��WKH�UHVXOWV�RI�VLPXODWLQJ�D�ELDVHG�GHVLJQ�FDOOHG�³6KLIW�LQ�WLPH´�DUH�
depicted. 
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In the unbiased design depicted on the left side in Figure 13, using the unadjusted 

threshold leads to type-I-error inflation for small historical group sizes JÛÜæç, as the blue 

line shows. For very small JÛÜæç empirical type-I-error can be up to 25%. Call this the 

Variance-Adjustment Problem (VAP). Using the variance-adjusted threshold, type-I-

error inflation can be averted, but only at the cost of type-I-error deflation, as the black 

line on the left side plot shows. The deflation is more pronounced for small JÛÜæç. Type-

I-error deflation comes with power loss and therefore higher sample size requirements 

(Eichler et al., 2016).  

 

In the biased design on the right-hand plot in Figure 13, type-I-error inflation occurs 

also if the variance-adjusted threshold (black line) is used. Call this the Bias 

Adjustment Problem (BAP). Using the bias- (and variance-) adjusted threshold permits 

keeping type-I-error, as the yellow, green and grey lines show. This again comes at the 

cost of type-I-error deflation and power loss. The effect is more pronounced the higher 

the bias adjustment parameter is chosen. 

 

In summary, there are undesirable properties in the operating characteristics of the 

framework. Type-I-error is not controlled. Via adjusted threshold setting, empirical type-

I-error is kept below significance level. In practice choosing the correct amount of bias 

adjustment will be difficult. Too little bias adjustment comes with type-I-error inflation, 

too much bias adjustment with type-I-error deflation and power loss. 

 

5.3 Variance-Adjustment-Problem (VAP) 

The VAP is the problem of type-I-error inflation in the unbiased simulation design, 

which is illustrated by the blue line on the left-hand side in Figure 13. Eichler et al. 

(2016) propose to solve it by raising the threshold by half the historical CI length. 

PDNéÔåäÔ×Ý L U$ÛÜæç E st%+ÛÜæç 
This comes at the cost of type-I-error deflation and power loss. In the following, the 

VAP is solved by analyzing properties of the test statistic 3 used by Eichler et al. 

(2016). The solution implies that type-I-error probability can be controlled, type-I-error 

deflation and power losses can be averted. 

 

If the threshold null hypothesis *4
çÛå is desired to target the null hypothesis in line with 

the estimand *4ã äçåØÔç F äÖÙ Q r, an auxiliary assumption #5 is needed. This 
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assumption links the threshold to the historical population mean, and in the unbiased 

design (äÛÜæç L äÖÙ) ultimately to the true counterfactual. 

#5ã     PDNèáÔ×Ý L  äÛÜæç 

Based on assumption #5, the specification of the one-sample t-test is correct. The 

threshold is a constant value without variance and the distribution of the test statistic is: 

3 L U$çåØÔç  �  PDNèáÔ×Ý

OAÞ:U$çåØÔç;       

*4 á#5
1
 

     P:@B L JçåØÔç F s; 
The quantile 3ÖåÜç L P?5:sF Ùá  @B L JçåØÔç F s; is used as a decision boundary and 

therefore type-I-error is controlled under the null and the auxiliary assumption: 

2k3 P 3ÖåÜç+*4 á#5o L  Ù L täw¨ 

However, assumption #5 does not hold. The unadjusted threshold, which is set as 

 PDNèáÔ×Ý L U$ÛÜæç does not equal äÛÜæç. Sampling variability will lead to random 

deviations of U$ÛÜæç from äÛÜæç. The ignored variance in PDNèáÔ×Ý will be higher for small 

historical group sizes. This is what Eichler et al. (2016) observe in the unbiased 

simulation setting, shown on the left-hand side of Figure 13. Empirical type-I-error is 

high for low historical group sizes. For larger historical group sizes, empirical type-I-

error rate converges towards the specified level. This reflects the fact that assumption 

#5 is approximately true for large historical group sizes, while being violated 

considerably for small historical group sizes. 

 

These empirical findings can be derived analytically by deriving the distribution of the 

test statistic in the absence of auxiliary assumption #5. It can be shown that the test 

statistic 3 follows a rescaled t-distribution with scale parameter Û, as introduced in 

Section 4.3. 

3   

*4
1
 

   Pßæ:@B L JçåØÔç F sá  O?=HA L Ûá  HK? L r;â �����Û L ¨s E  
JçåØÔç

JÛÜæç
 

The scaling factor Û induces stretching of the probability density of the test statistic 3. If 

the external control group size JÛÜæç is large in comparison to the treatment group size, 

the influence of the scaling parameter Û is small since Û N s. A plot of the density of 3 

for fixed treatment group size JçåØÔç and different historical group size JÛÜæç is given in 

Figure 14. It illustrates the reason of the observed type-I-error inflation: The stretching 

of the probability density function leads to a larger area under curve beyond the 

decision boundary 3ÖåÜç used in the one-sample t-test. This area corresponds to the 
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type-I-error probability. Lower historical group size leads ceteris paribus to a larger 

scaling factor and therefore a higher probability of type-I-error. 

 

Figure 14: Probability Density of the Q-Statistic for JçåØÔç L s{x 
The solid black line represents the probability density of the Q-Statistic under assumption A_1, which 
corresponds to a t-distribution. The dashed black line represents the critical value for the Q test, 
determined under assumption A_1. The colored lines represent the probability of the Q-Statistic if A_1 is 
not given, which correspond to rescaled t-distributions. For fix treatment group size a large historical group 
size induces only little stretching (blue line), whereas a small historical group size induces a large amount 
of stretching (red line). In both case the area under curve to the right of the critical value is larger 
compared to the distribution under A_1. This corresponds to an increased probability of type-I-error. 

