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Abstract

Using random effects meta-analysis requires an estimate for the between-trial
heterogeneity. Between-trial heterogeneity is difficult to estimate when the
number of studies is small, which is very common in clinical research. We
propose using meta-regression rather than individual meta-analyses when
(similar) subgroups are analyzed in order to have more data to estimate the
between-trial heterogeneity. When conducting a meta-analysis in the pres-
ence of subgroups, often individual meta-analyses per subgroup are carried
out. We investigate whether it is beneficial to use a meta-regression instead
of individual meta-analyses. Data from the “Cochrane Database of System-
atic Reviews” showed that the interval lengths for the overall effect µ shrunk
when using meta-regression, indicating potentially higher precision. We then
conducted a simulation study that showed that the coverage probability of
meta-regression is closer to the predefined level while again shrinking the
interval lengths for µ. This effect is even apparent if the true τ values in
each subgroup differ substantially (i.e., by factor 2). The benefits of meta-
regression, however, disappear if the difference in τ becomes larger.

Keywords: Between-Trial Heterogeneity, Meta-Analysis, Meta-Regression, Sim-
ulation, Cochrane Database of Systematic Reviews
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Introduction

Meta-analyses are used to combine results of multiple related studies with
similar characteristics. As an example, a meta-analysis of randomized con-
trolled trials comparing a treatment to placebo can use the study estimates
to synthesize an overall estimate of the treatment effect (Riley et al., 2011).
Meta-analyses assume either a fixed effect or random effects across studies.
A fixed effect meta-analysis assumes that a true common (fixed) effect is esti-
mated in the studies, whereas a random effects meta-analysis allows that the
true effect could vary due to between-trial heterogeneity. In order to general-
ize the conclusions beyond the actual studies included in the meta-analysis,
the random effects model is often more appropriate since it includes uncer-
tainty resulting from heterogeneity among studies (Borenstein et al., 2010).
Especially for small numbers of studies in a meta-analysis, the between-trial
heterogeneity is hard to estimate (Veroniki et al., 2016). Frequentist methods
tend to estimate it to be zero (Williams et al., 2018).

If in the studies, subgroups that potentially behave similar are identified, the
question arises how the analysis should be conducted. In general, besides
an overall meta-analysis, often subgroup meta-analyses are performed. The
assumption made in the overall meta-analysis are an equal overall effect µ

and between trial heterogeneity τ across subgroups, whereas the individual
subgroup meta-analyses do not assume that. Individual meta-analyses as-
sume an overall effect µ and a common between-trial heterogeneity τ per
subgroup.

Meta-regression is used to incorporate predictors in the meta-analysis. Ei-
ther categorical or continuous predictors can be used. Meta-regression can
be seen as a compromise between an overall meta-analysis and subgroup
specific meta-analyses. Meta-regression assumes a common between-trial
heterogeneity while allowing for subgroup specific estimates. In the case
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where an overall meta-analysis is considered, the assumption of a common
between trial heterogeneity in meta-regression should usually be reasonable,
since the assumption of a common between-trial heterogeneity was already
made. Meta-regression promises better properties, since more data is avail-
able to estimate the between-trial heterogeneity, and therefore we expect bet-
ter confidence/ credible intervals (Dias et al., 2013). We furhter expect that
for the frequentist methods the number of zero estimates for τ is reduced
when using meta-regression.

We used empirical data from the Cochrane Database of Systematic Reviews
to compute meta-regressions on data that contained subgroups. This was
done to check the properties of meta-regression on real data compared to in-
dividual meta-analyses. Moreover, we conducted a simulation study to fur-
ther check the properties of the meta-regression in comparison to individual
meta-analyses.
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Methodology

2.1 General remarks

First, the used methods are introduced. This includes meta-analysis and
meta-regression. For these methods, between-trial heterogeneity and con-
fidence /credible intervals for the overall effect(s) µ are described in detail.
Lastly, choices for the design matrix in meta-regression are considered.

2.2 Study-level estimates and standard errors

Meta-analyses are used to combine findings from multiple studies (Friede
et al., 2017a). Is is often used in systematic reviews to combine evidence by
pooling multiple estimates (Glass, 1976; Viechtbauer, 2010).

In this work, we consider the results of clinical trials. We consider the case
of binary data in the form of a 2 × 2 contingency table for each study. In
this table, control and treatment group are summarized in terms of patients
experiencing a predefined outcome or not.

TABLE 2.1: Contingency table for a single study

Event No Event Total

Treatment n11 n12 n1+
Control n21 n22 n2+

Total n+1 n+2 n

From Table 2.1, we compute a coefficient for the degree of association be-
tween treatment group and event occurrence, e.g., the log odds ratio and its
standard errors that will be used in the meta-analysis. The log-odds ratio Yi
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is the logarithm of the odds ratio, which is defined as follows:

eYi =
(n11/n1+)/(n12/n1+)

(n21/n2+)/(n22/n2+)
=

n11n22

n12n21
(2.1)

Odds are the ratio of the frequency that an event will happen over the fre-
quency that it does not. The odds ratio is the ratio of the odds for experienc-
ing an event if treated (n11/n12) and the odds if not treated (n21/n22).

An odds ratio of 1 would imply that the treatment had no effect. Using the
log transformation directly leads to a log odds ratio of 0, indicating no effect.
Furthermore, log-odds have symmetric properties that are useful (Röver,
2020).

The approximate standard error for the log-odds ratio can be computed by
(Hedges & Olkin, 1985; Röver, 2020):

σYi =

√
1

n11
+

1
n12

+
1

n21
+

1
n22

(2.2)

2.3 The normal-normal hierarchical model

Once we have calculated the effect measures Yi for multiple studies, a meta-
analysis can be conducted. Standard models for meta-analysis assume either
a fixed effect or random effects across studies (Friede et al., 2017b). For ran-
dom effects meta-analysis, commonly a normal-normal hierarchical model
(NNHM) is used. We assume that the study estimates Yi follow an approxi-
mate normal distribution with mean θi and variance s2

i .