 

One solution to the VAP is using an adjusted decision boundary, that does not rely on 

auxiliary assumption #5. Setting 3Ô×Ý
ÖåÜç as the (sF Ù)-quantile of the rescaled t-

distribution results in a controlled type-I-error. It corresponds to the conventional t-

quantile used by Eichler et al. (2016) multiplied by the scaling factor Û. 

3Ô×Ý
ÖåÜç L Pßæ

?5:sF Ùá  @B L JçåØÔç F sá  O?=HA L Ûá  HK? L r; L �Û Û 3ÖåÜç 

Call a one-sample t-test against the threshold with decision boundary adjustment as 

GHVFULEHG�DERYH�D�³q-test´��7KH�YDOLGLW\�RI�WKLV�T-test is double checked empirically by 

conducting a simulation study with data sampled under the null and tested by the q-test 

procedure (see Table 1).  
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Table 1: Empirical Type-I-Error Rate of the Q-Test for /=0 ± Homoscedastic Designs 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns differ by testing method used for analysis of the dataset, as well as group size ratio r. Each 
dataset is sampled under the null hypothesis with Ü L r, ê L s and JçåØÔç L sxr group sizes following the 
group size ratio of the respective design and sample size formula given in this section. A simulation error 
of approximately 0.05 percentage-points results. 

 Group Size 

P Balanced (r=1) 

JÛÜæç=160 

Imbalanced (r=10) 

JÛÜæç=1600 

1 2.54% 2.57% 

 

For correct interpretation of simulation results, the simulation error or Monte Carlo 

error, which is due to the pseudo-random sampling of datasets, must be assessed 

(Morris, White and Crowther, 2019). The precision of the empirical error rates depends 

on the number of simulations runs JæÜà. If few simulation runs are conducted, observed 

error rates may come with large variance. In this case, small deviations from a type-I-

error target of 2.5% are not interpretable. The results of Table 1 come with a simulation 

error of approximately 0.05 percentage-points. This is calculated by the following 

formula (Morris, White and Crowther, 2019): 

OAÞ:4AFA?PEKJ4=PA; L ¨4AFA?PEKJ4=PA Û :s F 4AFA?PEKJ4=PA;
JæÜà

 

Empirical type-I-error rates reported in Table 1 do not considerably differ from the 

target of 2.5%. The deviations by 0.04 and 0.07 percentage-points can be explained by 

simulation error. 

 

 
 

A different solution to the VAP is using a two-sample t-test as introduced in Section 4.2. 

Here the formal testing procedure does not involve the threshold PDNèáÔ×Ý, but the 

historical group mean U$ÛÜæç. Statistically, this makes no difference, since the former is 

set as equal to the latter in the q-test: PDNèáÔ×Ý L U$ÛÜæç. On a practical level, however, 

some differences arise, which are discussed in the conclusion of the thesis (Section 6). 

The null hypothesis is equal to the q-test: 

*4ã       äçåØÔç F äÖÙ Q r 

The conventional two-sample t-test statistic is used. Its distribution is known and 

probability of type-I-error is controlled. 
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6 L U$çåØÔç F U$ÛÜæç
5ãââßØ×§ 

s
JçåØÔç

E s
JÛÜæç

�

*4
1
 

 ��P:s F Ùá@B L 0 F t; 
 

One may expect the two-sample t-test to perform better in terms of power than the one-

sample q-test with decision boundary adjustment due to the fact, that information of 

both groups is used in the test statistic. However, an empirical investigation by means 

of a simulation study shows hardly any differences between the methods (Table 2). 

Sample size calculation for both methods is performed via the normal approximation of 

the two-sample t-test introduced in Section 4.2: 

JçåØÔç R N E s
N

Û
k<� E <	o6ê6

ÜÛ
6

â ����������JÛÜæç R N Û JçåØÔç  

 

Table 2: Empirical Power for�Ü L räu ± Homoscedastic Designs 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns differ by testing method used for analysis of the dataset, as well as group size ratio r. Each 
dataset is sampled under the alternative hypothesis with Ü L räu, ê L s and group sizes following the 
group size ratio of the respective design and sample size formula given in this section. A simulation error 
of approximately 0.1 percentage-points results. 

 Testing Procedure 

 Two-Sample t-test One-VDPSOH�³4´-test 

 Group Size 

P Balanced (r=1) Imbalanced (r=10) Balanced (r=1) Imbalanced (r=10) 

1 79.8% (JçåØÔç=175) 79.9% (JçåØÔç=96) 79.8% (JçåØÔç=175) 79.2% (JçåØÔç=96) 

 

In case of balanced group sizes empirical power is equal. If group sizes are strongly 

unbalanced the two-sample t-test slightly outperforms the one-sample q-test. 

 

5.4 Heteroscedastic Setting ± Welch-test 

In the last subsection a solution to the VAP is proposed, that permits type-I-error 

control analytically in the unbiased design. In this section the unbiased design is 

extended by the heteroscedastic setting. 

 

Testing for a group mean difference when measurement variance is not assumed 

equal across groups with possibly unequal group sizes is known as the Behrens-Fisher 

problem (Brunner, Bathke and Konietschke, 2018, chap. 3). This situation is especially 

important for SATs, since group sizes are expected to be unequal, and the assumption 
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of equal variance is questionable in case different data sources are used. 

Measurements in both groups are normally distributed and scatter around the 

respective group mean äÜ with group-specific variance êÜ
6: 

UÜáÝ  1 0:äÜ áêÜ6;â ���E� L PNA=PáDEOPâ ��F L sá å áJÜâ ����êÛÜæç L é Û êçåØÔç 

The t-test is known to be flawed in a Behrens-Fisher design. The case of negative 

pairing and positive pairing are distinguished. In case of negative pairing the larger 

group possesses smaller variance. If the larger group possesses larger variance the 

setting is referred to as positive pairing. The t-test performs liberal in case of negative 

pairing. This means that type-I-error rate is inflated, while type-II-error rate is 

decreased. An increase in power results, which is considered artificial. It is merely the 

consequence of type-I-error inflation. Conservative performance of the t-test is present 

in case of positive pairing. This implies decreased type-I-error rate, as well as 

decreased power (Brunner, Bathke and Konietschke, 2018, chap. 3). 

 

The definition of the causal effect of interest is the first problem to encounter in the 

Behrens-Fisher problem. Using the standardized effect difference raises the question 

of which quantity to use for standardization. Since there is better information on the 

treatment group, due to the active patient recruitment, the treatment group variance is 

chosen here: 

Ü L äçåØÔç F äÛÜæç
êçåØÔç

 

The null hypothesis is as follows: 

*4ãäçåØÔç F äÖÙ Q r 

It is tested using the Welch-test, which is considered a good approximate solution to 

the Behrens-Fisher problem (Brunner, Bathke and Konietschke, 2018, chap. 3). Note 

that type-I-error control in the Welch-test is not shown by statistical theory as it is for 

the t-test. Performance assessment therefore relies on empirical investigations by 

simulation studies. The test statistic of the Welch-test is as follows: 

9 L �U$çåØÔç  F PDNèáÔ×Ý
¨5çåØÔç6

JçåØÔç
E 5ÛÜæç

6

JÛÜæç

 

It uses separate variance estimates for each group, instead of a pooled estimate. The 

distribution of the test statistic 9 cannot be attained in closed analytical form. The 

Welch-test approximates it using a t-distribution, whose degrees of freedoms are 

calculated via the Welch-Satterthwaite equation: 
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*4 á=LLNKTä

1
 

 

 

���P:@B L �íÜ; 
The decision boundary is 9ÖåÜç L P?5:M L sF Ùá  @B L íÜ;. The approximative nature of 

the test prohibits calculation of theoretical type-I-error rate. However, empirical type-I-

error rate can be checked in a simulation study. Table 3 reports empirical type-I-error 

rate of the Welch-test. The central row represents the homoscedastic setting as a 

special case. Type-I-error rates are in close proximity to the target of 2.5%, with 

differences from observed rate to target explainable by the simulation error of 0.05 

percentage-points. This is also true for rows 2 and 4, representing heteroscedastic 

settings, as well as for the first row, representing an extreme heteroscedastic setting 

with a ratio of standard deviations é L ¢ÓÔÞß

¢ßÝÐÌß
L räs, resulting in possibly negative 

pairing. In the last row, representing extreme heteroscedasticity with possibly positive 

pairing, empirical type-I-error rate is off the 2.5%-target by two simulation errors. A 

slight type-I-error deflation in the balanced case is indicated, while inflation is indicated 

for the unbalanced case observed. These extreme settings are included to check 

thoroughly the Welch-WHVW¶V�SHUIRUPDQFH��,Q�SUDFWLFH�DQ�H[WUHPH�YDULDQFH�UDWLR�ZRXOG�

raise doubt about the overall comparability between the trial arms. 

 

Table 3: Empirical Type-I-Error Rate - Welch-Test 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns differ by group size ratio r. With fixed treatment group size of JÛÜæç=160 in all designs, historical 
group size is fixed for each column as displayed in the column header. Each dataset is sampled under the 
null hypothesis with Ü L rá êçåØÔç L s. Rows of the table represent varied standard deviations êÛÜæç of 
historical measurements. A simulation error of approximately 0.05 percentage-points results. 

 Group Size 

PÛÜæç Balanced (r=1) 

JÛÜæç=160 

Imbalanced (r=10) 

JÛÜæç=1600 

0.1 2.55% 2.48% 

0.5 2.45% 2.44% 

1 2.54% 2.53% 

2 2.55% 2.49% 

10 2.38% 2.60% 
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Figure 15: Power Curves - Welch Test for JçåØÔç L sxr and êçåØÔç L s 
Upper panel: positive pairing. Mid panel: homoscedastic design. Lower panel: negative pairing. The 
different power curves represent different group sizes used to conduct a Welch-test. The historical group 
size is given in the legend, while the treatment group size is equal for all curves. For very small population 
differences, power is close to zero in all settings. Power increases sharply for larger effect sizes if very 
large historical samples are used (blue curves). Power increases less rapidly if a relatively small historical 
group is used in the trial (red curves). 
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The power curves in Figure 15 are displayed for the homoscedastic setting where é L
s (mid panel), and the moderately heteroscedastic settings with positive pairing with 

é L t  (upper panel) and negative pairing with é L räw (lower panel). The curves in the 

homoscedastic setting are equivalent to the power curves for the two-sample t-test 

displayed in Figure 8 (Section 4.2). In the positive pairing design, power is lower, while 

in the negative pairing design it is higher compared to the homoscedastic setting. Note 

that power curves are equal in all designs for very large historical group sizes used 

(blue curve).  

 

For checking empirical power, an approximate sample size calculation is performed in 

each simulation design according to the following formula, which is a simplified version 

of (Schouten, 1999). Variance ratio is parametrized by ì L é~: 

JçåØÔç R :N E ì;
N

Û
:<� E <	o6 Û êçåØÔç6

ÜÛ
6

 

For fix historical group size, the following formula can be used: 

JçåØÔç R s

ÜÛ
6

:<� E <	o6êçåØÔç6
F ì
JÛÜæç

 

 

Table 4: Empirical Power of the Welch-Test for�Ü L räu ± Heteroscedastic Designs 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns represent a balanced and an unbalanced design. Each dataset is sampled under the alternative 
hypothesis with Ü L räu, ê L s and group sizes following the group size ratio of the respective design and 
sample size formula given in this section. A simulation error of approximately 0.1 percentage-points 
results. 