Yi|θi ∼ N (θi, s2
i ), i ∈ 1, . . . , k (2.3)

For simplicity, the standard errors are assumed to be known. At the next
level, we assume normal distributed study effects θi.

θi|µ, τ ∼ N (µ, τ2), i ∈ 1, . . . , k (2.4)

The between-trial heterogeneity, here denoted by τ, is the standard error of
the θi and captures the amount of heterogeneity between studies. If the het-
erogeneity is zero, the random effects model simplifies to a common-effect
(or fixed effect) model. In this thesis, the terms common-effect model and
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fixed-effect model are used interchangeably. One can combine the two stages,
which leads to the marginal model (Friede et al., 2017b):

Yi|µ, τ ∼ N (µ, s2
i + τ2), i ∈ 1, . . . , k (2.5)

Inference for µ and the nuisance parameter τ can be done in either the fre-
quentist or Bayesian framework. For known between-trial heterogeneity τ

and non-informative prior for µ, both frameworks lead to analogous results
(Friede et al., 2017a).

2.4 Frequentist methods

2.4.1 Estimation of µ

In the frequentist case, µ is usually inferred as follows:

µ̂ =
k

∑
i=1

wiYi/
k

∑
j=1

wj (2.6)

wi are the inverse variance weights given by (Friede et al., 2017a):

wi = 1/(s2
i + τ2), j ∈ 1, . . . , k. (2.7)

In order to estimate µ, τ is estimated beforehand and then plugged in. Esti-
mates for τ are discussed in Section 2.4.2. The sum over all inverse variance
weights is called the total precision:

w+ =
k

∑
i=1

wi. (2.8)

It is further notable that µ̂ has a standard error of:

σ̂µ = 1/w+. (2.9)

2.4.2 Between-trial heterogeneity τ

Inference for µ is commonly based on first deriving an estimate for τ, from
which the inverse variance weights wi can be calculated. Afterwards µ can
be estimated using τ and wi as shown in (2.6). There are various proposed
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methods to estimate the between trial heterogeneity τ. The methods used
here are summarized in the following section. Additionally, the maximum
likelihood method is considered.

The between-trial heterogeneity estimates described here can be found in
Veroniki et al. (2016). The following summaries are heavily based on this
publication. Additional estimators can be found in Veroniki et al. (2016).

DerSimonian and Laird (DL)

The heterogeneity estimator by DerSimonian and Laird (1986) is based on
Cochran’s Q-Statistic. It is a measure of deviation of subject specific effects
and the pooled estimate from a fixed effect model. The estimator is given by:

τ2
DL = max

0,
Q− (k− 1)

∑ wi,FE −
∑ w2

i,FE
∑ wi,FE

 , Q =
k

∑
i=1

(yi − µ̂FE)
2

s2
i

(2.10)

with wi,FE = 1/si. µ̂FE is an estimate for µ from a fixed effect model. Vari-
ances are by definition larger than or equal to zero. Therefore, negative es-
timates for τ are usually truncated to zero, which introduces a positive bias
(Viechtbauer, 2005). Before the truncation, the estimate is unbiased if the
sampling variances are known (DerSimonian & Laird, 1986). Potential rea-
sons for bias across all methods other than the estimation of s2

i are a bias in
the treatment effect or a correlation between treatment effects and their vari-
ances s2

i . For large number of studies and small τ, the bias of the DL is found
to be acceptable (Veroniki et al., 2016).

However, large τ in case of binary data introduce a large negative bias to
the DL estimate (Bowden et al., 2011; Novianti et al., 2014; Sidik & Jonkman,
2007). The negative bias is probably related to effect measures that are based
on 2 × 2 contingency tables. This is also a problem for all other methods.
Large τ can lead to including 0 cells in the tables, such that the method of
inverse variance weights becomes questionable. This results in what is called
“single” and-or “double zero” studies. Further information on this topic can
be found in Günhan et al. (2020).

The DL estimator is shown to asymptotically approach the Cramer-Rao lower
bound (Jackson et al., 2010).
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Jackson et al. (2010) also showed that the DL estimate is inefficient when the
trial sizes differ significantly. However, including large number of studies
leads to efficient inference on µ.

Paule Mandel (PM)

Following Dersimonian and Kacker (2007), Cochrane’s Q statistic can be gen-
eralized to:

Qa = ∑ ai(yi − µ̂a)
2 (2.11)

ai ∈ R+ being the weight given to each study. And µa = ∑ aiyi
∑ ai

. Analogous
to the DL, the expectation of Qa is given by:

E(Qa) = τ2

(
∑ ai −

∑ a2
i

∑ ai

)
+ ∑ ais2

i −
ais2

i
∑ ai

(2.12)

Solving for τ2 gives the generalized method of moments (GMM) estimator.

τ2
GMM = max

0,
Qa −

(
∑ ais2

i −
∑ a2

i s2
i

∑ ai

)
∑ ai −

∑ a2
i

∑ ai

 (2.13)

Other estimates (as well as the DL estimate) can be transformed to this gen-
eral form.

Paule and Mandel (1982) used a form of Qa with ai = wi,RE = 1/(s2
i + τ2)

and the fact that it follows a χ2 distribution under the assumptions made in
the random effects model.

Q = ∑ wi,RE(yi − µ̂RE(τ
2))2 ∼ χ2

k−1. (2.14)

τ̂2
PM can be found by iterating through values of τ2 in Q(τ2), until it is equal

to the expected value: k− 1. If Q(0) ≥ k− 1, this procedure leads to a unique
estimate of τ̂2

PM. If Q(0) < k− 1, no positive solution can be found and τ̂2
PM

is set to 0 (van Aert & Jackson, 2018).

When underlying assumption do not hold, the PM estimator is more robust
compared to the DL estimator (Rukhin et al., 2000). For small sample sizes k
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and small τ, the PM estimator is shown to be positively biased, whereas for
large k and large τ, the PM estimator shows a negative bias (Sidik & Jonkman,
2007). Panityakul et al. (2013) moreover, suggests using the PM estimator
instead of DL.

Maximum likelihood (ML)

The ML between-trial heterogeneity estimator is an iterative method that is
asymptotically efficient. ML is asymptotically unbiased, and the variance is
approaching the Cramer-Rao lower bound (Veroniki et al., 2016). It is based
on the marginal distribution, yi ∼ N(µ, s2

i + τ2) and the estimate τ2
ML can be

found maximizing:

ll(µ, τ2) = − k
2
(2π)− 1

2 ∑ ln(s2
i + τ2)− 1

2 ∑
(yi − µ)2

(s2
i + τ2)

(2.15)

µ̂RE(τ̂
2
ML) =

∑ wi,REyi

wi,RE
(2.16)

τ̂2
ML = max

{
0,

∑ wi,RE((yi − µ̂RE(τ̂
2
ML))

2 − s2
i )

w2
i,RE

}
(2.17)

The estimates are obtained, iterating over τ̂2
ML, µ̂RE(τ̂

2
ML) until convergence.

In each iteration, negative estimates for the between-study heterogeneity τ̂2
ML

are set to 0. Methods to maximize the likelihood are expectation-maximization-
algorithm, Newton-Raphson and Fisher-Scoring. Iterative estimators have
the disadvantage that they can fail to converge. For small numbers of studies
included in the meta-analysis, the likelihood can be flat and thus hard to max-
imize. In these cases, it can be useful to either apply closed form estimators or
incorporate informative priors if Bayesian models are used (Pullenayegum,
2011; Rhodes et al., 2015; Turner et al., 2012).

For large τ2 and small numbers of studies per analysis, the between study es-
timate is found to be negatively biased (Chung et al., 2013; Sidik & Jonkman,
2007; Veroniki et al., 2016). Overall, it is not suggested to use the ML estimate
(Panityakul et al., 2013; Viechtbauer, 2005).
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Restricted maximum likelihood (REML)

The REML estimator is analogous to the ML estimate, an iterative procedure.
It has the same asymptotic behavior. The REML estimator is used to correct
the large negative bias that is induced by the ML estimate, up to a degree.
τ̂2

REML is obtained by equating the derivative of the restricted log likelihood
with respect to τ2 equal to zero.

ll(τ2) =− k
2

ln(2π)− 1
2 ∑ ln(s2

j + τ2)

− 1
2 ∑

(yi − µ̂RE(τ̂
2
ML))

2

s2
i + τ2

− 1
2

ln

(
∑

1
s2

i + τ2

) (2.18)

Afterwards, solving for τ̂2 results in:

τ2
REML = max

{
0,

∑ w2
i,RE + (θi − µ̂RE(τ̂

2
ML))− s2

i

w2
i,RE

+
1

wi,RE

}
(2.19)

with wi,RE = 1/(s2
i + τ̂2

REML). Analogous to ML, τ̂2
REML is calculated by iter-

ating until convergence with an initial τ̂2
REML ≥ 0. Especially for small num-

bers of studies included in the analysis, the REML estimator underestimates
τ2 (Veroniki et al., 2016).

2.4.3 Confidence Intervals for the overall effect µ

There are multiple ways to compute the confidence intervals (CI(s)) for the
overall effect µ.

Z-CI (normal approximation)

The first CI for µ is based on the normal approximation (Röver et al., 2015;
Sánchez-Meca & Marín-Martínez, 2008).

CIz : µ̂± z(1−α/2) σ̂µ (2.20)

The standard error for µ̂ given an estimate for τ is defined in (2.9). z(1−α/2) is
the (1− α/2)-quantile of the standard normal distribution, where 1− α is the
targeted (or nominal) coverage probability. The goodness of the normal ap-
proximation is dependent on a large number of studies k (Hartung & Knapp,
2001a, 2001b; Hartung & Makambi, 2003; Röver et al., 2015). This is due to
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the fact that both between-trial heterogeneity and study specific standard er-
rors (si) are estimated and not known. As shown by Viechtbauer (2005), the
standard error of µ̂ is underestimated on average, resulting in CIs that are
too narrow.

t-CI

In order to address the coverage problems from the Z-CI, CIs based on t-
distribution have been proposed (Follmann & Proschan, 1999; Hartung &
Makambi, 2002; Sánchez-Meca & Marín-Martínez, 2008). Here a t-distribution
with k− 1 degrees of freedom instead of the standard normal distribution is
used

CIt : µ̂± t(k−1),(1−α/2) σ̂µ (2.21)

t(k−1),(1−α/2) is the (1− α/2)-quantile of a t-distribution with k-1 degrees of
freedom. CIs based on a t-distribution are wider compared to those of a
standard normal, therefore this should lead to higher coverage (Follmann &
Proschan, 1999).

KnHa-CI

Hartung and Knapp (2001b) and Sidik and Jonkman (2002) have proposed
another adjusted CI based on a t-distribution. In contrast to the t-CI, the
following quadratic form is computed:

q =
1

k− 1 ∑
i

wi (yi − µ̂)2 (2.22)

Hartung (1999) has shown that qσ̂2
µ is an unbiased non-negative estimator of

σ2
µ. This estimator of σ2

µ is used in the CI (Röver et al., 2015). The adjusted CI
is then given by:

CIKnHa : µ̂±√q σ̂µ t(k−1),(1−α/2) (2.23)

Adhoc-CI

However, the KnHa-CI can be shorter than the normal one if
√

q <
z(1−α/2)

t(k−1),(1−α/2)
.