 Group Size 

PÛÜæç Balanced (r=1) Imbalanced (r=10) 

0.1 79.6% (JçåØÔç=89) 79.6% (JçåØÔç=89) 

0.5 80.0% (JçåØÔç=110) 79.7% (JçåØÔç=90) 

1 80.0% (JçåØÔç=175) 79.4% (JçåØÔç=96) 

2 80.0% (JçåØÔç=437) 79.9% (JçåØÔç=123) 

10 80.2% (JçåØÔç=8809) 80.1% (JçåØÔç=960) 

 

Table 4 shows empirical power for the Welch-test, as well as group sizes used in each 

design. The mid row shows group sizes needed in the homoscedastic setting. In the 

balanced design group sizes of 175 patients are needed while in the unbalanced case 
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96 patients for the treatment group are needed and the external control consists of 960 

patients. The resulting power in the balanced case is similar up to simulation error to 

the two-sample t-test, while in the imbalanced case the Welch-test displays slightly less 

power. If historical variance is raised, higher group sizes are needed to power the trial. 

If historical variance is lowered, smaller group sizes are sufficient for an empirical 

power of almost 80%. 

 

5.5 Bias-Adjustment-Problem (BAP) 

The VAP is a question of statistical precision. Eichler et al. (2016) found type-I-error 

inflation in the unbiased design, which was caused by sampling variability. This 

problem was shown to be solvable by choosing the correct statistical analysis. Type-I-

error can be controlled in the homoscedastic setting, while in the heteroscedastic 

setting simulation studies confirm that type-I-error rate is sufficiently close to the 

significance level. 

 

The BAP denotes the phenomenon of type-I-error inflation, which is due to systematic 

differences between trial arms. Therefore, it is a question of internal validity of the trial. 

Eichler et al. (2016) discuss a biased design, which is called ³VKLIW�LQ�WLPH´. Here the 

observed historical control group is systematically different than the true counterfactual, 

as would be measured by a randomized parallel control group: äÛÜæç M äÖÙ. A 

motivation for the naming as time-shift bias is an improving standard of care. This 

makes the historical control patients systematically worse off than hypothetical parallel 

control patients collected at the time of the trial: äÛÜæç O äÖÙ. 

 

Comparing the treatment arm to the historical control arm yields an overestimated 

treatment effect. If a hypothesis test is performed, type-I-error inflation occurs. Keeping 

type-I-error under control in the biased design is not a question of correct statistical 

modelling, as was the case for the VAP. In principle a quantitative adjustment to the 

counterfactual can adjust for the bias and keep type-I-error at the specified level. 

Eichler et al. (2016) suggest raising the threshold by some amount. In practice the 

quantification of the correct amount for adjustment will be difficult. The correct amount 

is the difference between historical control mean and true counterfactual > L äÖÙ F
äÛÜæç. However, information on the true counterfactual äÖÙ is not measured, so there is 

no empirical basis to estimate >. The difference in standard of care between historical 
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and parallel control patients is hard to quantify. If the analyst does an attempt for 

quantification there is no means to check for resulting validity, so the question of the 

correct adjustment remains ex-post. Choosing an incorrect bias adjustment comes with 

disadvantages. Too little adjustment yields a liberal hypothesis test, type-I-error is still 

inflated, albeit less than in the unadjusted case. Too much of bias adjustment leads to 

a conservative hypothesis test with deflated type-I-error and little power.  

 

A scenario more interesting for statistical modeling is measured bias in the form of 

confounding. In the following the MAIC-model containing a binary baseline confounder 

is investigated.  

 

5.6 MAIC to address the BAP 

MAIC demands targeting the trial arm, for which only AGD is available, which in 

practice will be the external control arm. The definition of the treatment effect includes 

the counterfactual treatment group mean in the historical population äçåØÔç:ÛÜæç;. It is 

estimated by the reweighting procedure described in Section 4.4: 

U$çåØÔç:ÛÜæç; L èÛÜæç Û U$çåØÔç�àÜß× E :sF èÛÜæç; Û U$çåØÔç�æØéØåØ  

The estimand is defined as the standardized population mean difference in the 

historical control population. The measurement variance of the treatment arm êçåØÔç is 

chosen for standardizing. 

Ü L äçåØÔç:ÛÜæç; F äÛÜæç:ÛÜæç;
êçåØÔç

 

The threshold is set as the marginal outcome mean in the historical group: PDN L U$ÛÜæç. 
The decision on efficacy is based on a hypothesis test with null hypothesis as follows. 

*4ã       äçåØÔç:ÛÜæç; F PDN L r 

A Welch-type test statistic is used. This allows for different measurement variance 

between trial arms. The numerator of the test statistic consists of the sample mean 

difference using the reweighted treatment sample mean: U$çåØÔç:ÛÜæç; F U$ÛÜæç:ÛÜæç;. 
Studentizing this term requires the sample variances of the marginal historical mean 

R=NÞ :U$ÛÜæç; L 5ÛÜæç
6 5

áÓÔÞß
�and of the reweighted treatment sample mean R=NÞ kU$çåØÔç:ÛÜæç;o L

ã Û 5çåØÔç
6 5

áßÝÐÌß
. The derivation of the latter term follows in the next paragraph, leading to 

the product of the marginal treatment group variance multiplied by an adjustment factor 

ã. This result in the following test statistic, which is approximately t-distributed under 
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the null hypothesis with degrees of freedom estimated by the Welch-Satterthwaite 

approximation: 

/ L �U$çåØÔç:ÛÜæç; F PDNèáÔ×Ý
¨ã Û 5çåØÔç6

JçåØÔç
E 5ÛÜæç

6

JÛÜæç

����

*4 á=LLNKTä

1
 

 

 

���P:@B L �íÜ; 

íÜ L :5çåØÔç6 Û ã
JçåØÔç

E 5ÛÜæç
6

JÛÜæç
;~

5çåØÔç
8 Û ã~

JçåØÔç
6 :JçåØÔç F s;E 5ÛÜæç

8

JÛÜæç
6 :JÛÜæç F s;