To ensure that the adjusted KnHa-CI (Adhoc-CI) is at least the length of the
Z-CI, we substitute q∗ = max{1, q} for q. The CI is then given by:

CIadhoc : µ̂±√q∗ σ̂µ t(k−1),(1−α/2) (2.24)
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As mentioned in Röver et al. (2015), the PM estimator is defined such that
q∗ = 1 or less if there is no solution. This leads to q∗ always being equal to 1.

2.5 Bayesian methods

2.5.1 General remarks

Bayesian models allow for the inclusion of prior knowledge into the analy-
sis. This can be seen as an advantage or a disadvantage. Bayesian inference
readily allows accounting for the estimation uncertainty of τ in the inference
stage.

Bayesian models with carefully chosen priors usually give a uni-modal pos-
terior distribution for τ, with a point estimate > 0, e.g., the posterior median.

Further, Bayesian models allow calculating the probability that µ or τ is
larger (or smaller) than a given value from the posterior distribution. The
posterior distribution is a combination of prior and likelihood, and thus sum-
marizes what we know after the data have been observed.

2.5.2 Priors for µ and τ

The NNHM in the Bayesian Framework involves the selection of a prior for
µ and τ. For convenience, we assume that we can factor out the prior den-
sity: p(µ, τ) = p(µ)× p(τ) (Röver, 2020). When choosing priors in Bayesian
models, we consider proper or improper, and informative or uninformative
priors. A prior is proper when the prior integrates to one:

∫ ∞
−∞ p(.) = 1. It

is considered improper if it does not:
∫ ∞
−∞ p(.) 6= 1. Still, both may lead to

proper posterior distributions.

Informative priors are not well-defined. They can be seen as priors that are
not dominated by the likelihood (for small amounts of data). They have di-
rect impact on the posterior distribution. With informative priors, we can
include prior information to a model. An uninformative prior on the other
hand is dominated by the likelihood. Therefore, it has minimal impact on
the posterior distribution. A typical uninformative prior for, e.g., a location
parameter is the uniform distribution over the real line.

As a prior distribution for µ, we consider either a non-informative prior in
the form of a uniform distribution over the real line or a normal distribution
with parameters µp, σ2

p as an informative prior. Both uniform or normal prior
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for µ lead to a normally distributed conditional posterior for a given τ with
mean µ(τ) and variance σ(τ) (Röver, 2020).

For σp → ∞ the normal prior tends to the uniform prior. In the case of log
odds as an endpoint, one can consider using a normal distribution centered
around zero as a “natural” choice, since log odds of zero would indicate an
odds ratio of one and thus indicate no effect (Röver, 2020).

When choosing a prior distribution for τ, one has to keep in mind that the
variance by definition is larger or equal to zero. To account for that, the prior
distributions need to be defined on R+. For example, one can choose half-
normal, half-Cauchy or a half-Student-t distribution as a prior (Röver, 2020).

Using a uniform distribution as a prior for τ needs more than 3 individual
study estimates to produce an overall estimate. The uniform prior is scale
invariant and not dependent on σi. The other mentioned priors do not come
with a restriction on how many study estimates are needed.

2.5.3 Credible intervals

Bayesian credible intervals (CI(s)) are analogous to frequentist CIs. How-
ever, their interpretation is different. We consider either the so-called short-
est interval and the central interval. The central interval is an equal-tailed
interval using the respective posterior distributions α/2 and 1− α/2 quan-
tiles. Another choice is the highest posterior density interval (HPDI) which
covers 1− α posterior probability, where the posterior density is the largest
(Gelman et al., 2015). Finding the shortest interval from the respective poste-
rior distribution is closely related to the HPDI, but way easier to determine
(Röver, 2020). For uni-modal distributions, they are even equivalent. In the
following, the shortest interval will be used.

2.6 Meta-regression

Analogous to meta-analysis, meta-regression is a generalization of the NNHM.
For this section, we use matrix notation. The first stage in meta-regression is
the same as in the NNHM for meta-analysis:

y|θ, s ∼ N (θ, Σ) where Σ = diag(s2
1, . . . , s2

k), θ = (θ1, . . . , θk) (2.25)
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The difference lies in the second stage. Here µ from before is replaced by the
product of design matrix X and regression coefficient vector β. This is done
so that predictors can be incorporated into the analysis.

θ|X, β, τ ∼ N (Xβ, τ2 I) (2.26)

As before, we can express this as the marginal model:

y|X, β, τ, s ∼ N (Xβ, Στ) where Στ = Σ + τ2 I (2.27)

The choices for the matrix X are further explained in Section 2.7. We only con-
sider predictors that contain indicator variables to represent subgroups. The
choice of an appropriate design matrix X leads to individual estimates for the
treatment effect per subgroup. Compared to individual meta-analyses where
we estimate one individual τ for each subgroup, in meta-regression we esti-
mate only one common τ for all. This directly implies a key assumption of
this approach, namely, equal τ across subgroups. If we expect that the het-
erogeneity across subgroups differs substantially, meta-regression should be
treated with caution unless the meta-regression model is extended to allow
for different heterogeneity parameters in the subgroups.

When a particularly small number of studies per meta-analysis is used, Bayesian
approaches using informative priors help to estimate the between-trial het-
erogeneity. However, the inclusion of prior beliefs about the distribution of τ

causes the prior to influence the estimation of τ, especially when the data set
is small. Adding more data to update the prior results in less impact from the
prior. Therefore, meta-regression for subgroups should yield a more robust
result in the case of informative priors.