 

 

The variance adjustment factor ã is determined by considering the variance of the 

reweighted treatment sample mean under the fix-weights-assumptions: 

%5ã     èÝDEOP L  èÛÜæç 

%6ã     èÝPNA=P L  èçåØÔç 

Variances of the conditional means in the treatment group are as follows: 

R=NkU$çåØÔç�Þo L êçåØÔç
6 5

áßÝÐÌßáÖ
â G L IEH@á OARANA 

Conditional means in the treatment group can be considered independent: 

%7ã     ?KRkU$çåØÔçáàÜß× á�U$çåØÔçáæØéØåØo L r 

Recap, that the relation between stratum sizes and the baseline parameters are as 

follows: 

JçåØÔçáàÜß× L èÝPNA=P Û JçåØÔçâ ��������JPNA=PáæØéØåØ L :s F èÝPNA=P; Û JPNA=P 
Given these assumptions the following term can be derived: 

R=NkU$çåØÔç:ÛÜæç;o L R=NkèÛÜæç Û U$çåØÔçáàÜß× E :s F èÛÜæç; Û U$çåØÔçáæØéØåØo 
L èÛÜæç

6
Û R=NkU$çåØÔçáàÜß×o E :s F èÛÜæç;6 Û R=NkU$çåØÔçáæØéØåØo 

E�t Û èÛÜæç Û :s F èÛÜæç; Û ?KRkU$çåØÔçáàÜß× á�U%çåØÔçáæØéØåØo 
L èÛÜæç

6
Û êçåØÔç

6
s

JçåØÔçáàÜß×
E :s F èÛÜæç;6 Û êçåØÔç6

s

JçåØÔçáæØéØåØ
E r 

L èÛÜæç
6

Û
êçåØÔç
6

JçåØÔç Û èçåØÔç
E :sF èÛÜæç;~ Û êçåØÔç

6

JçåØÔç Û :sF èçåØÔç;;
L êçåØÔç

6
s

JçåØÔç
Û F èÛÜæç6

èçåØÔç
E :s F èÛÜæç;6

s F èçåØÔç G 

L êçåØÔç
6

s

JçåØÔç
Û ãá�������SDANA�ã L èÛÜæç

6

èçåØÔç
E :sF èÛÜæç;6

s F èçåØÔç  
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The relation of the baseline parameters and the adjustment factor ã is as follows and 

illustrated in the following plot: 

 

 

Figure 16: Variance Adjustment Factor ã over historical baseline parameter èÛÜæç, factored by treatment 
baseline parameter èçåØÔç. If baseline parameters match, the adjustment factor equals 1. The factor 
increases parabolically with increasing baseline imbalance between groups. 
 

In case of balance in baseline parameters between trial arms èçåØÔç L èÛÜæç, the 

adjustment factor ã equals 1. In this case no reweighing takes place, the marginal 

treatment mean can be used for an unbiased comparison.  

 

If baseline parameters differ, the adjustment factor ã is greater than 1. This implies a 

higher variance of the reweighted treatment mean R=NÞ kU$çåØÔç:ÛÜæç;o. Moderate 

differences in baseline parameters imply a moderate adjustment factor of ã Q t (see 
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blue or purple curve). When parameters are close to the boundary values, ã can 

become very large. Note that higher estimate-variance implies higher sample size 

requirements, which will be explained in detail further below. 

 

A simulation study is conducted to check if type-I-error rate stays close to the nominal 

level of 2.5%. Empirical baseline estimates èÜçåØÔç and èÜÛÜæç are used for reweighting 

the treatment mean and for estimating variance: 

U$àçåØÔç:ÛÜæç; L èÜÛÜæç Û U$çåØÔç�àÜß× E :sF èÜÛÜæç; Û U$çåØÔç�æØéØåØ  

R=NÞ kU$àçåØÔç:ÛÜæç;o L 5çåØÔç
6 s

JçåØÔç
Û ã� 

Data under the null hypothesis of no treatment effect is generated. 

*4ã�äçåØÔç�Þ F äÛÜæç�Þ L râ �G L IEH@á OARANA 

Constant design parameters are: 

x Baseline difference � L äçåØÔç�àÜß× F äçåØÔç�æØéØåØ L äÛÜæç�àÜß× F äÛÜæç�æØéØåØ L räu 

x Measurement variance of the treatment arm êçåØÔç L s 

x Treatment group size JçåØÔç L sxr 

x Historical baseline parameter èçåØÔç L räyw 

The following design parameters are set to varied levels:  

x Measurement variance of the historical arm êÛÜæç Ð <räsáräwásátásr= 
x Historical group size JÛÜæç Ð <sxrásxrr=  

o This translates to group size ratios of  N Ð <sásr= 
x Treatment group baseline parameter èçåØÔç Ð <räywáräwárätw= 

o This translates into an unconfounded, a moderately confounded and a 

highly confounded design 

Crossing these design factors yields unique 12 designs. For each design JæÜà L
srrärrr simulation runs are performed, and the empirical rate of null rejection is 

measured. 

 

Empirical type-I-error in Table 5 is below nominal level of 2.5% in all designs. Most 

designs show moderate deflation with type-I-error between 2.1 and 2.5%. The deflation 

is more pronounced for designs with negative pairing, that is low historical variance. 

Group size imbalance and baseline imbalance do not seem to have influence on 

empirical type-I-error. 
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To check for the influence of the baseline difference � between stratum means within 

the groups, a second simulation study with design parameter � L s is performed. Its 

results are displayed in Table 6. The type-I-error deflation pattern is more pronounces 

here. 

Table 5: Empirical Type-I-Error ± MAIC-adjusted Welch-Test - û=0.3 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns differ by baseline imbalance, as well as group size ratio r. Each dataset is sampled under the null 
hypothesis with Ü L r, êçåØÔç L s and JçåØÔç L sxr and historical group size JÛÜæç as displayed in the 
respective column. A simulation error of approximately 0.05 percentage-points results. 