The methods introduced in the meta-analysis context, namely CIs and be-
tween trial heterogeneity estimates, can be generalized to meta-regression
and are thus not shown again (Jackson et al., 2014; Jackson & Riley, 2014; van
Aert & Jackson, 2018).

Further, meta-regression with only one intercept is one large meta-analysis.
Thus, the previously described simulation results for the simple meta-analysis
should translate to meta-regression.
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2.7 The design matrix in meta-regression

We want to investigate the impact of analyzing multiple subgroups simul-
taneously. For each subgroup, we would estimate individual overall effects,
but at the same time a common between trial heterogeneity.

In order to get individual estimates for each subgroup, the design matrix X
has to be defined appropriately: X has the dimensions k × p where k is the
number of studies included in the meta-regression and p is the number of
subgroups. For example, if the third study is part of a subgroup q, the third
row is filled as follows: X3,q = 1 and X3,1 = · · · = X3,q−1 = X3,q+1 = · · · =
X3,p = 0. A general design matrix is given by:

Xk×p =



1 0 · · · 0
1 0 · · · 0
...

... · · · ...
0 1 · · · 0
...

... · · · ...
0 0 · · · 1


(2.28)

This leads to p intercepts βp×1 = (β1, . . . , βp), one for each subgroup.

One could also include continuous predictors in meta-regression. For a given
set of r continuous covariates combined with an intercept, the design matrix
usually looks as follows:

Xk×r+1 =


1 x1,1 · · · xr,1

1 x1,2 · · · xr,2
...

... · · · ...

 (2.29)

Here, one intercept β1 and r additional parameters are estimated:

(β1, β2, . . . , βr+1). (2.30)

Meta-regression results in a meta-analysis if the design matrix is a vector of
ones: 1n.
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Empirical Study

3.1 Aim

To assess how meta-regression for subgroups performs in practice, we searched
for meta-analyses based on studies that contains binary data. We found such
data in the “Cochrane Database of Systematic Reviews”.

3.2 Data

The “Cochrane Database of Systematic Reviews” (CDSR) is a journal and
database for systematic reviews in health care. Each systematic review has
been reviewed by the editorial team of CDSR. The reviews aim to synthesize
empirical evidence. Studies that are considered for each meta-analysis have
to meet certain pre-specified inclusion criteria to reduce potential biases. All
data, estimates and more are available as standardized files on their website
to download. The existence of standardized files makes the further analysis
of the systematic reviews more efficient and less vulnerable to errors. The
files are in “XML” format. They can be either used with the Review Manager
(RevMan) or can be loaded into R via the meta package.

For the analysis of empirical data, all available CDSR files have been down-
loaded. In case of new evidence, the reviews are updated. Thus, the most
recent version is used. The code for the web-scraper used to obtain the stan-
dardized files is based on python. It is available on request.

The simulation and analysis was performed in R. The methods of interest are
implemented in bayesmeta (UP, HNP) and metafor (REML, DL, PM) (Röver,
2020; Viechtbauer, 2010).
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3.3 Example meta-analyses and meta-regression

Usually in a Cochrane review, all subgroups are analyzed in separate meta-
analyses. Common practice is to also include one estimate of a meta-analysis,
where data from all subgroups is analyzed together. However, we are inter-
ested in the effect of using one meta-regression instead of multiple meta-
analyses. To illustrate this, we show the results of one meta-regression and
individual meta-analyses in the form of a forest plot in Figure 3.1. The esti-
mated values of τ are shown in Table 3.1. We have used the Knapp-Hartung
method to calculate the µ confidence intervals in the forest plot (Figure 3.1).
For the Bayesian credible interval, we used the “shortest” intervals.

The example stems from the Cochrane review of Goodwin et al. (2013). In
Goodwin et al. (2013), the addition of radiotherapy to breast conserving surgery
for treatment of ductal carcinoma in situ was investigated. Ductal carcinoma
in situ of the breast is a pre-malignant condition. Cochrane reviews usually
contain one or more comparisons of interest. In the comparisons, usually
two treatments are compared. Accordingly, certain controlled studies that
have examined this pairwise comparison are used. In these comparisons,
one or more outcomes are used to assess the treatment effect. Meta-analyses
are then conducted for each of these outcomes. We used the first compar-
ison and the fourth outcome. Namely, post-operative radiotherapy versus
surgery alone was compared using the incidence of ipsilateral recurrence by
surgical excision as the outcome. The data contain two subgroups. We se-
lected this example at random from all CDSR data containing two subgroups
and at least two but no more than six studies per subgroup. This subset was
used for illustration purposes.

We found that τ in the second subgroup is estimated to be zero when us-
ing the frequentist methods (Table 3.1). For both first subgroup and meta-
regression τ is estimated to be larger than zero. Among the frequentist τ

point estimates larger than zero, the REML point estimate is the largest, fol-
lowed by the DL point estimate, and the smallest is PM. Estimating a com-
mon τ in the meta-regression leads to larger τ estimates relative to the second
subgroup and smaller τ point estimates relative to the first subgroup. A com-
parison of the individual meta-analyses with meta-regression shows that the
between-trial heterogeneity CI is shorter for the latter in all methods. Fur-
ther, the estimated between-trial heterogeneity in the Bayesian case with a
UP is associated with sizeable uncertainty in the individual meta-analyses.
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TABLE 3.1: τ point estimates with 95% CIs for the example
Goodwin et al. (2013) (1.4)

Type Method Subgroup τ 95% CI

Individual UP 1 0.53 [0; 6.24]
Individual HNP 1 0.27 [0; 0.75]
Individual REML 1 0.22 [0; 1.85]
Individual PM 1 0.19 [0; 1.85]
Individual DL 1 0.21 [0; 1.85]
Individual UP 2 0.61 [0; 7.74]
Individual HNP 2 0.24 [0; 0.77]
Individual REML 2 0.00 [0; 2.36]
Individual PM 2 0.00 [0; 2.36]
Individual DL 2 0.00 [0; 2.36]
Regression UP - 0.28 [0; 1.03]
Regression HNP - 0.22 [0; 0.61]
Regression REML - 0.18 [0; 0.89]
Regression PM - 0.09 [0; 0.89]
Regression DL - 0.12 [0; 0.89]

This is suggested by the 95% τ CIs in Table 3.1. The meta-regression 95% τ

CI for the UP is much shorter in comparison. The UP across methods has
the widest CIs across all methods. In the case of a HNP, the 95% τ CI for the
meta-regression is shorter as well. The µ 95% CIs when using the KnHa-CI
are found to be shorter when using meta-regression across all methods and
subgroups, as it can be seen in Figure 3.1. Using the Z-CI in Figure A.1 (Ap-
pendix) suggests that the µ 95% CIs in meta-regression is shorter for the first
subgroup and wider for the second subgroup when compared to individual
meta-analyses.
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FIGURE 3.1: Example forest plot for first comparison and fourth
outcome in Goodwin et al. (2013). Shown are the µ point esti-
mates with 95% CIs for subgroup specific meta-analyses and
meta-regression. This was done for the methods UP, HNP,
REML, DL and PM. In the frequentist case, the KnHa CI was

used.
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3.4 Description of the empirical data

The data downloaded from the CDSR contained 6755 reviews. We only con-
sider binary data that contain subgroups. This shrinks our number of re-
views down to 3476. The downloaded data contains various variables. From
the dataset, we used variables that define to which review, comparison, and
subgroup each study belongs to. The number of reviews, comparisons, out-
comes, subgroups and studies can be found in Table 3.2. Further, we used
the binary data to compute the log-odds for each study. We only performed
a descriptive analysis of the subgroups and did not further investigate the
definition of the subgroups. Therefore, we are dependent on an accurate and
consistent definition of the subgroups in the dataset.

TABLE 3.2: Summary of Cochrane database for subgroups sub-
set with binary data

Type Count

Reviews 3476
Comparisons 9614
Outcomes 32122
Subgroups 103528
Studies 306381

Figure 3.2 shows the relative share of number of studies per subgroups and
number of studies per outcome. Based on our subset, the number of studies
per outcome is at least two. The relative share decreases as the number of
studies per outcome increases. The same is visible with the number of studies
per subgroup. The most frequent number of studies per subgroup is one.
Using the framework of meta-analysis should usually include at least two
studies (Valentine et al., 2010). We keep the subgroups that only contain one
study, since meta-regressions still can be used for a joint analysis. In the
frequentist case, using only one study leads to a τ point estimate of zero. The
respective CI for τ is then not computed. Only the use of an HNP in the
Bayesian case leads to a CI for τ, which is based only on the prior.
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FIGURE 3.2: Relative share of study counts and subgroups per
analysis. The y-axis values multiplied by 100 represent percent-

ages.

The log-odds ratio estimates based on the binary data from the individual
studies are shown in Figure 3.3 and approximately centered around zero.
The distribution also appears to be symmetric. The right panel also shows
the approximate variance (squared standard errors) of the log-odds ratio. If
in either control or treatment group, all or no subjects experienced the pre-
defined event, the standard errors are undefined. None, or all events in
treatment and-or control group are commonly referred to as “single zero”
or “double zero” studies in case of binary outcomes. In the case of “single”
or “double zero” studies, so-called continuity correction is used to be able
to calculate the approximate variances (Sweeting et al., 2004). This is done
because Equation 2.2 cannot be calculated. To solve this problem, a conti-
nuity correction factor is added to each cell of the 2× 2 contingency table.
The continuity correction leads to large standard errors that are used in the
meta-analysis/ -regression.

Removing the mentioned studies leads to a smoother representation in Fig-
ure 3.4. The distribution of the approximate variances then roughly follows
a log-normal shaped distribution. The distribution of the log-odds ratios is
smoother if the “single” and “double zero” studies are removed. We how-
ever do not investigate the influence of “single” and “double zero” studies
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(Günhan et al., 2020). In the analysis below, we used all available data, in-
cluding “single” and “double zero” studies.

FIGURE 3.3: Log-Odds ratios and their approximate variances

FIGURE 3.4: Log-Odds ratios and their approximate variances
if “single” and “double zero” studies are removed

3.5 Estimation of meta-regressions and individual

meta-analyses using the empirical data

Individual meta-analyses for the freqentist methods lead to a high number
of τ point estimates equal to zero. When using meta-regression instead, we
found that the share of zero point estimates for τ is reduced (Table 3.3). One
has to keep in mind that the number of zero point estimates is also based on
subgroups only containing one single study. This could be one explanation
for the reduced number of zero point estimates. It is further noticeable that
the number of zero point estimates in meta-analysis is larger than the rela-
tive share of subgroups containing only one study (Figure 3.2). In Table A.1
(Appendix) we only used subgroups that contained at least two studies. We
found that the proportion of τ point estimates equal to zero is reduced when
using meta-regression as well.
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TABLE 3.3: Proportion of zero point estimates for τ. The values
multiplied by 100 represent percentages.