 Baseline Imbalance 

 Moderate: èçåØÔç=0.5 Large: èçåØÔç=0.25 

 Group Size 

PÛÜæç Balanced (r=1) 
JÛÜæç=160 

Imbalanced (r=10) 
JÛÜæç=1600 

Balanced (r=1) 
JÛÜæç=160 

Imbalanced (r=10) 
JÛÜæç=1600 

0.1 2.22% 2.27% 2.14% 2.17% 

0.5 2.26% 2.19% 2.13% 2.13% 

1 2.28% 2.29% 2.29% 2.19% 

2 2.41% 2.38% 2.39% 2.18% 

10 2.52% 2.44% 2.52% 2.47% 

 

 
Table 6: Empirical Type-I-Error ± MAIC-adjusted Welch-Test - û=1 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns differ by baseline imbalance, as well as group size ratio r. Each dataset is sampled under the null 
hypothesis with Ü L r, êçåØÔç L s and JçåØÔç L sxr and historical group size JÛÜæç as displayed in the 
respective column. A simulation error of approximately 0.05 percentage-points results. 

 Baseline Imbalance 

 Moderate: èçåØÔç=0.5 Large: èçåØÔç=0.25 

 Group Size 

PÛÜæç Balanced (r=1) 
JÛÜæç=160 

Imbalanced (r=10) 
JÛÜæç=1600 

Balanced (r=1) 
JÛÜæç=160 

Imbalanced (r=10) 
JÛÜæç=1600 

0.1 0.85% 1.17% 0.99% 1.19% 

0.5 1.04% 1.11% 1.10% 1.14% 

1 1.35% 1.27% 1.39% 1.20% 

2 1.94% 1.43% 1.86% 1.30% 

10 2.50% 2.28% 2.49% 2.24% 

 

 

If reweighting takes place, the concept of effective sample size (ESS) is of interest. 

Some patients are upweighted and some downweighed in the MAIC-procedure. This 

comes at the cost of not having full information of the treatment group entering the 

mean estimation and hypothesis test. ESS can be calculated based on the individual 
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weights according to a formula given in the online appendix of Signorovitch et al. 

(2010): 

'55 L :Ã ñÜ
áßÝÐÌß
Ü@5

;~
Ã ñÜ
áßÝÐÌß
Ü@5

~
 

Here ñÜ denotes the individual weight received by treatment group patient E, where the 

weights are in standardized form, that is adding up to 1. Until this point only the 

aggregate stratum weights èÛÜæç and :s F èÛÜæç; were considered. These corresponded 

to the historical baseline parameter and are convenient to derive properties of the 

reweighted mean estimate. In contrast, individual weights ñÜ are based on the ratio 

between historical and concurrent baseline parameters:  

ñÜ L èÛÜæç

èçåØÔç
Û �

s

JçåØÔç
����� áIEH@HU�@EOA=OA@�L=PEAJPO 

ñÜ L s F èÛÜæç
s F èçåØÔç Û � s

JçåØÔç
����� á OARANAHU�@EOA=OA@�L=PEAJPO 

The choice of individual weights as the baseline-ratios above is based on its 

equivalence to the stratum-weights form introduced in Section 4.4: 

U$çåØÔç:ÛÜæç; L èÛÜæç Û U$çåØÔç�àÜß× E :sF èÛÜæç; Û U$çåØÔç�æØéØåØ  

For a derivation of this equivalence, see the appendix of this thesis. Using these 

individual weights results in the aggregate weights being as specified above. Based on 

the fix-weights-assumptions %5 and %6, the ESS formula equals the following form:  

'55 L :Ã ñÜ
áßÝÐÌß
Ü@5

;~
Ã ñÜ
áßÝÐÌß
Ü@5

~
L s

ã
Û JçåØÔç 

For a detailed derivation see as well the appendix. 

 

The approximate sample size formula used in the empirical power investigation is the 

following: 

JçåØÔç R ãN E ì
N

Û
k<� E <	o6êçåØÔç6

ÜÛ
6

â ������JÛÜæç R N Û JçåØÔç 

If required treatment group size is expressed in terms of a fixed historical sample size, 

the difference to the Welch-test sample size formula is the factor ã. 

JçåØÔç R ã

ÜÛ
6

:<� E <	o6 F
ì

JÛÜæç

L ã Û JçåØÔç áèá×Ý  

The MAIC-reweighting procedure to address confounding bias comes at the cost of 

higher sample size demands compared to the unadjusted analysis by a Welch-test. 

The higher sample size demand is dependent on the amount of reweighting of the 
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treatment group, that is needed for adjustment. It can be parametrized conveniently by 

ã, given the model assumptions. 

 

For power analysis a standardized effect of ÜÛ L räu is chosen. 

*5ã�äçåØÔç�Þ F äÛÜæç�Þ L ÜÛâ �������G L IEH@á OARANA 

Under the alternative hypothesis the test statistic approximately follows a non-central t-

distribution with degrees of freedom íÜ, estimated by the Welch-Satterthwaite equation 

and ncp ô� dependent on variance estimates, including the variance adjustment factor   

ãã  

ô� L ÜÛ

§ã Û 5çåØÔç
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���P:@B L �íÜáJ?L L ô�; 

The decision boundary /ÖåÜç L P?5:M L sF Ùá  @B L íÜáJ?L L r; remains unchanged. 