Type UP HNP REML PM DL

Meta-Analyses 0 0 0.76 0.78 0.78
Meta-Regression 0 0 0.41 0.46 0.46

As a further measure, we looked at the ratio of the mean of 95% CI of µ of
individual meta-analysis and meta-regression. This is shown in Table 3.4. A
ratio larger than one means that the meta-analysis CI is larger than the CI of
the corresponding meta-regression. We found that the mean µ CI is wider in
most cases. In the Bayesian case, we found that the effect of meta-regression
is larger in case of a UP. A larger effect in this case means that the precision
gain is greater for UP compared to HNP. This is as expected since the usage
of an informative HNP leads to shorter CIs even for small number of studies
per subgroup. In the frequenist methods, we can see that all estimations for τ

lead to similar results. The comparison of the different CIs for µ shows that,
only for the Z-CI, there is a slight advantage in the mean µ-CI lengths for
the meta-analysis. All other CIs indicate that, on average, meta-regression
shrinks the µ-CI lengths compared to meta-analysis despite fewer zero point
estimates for τ. In Table A.2 (Appendix) we again used only subgroups that
contained at least 2 studies. We found analogue results for the CI length
ratios compared to the inclusion of all subgroups.

TABLE 3.4: Mean of µ 95% CI length ratio. The ratio is com-
puted as the CI length of individual meta-analyses divided by
the CI length of meta-regression. A ratio of < 1 indicates that
the CI of individual meta-analyses are shorter and vice versa.

UP HNP REML PM DL

shortest 2.22 1.08 . . .
Adhoc . . 1.75 1.76 1.76
KnHa . . 3.10 3.19 3.28
t . . 1.77 1.78 1.77
Z . . 0.99 0.99 0.99

Furthermore, we look at the mean difference of the τ point estimates result-
ing from meta-analysis and meta-regression (Table 3.5). A positive difference
means that the point estimates from the meta-regression are smaller com-
pared to the individual meta-analyses on average. The mean difference of the
Bayesian point estimates tends to be larger than zero, whereas the frequen-
tist mean difference is negative, possibly due to fewer zero point estimates
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for τ. We would therefore conclude that the Bayesian meta-regression would
result in on average smaller τ point estimates in the empirical data set. On
the other hand, the frequentist τ is larger on average in the meta-regression.

TABLE 3.5: Mean difference of τ meta-analysis and τ meta-
regression. A difference < 0 indicates that on average, the point

estimate of τ is larger when using meta-regression

UP HNP REML PM DL

τInd − τReg 0.21 0.02 -0.07 -0.07 -0.06

More than 95% of zeros in the difference of τ for the frequentist methods
are based on the zero point estimates for the heterogeneity. The number of
zero point estimates is lower in meta-regression by around 5 % if all data are
considered. When the data are split by subgroup size (using the ICEMAN
criterion based on subgroup size introduced in Chapter 3.6) the share of zero
point estimates shrinks if larger “smallest subgroups” are considered. The on
average smaller point estimate of τ in Table 3.5 can be possibly explained by
the smaller amount of zero point estimates in the frequentist meta-regression.

In Figure 3.5 we show the distribution of the τ point estimates across the used
methods in our analysis. As mentioned beforehand, the number of zero point
estimates is large. The model using a UP is only computable if the number of
studies is larger than three. Therefore, the distributions shown here are not
directly comparable.

In contrast to the number of zero point estimates, the point estimates from
using a HNP are highly influenced by the prior median at around 0.3. If
there is only one study per subgroup, τ is close to the prior median.

Figure 3.6 shows the empirical cumulative distribution function (ECDF) of
the τ point estimates. We show this figure to identify point masses, visible
as jumps in the ECDF. Jumps in the ECDF show up in the case of a UP in
individual meta-analyses. We did not find an explanation for this jump in
the ECDF. Further jumps in the ECDF can be found when looking at the
Frequentist methods. Here the inflated number of zero point estimates is
clearly visible.

When looking at the log transformed τ point estimates, note that all zero
point estimates are no longer defined and are therefore not shown. In Figure
A.2 (Appendix) only the non-zero point estimates of τ are displayed. Using
the UP on the empirical dataset lead to a peak in the log-transformed τ point
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FIGURE 3.5: Histogram and kernel density of point estimates
for τ in meta-regression and meta-analysis. The number of zero
point estimates in this figure is not representative, since we re-

stricted the y-axis.

estimates. This peak does not seem to be linked to “single” or “double zero”
studies. If the data are split analogous to Table 3.6, we found that this effect
is only visible if the smallest subgroups contained one or two studies. Using
meta-regression does not leads to the peak shown in Figure A.2. In both
meta-analysis and meta-regression, we observe a bimodal distribution for
the REML point estimate. We suspect this to be a convergence issue.

Many subgroup analyses also include an overall analysis, but not all. Some-
times even subgroup analyses without a joint analysis are considered. The
previous figures refer to all subgroups. Since it can be argued that in the
cases with joint analysis the assumption of a common τ should be uncon-
troversial, these are again presented separately in the appendix. All analy-
ses based on data where overall analyses were conducted are shown in Ap-
pendix A.4.3. Overall analysis means that additional to individual subgroup
meta-analyses, also one large meta-analysis with pooled data from all sub-
groups is considered. Meta-analyses estimating a pooled point estimate with
data of all subgroups consider the assumption of equal τ across subgroups
as reasonable. The results are very similar. However, the ratio of the of µ CI
lengths is smaller but still larger than 1 (Table: A.5). The mean differences
of τ individual meta-analyses and meta-regression also show the same direc-
tion (Table: A.6). The overall share of zero point estimates is reduced when
using meta-regression as well (Table: A.4).
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FIGURE 3.6: Empirical cumulative distribution function of
τ point estimates in meta-regression and individual meta-

analyses

3.6 Subgroup of the empirical dataset

The analysis of predefined subgroups is generally used to identify effect
modifiers. To evaluate the credibility of including effect modifiers e.g., re-
garding a subgroup effect, or interaction with a continuous variable, Schan-
delmaier et al. (2020) published the Instrument for assessing the Credibil-
ity of Effect Modification Analyses (ICEMAN). It can be used as a guidance
on whether to trust the findings of a certain modification or to treat it with
caution. In their paper, they define different criteria to assess effect modi-
fiers. One criterion is based on the size of the smallest subgroup in the meta-
regression. This is shown below in Table 3.6. They define four groups, from
very small to large. In case of subgroups, they define the credibility based on
the number of trials in the smallest subgroup.