Power corresponds to the are under the probability density beyond the critical value 

given the alternative is true 2Á-k/ P /ÖåÜço L s F 6:/ÖåÜç á@B L íÜáJ?L L ô;. Calculation 

of power curves is dependent on the same assumptions done as in the theoretical 

investigation of type-I-error probability:  

x Fix weights assumptions %5, %6 to calculate the expected ã 

x Independence of stratum means within the treatment group 

o ?KRkU$çåØÔçáàÜß× á�U%çåØÔçáæØéØåØo L r 

 

Figure 17 shows three power curves. For the red line group sizes are chosen to 

achieve 80% power for a standardized effect of ÜÛ L räu. Measurement variance is 

assumed equal. The yellow and green curve illustrate an interesting finding: increasing 

the treatment group size comes with higher power gains, than increasing the external 

control group size by the same amount. This finding can be explained by the 

reweighting procedure, that applies only to the treatment group. 

 

The empirical power check (Table 7) depends neither on the fix-weights-assumptions 

%5 and %6, nor on the zero-covariance-assumption %7. Empirical baseline estimates are 

used for reweighting, empirical variance estimates used for studentizing the test 

statistic. Data under the alternative hypothesis Ü L räu is sampled and a hypothesis 
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test based on the MAIC-reweighting procedure is performed. Designs are equal to the 

ones used for investigating empirical type-I-error. 

 

Higher sample sizes are needed compared to the Welch-test. The sample size formula 

derived is a sufficient approximation to achieve close to 80% power. Power is closest to 

80% in the designs with very high historical variance. 

 

 

Figure 17: Power Curves ± MAIC, êçåØÔç L s, êÛÜæç L s 
The yellow curve displays power over varied values of the estimand, defined as the counterfactual mean 
difference in the historical population. For this reference curve, group sizes are set to JçåØÔç L t{s and  
JÛÜæç L t{s, which yields 80% power for an effect of ÜÛ L räu standard deviations. Adding 100 additional 
treatment units (green curve) increases power more than adding 100 additional control units (red curve). 
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Table 7: Empirical Power for /=0.3 ± MAIC-adjusted Welch-Test 
Rejection rate of the null hypothesis across JæÜà L srrárrr simulated datasets in each design is reported. 
Columns represent a balanced and an unbalanced design. Each dataset is sampled under the alternative 
hypothesis with Ü L räu, êçåØÔç L s and group sizes following the group size ratio of the respective design. 
A simulation error of approximately 0.1 percentage-points results. 

 Baseline Imbalance 

 Moderate: èçåØÔç=0.5 Large: èçåØÔç=0.25 

 Group Size 

PÛÜæç Balanced (r=1) Imbalanced (r=10) Balanced (r=1) Imbalanced (r=10) 

0.1 78.0% (JçåØÔç=110) 79.1% (JçåØÔç=110) 78.9% (JçåØÔç=205) 79.2% (JçåØÔç=204) 

0.5 78.7% (JçåØÔç=131) 79.0% (JçåØÔç=112) 79.2% (JçåØÔç=226) 79.3% (JçåØÔç=206) 

1 79.4% (JçåØÔç=197) 78.9% (JçåØÔç=118) 79.3% (JçåØÔç=291) 79.3% (JçåØÔç=213) 

2 79.7% (JçåØÔç=458) 79.2% (JçåØÔç=144) 79.7% (JçåØÔç=553) 79.3% (JçåØÔç=239) 

10 79.9% (JçåØÔç=8830) 79.9% (JçåØÔç=982) 80.1% (JçåØÔç=8925) 79.9% (JçåØÔç=1076) 
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6 Conclusions and Discussion 

6.1 Threshold-Crossing 

The relevance of the TC framework at the present day is questionable. Eichler et al. 

(2016) already point out that dramatic effects make a small share of drugs investigated 

in pharmaceutical research. Review studies confirm this claim (Ribeiro et al., 2022). 

Arguments are invoked that novel bio-technology and personalized medicine increase 

the occurrence of dramatic effects (Eichler et al., 2016). However, making a ³Srediction 

LV�YHU\�GLIILFXOW��HVSHFLDOO\�LI�LW¶V�DERXW�WKH�IXWXUH´1. 

 

Assumed dramatic effects increase in the future, it is questionable if TC contributes to 

increasing efficiency in pharmaceutical research. On the one hand dramatic effects are 

found more rapid and with less costs. On the other hand, inconclusive cases must be 

investigated as RCT at a later stage in the drug development process. Hence two trials 

are performed, where a single RCT would have been sufficient. This reduces efficiency 

of pharmaceutical research. 

 

In some drug development programs RCTs may be infeasible. This is the case in rare 

diseases. Here legal arrangements, such as the Orphan drug status, already exist to 

increase incentives of manufacturers to invest into drug development. The Ide-Cel case 

(Section 3) exemplifies a benefit decision based on the Orphan drug status. SAT 

evidence had been submitted for benefit quantification, but was rejected due to bias 

concerns and the absence of a dramatic effect size (G-BA, 2022b). Nonetheless a non-

quantifiable benefit was granted, which is an important step towards reimbursement of 

the treatment by the German health system and ultimately may justify the investment of 

the manufacturer into drug development. TC would have brought no advantage in the 

drug development program of Ide-Cel. The comparisons conducted for benefit 

assessment were at high risk of bias. This would have demanded a high bias 

adjustment of the threshold. Since no dramatic effect was present the threshold would 

presumably not have been crossed. Hence the investigation of the drug would have 

been required to be repeated within a second trial. In the Ide-Cel case, applying TC 

would presumably decrease efficiency. 

 

                                                
1 The origin of the quote is unclear, while most quoters attribute it to physicist Niels Bohr. 
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If a SAT is applied for evidence generation, strategies exist to reduce the potential for 

bias. An important aspect is prespecification of trial conduct. This includes 

prespecification of how to select an external control cohort. (Eichler et al., 2016) state 

WKDW�³FKHUU\-SLFNLQJ´�DQ�Hxternal control cohort yields a potential for bias.  

Setting an ³D�SULRUL�IL[HG�>RXWFRPH@�WKUHVKROG´�constitutes an important part of 

prespecification, according to Eichler et al. (2016). As explained in Section 5.3, this led 

the authors to choose the incorrect statistical method for analysis. In the simple 

homoscedastic and unbiased design described in Section 5.3, an adjustment of the 

decision boundary permits the setting of a fixed threshold. In Sections 5.4 and 5.6 of 

this thesis designs are investigated, where this is not straight-forward possible. Setting 

a fixed threshold rather implies inconvenience in the statistical analysis. If TC is to be 

applied in practice, more complex designs will be required. Setting a threshold in these 

designs presumably results in statistical imprecision, that cannot be mitigated by a 

simple adjustment of the decision boundary as seen in Section 5.3. However, these 

difficulties are not of major concern. The important aspect of TC is not the setting of a 

fix threshold to compare the treatment group against. Importance should be on 

prespecification of trial conduct. Acceptability for authorities and public trust does not 

depend on the setting of a fix threshold as a constant, but on the credibility of 

compliance to the prespecified statistical analysis. Incorrect methods for statistical 

analysis should in any case be avoided. 

 

Considering bias adjustment, TC seemingly allows for a convenient means, that is 

raising the threshold. A higher threshold, in turn, demands higher effect sizes present, 

in order to be detected. In the case of dramatic effects this is an applicable strategy. 

However, if the treatment effect is small and a raised threshold is applied, the 

comparison against the threshold may result in a negative effect. If this leads also to 

the undercutting of a futility threshold, the drug development program is stopped, even 

if a small treatment effect was present. If not, the trial is inconclusive and further trials 

are conducted.  

 

The preferable choice to reduce bias is by design. If the bias source is measured it is 

can be adjusted for in the statistical analysis. Selection bias is minimized by matching 

population criteria of the cohorts, confounding bias can be addressed by statistical 

methods, such as MAIC. In practice both tasks will be limited by data availability of the 

external control cohorts. As discussed in the example of Ide-Cel, data availability 
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prohibited the assessment of selection and confounding bias. For benefit assessment 

of Ide-Cel, the treatment cohort of the approval-trial was indirectly compared to external 

control cohorts. To reduce data availability problem a close communication between 

conductors of the approval trial and conductors of benefit assessment trials is required. 

Especially if past RCT cohorts are used as controls, baseline information tends to be 

sparser than in non-randomized designs, since confounding is of less concern in RCTs. 

A systematic research of relevant confounders may be especially useful before setting 

up patient registries for specific diseases or indications. Collecting vast information on 

possible confounders allows the comparability to SAT cohorts in the future. 

 

6.2 External Validity 

In Section 2.7, the concept of external validity is mentioned. External validity refers to 

the transferability of trial results to everyday clinical practice. Some sources of external 

data, especially transactional data, are considered to reflect better clinical practice than 

data collected within a trial. An example is the ³KHDOWhy-YROXQWHHU�HIIHFW´�(Ford and 

Norrie, 2016), which occurs if study participants are systematically better-off than 

patients in usual care. Using transactional data or as control group in a SAT is argued 

to increase external validity of the trial. However, if this comes at the cost of internal 

validity, nothing is gained (Hoffmann et al., 2021). If the trial result is internally invalid, 

the invalid effect estimate cannot be generalized to standard clinical care settings. Ford 

and Norrie remark that the distinction between internal and external validity is too 

simplistic (Ford and Norrie, 2016). 7KH\�SURPRWH�WKH�FRQGXFW�RI�³ODUJH�VLPSOH�WULDOV´ or 

pragmatic trials (Ford and Norrie, 2016), which are characterized by more flexibility in 

recruitment of patients, follow-up and other categories. Pragmatic trials demand that 

participants EH�³similar to patients who would receive the intervention if it became usual 

care�´�(Ford and Norrie, 2016). The reduced effort spent on questionnaires and follow-

up aims to increase trial participation. Still ensuring high-quality trials is of high priority. 

Ford and Norrie suggest to decide on implementing pragmatic features based on the 

individual trial objective. 
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Appendix 

In the following the derivation of reweighted treatment mean and ESS based on 

individual weights is given. First note that: 

ñÜäàÜß× L èÛÜæç

èçåØÔç
Û �

s

JçåØÔç
����� áIEH@HU�@EOA=OA@�L=PEAJPO 

ñÜáæØé L s F èÛÜæç
s F èçåØÔç Û � s

JçåØÔç
����� á OARANAHU�@EOA=OA@�L=PEAJPO 

JçåØÔçáàÜß× L JçåØÔç Û èçåØÔç 

JçåØÔç áæØé L JçåØÔç Û :s F èçåØÔç; 
Then it can be calculated that individual weights chosen as above corresponds to the 

aggregate weights used in this thesis. 

U$çåØÔç:ÛÜæç; L Í ñÜ Û UÜáçåØÔç

áßÝÐÌß

Ü@5

L Í ñÜäàÜß× Û UÜáçåØÔçáàÜß×

áßÝÐÌßáØÔ×Ï

Ü@5

E Í ñÜáæØé Û UÜáçåØÔçáæØé

áßÝÐÌßáÞÐá

Ü@5

L Í èÛÜæç

èçåØÔç
�
s

JçåØÔç
Û UÜáçåáàÜß×

áßÝÐÌßáØÔ×Ï

Ü@5

E Í sF èÛÜæç
sF èçåØÔç � s

JçåØÔç
Û UÜáçåáæØé

áßÝÐÌßáÞÐá

Ü@5

L èÛÜæç Û
s

JçåáàÜß×
Í UÜáçåáàÜß×

áßÝÐÌßáØÔ×Ï

Ü@5

E sF èÛÜæç Û s

JçåáàÜß×
Í UÜáçåáæØé

áßÝÐÌßáÞÐá

Ü@5L èÛÜæç Û U$çåØÔç�àÜß× E :sF èÛÜæç; Û U$çåØÔç�æØéØåØ  

 

Additionally, the sample size formula can be derived: 
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