TABLE 3.6: ICEMAN Criterion: Is the number of trials large?

Number of trials:
Group in the smallest subgroup in continuous meta-regression

Very small 1–2 5 or less
Rather small 3-4 6-10
Rather large 5-9 11 to 15
Large 10 or more more than 15
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Simulation

4.1 Setup

In this chapter, we want to investigate individual meta-analyses compared
to meta-regression in the presence of subgroups. In contrast to Chapter 3 in
which real-life data were analyzed, this chapter investigates the behavior of
individual meta-analyses and meta-regression in a structured way and under
control of relevant parameters. We will consider the following:

• Comparison of individual meta-analyses and meta-regression as well
as comparing different methods

• Effects of violation of common τ assumption in meta-regression

• In the Bayesian case: check whether a prior equal to the true distribu-
tion of τ leads to the nominal coverage probability

• Demonstrate that µ is unbiased in our simulations

To simulate the data, we used the following framework. For the simulation,
we set the number of subgroups to 3 with the number of individual trials
k per subgroup in {2, 5, 10}. The number of subgroups represents a small,
rather large and large number of trials according to the ICEMAN criterion
(Table 3.6).

We define true values for µ and τ and then generate yi. si will be sampled
beforehand from a uniform distribution. Sampling si from a uniform distri-
bution with parameters 0.2 and 1 represents roughly sample sizes between
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16 and 400 (Röver et al., 2019).

si ∼ U(0.2, 1) (4.1)

θi ∼ N(µ, τ2) (4.2)

yi ∼ N(θi, s2
i ) (4.3)

We will look at four simulation scenarios. In Scenario I, we used fixed values
for τ:

τ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1, 2} (4.4)

As demonstrated in simulation Scenario IV, the choice of µ does not influence
the other scenarios aside from the location of µ, since the point estimate for
µ is unbiased. This was shown analytically in, e.g., Jackson et al. (2014).
Therefore, we set µ equal to zero in all scenarios except the fourth one.

Scenario II aims to assess the robustness of the meta-regression. We simu-
late a scenario where the meta-regression assumption of equal τ across sub-
groups is violated. For that, we set τ for the subgroups to:

(τ1/j, τ2, τ3 ∗ j) with j ∈ 1, 1.1, 1.2, . . . , 2 (4.5)

where j is the factor that shrinks τ1 and inflates τ3. We look at the situation
where τ1 = τ2 = τ3 = 0.3. τ2 is therefore always set to the value of 0.3. We
decided to set the factor j to be equidistant in steps of 0.1 from 1 to 2.

In addition to fixed values for τ, we can also sample τ from a distribution.
In Scenario III, all subgroups share a common τ. We would assume that if
the prior for τ matches the sampling distribution, the quantile of the true
values for τ (PIT values) should follow roughly a uniform distribution. If, in
addition, µ were drawn from a distribution matching its prior, the resulting
distribution of the quantile of the true value for τ would follow a uniform
distribution. We set µ = 0 and thus expect only roughly a uniform distri-
bution. In Scenario III, we set the true distribution from τ to a half-normal
distribution with scale parameter 0.5, which is the same as the distribution
that is assumed for τ in the HNP. Both Scenario III and IV are used to show
that the simulation works properly.

In simulation Scenario IV, we want to demonstrate that the choice of µ does
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not influence our results. For that, we set the value of µ in the three sub-
groups equal to:

µ1, µ2, µ3 = 0, 0.2, 0.5 (4.6)

Across all simulations, we use multiple tools to investigate the properties of
the investigated methods. To assess whether the parameters tend to system-
atically vary from the true parameter values, we use the bias and the mean
squared error (MSE). The bias of a variable is defined as follows:

Bias(θ̂) = E[θ̂]− θ (4.7)

θ̂ represents the estimated values and θ the true value. The MSE on the other
hand is calculated by the expectation of the squared difference of estimated
and true values:

MSE(θ̂) = E[(θ̂ − θ)2] (4.8)

The coverage probability will also be used. The coverage probability of a
method is defined as the proportion of times a CI covers the true parameter.
Ideally, the coverage probability will attain the predefined level, e.g., 95%. If
it covers a higher percentage than the predefined one, it is considered con-
servative. If it does not, it is considered liberal.

To compare the results from individual meta-analysis and meta-regression,
we will use ratios of parameters, e.g., ratio of coverage probabilities or ratio
of CI lengths. We will always divide the parameter point estimate from meta-
analysis by the parameter from meta-regression. Therefore, a ratio larger
than one indicates that the parameter of meta-analysis is larger in compari-
son to the meta-regression parameter and vice versa. A ratio of one would
indicate that both parameters are equal.

The methods used in the simulations for estimation of τ in the frequentist
case are REML, PM and DL. For the Bayesian methods, we use either a UP or
a HNP for τ (combined with a UP for µ). The point estimate in the Bayesian
case is the posterior median for both τ and µ. For the µ in the frequentist
case, we use Z-, t-, KnHa- and the Adhoc-CI. In the Bayesian case, we use
the shortest CI. The CIs were computed via implemented functions in the
packages bayesmeta, metafor (Röver, 2020; Viechtbauer, 2010).
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4.2 Scenario I: Effects of varying heterogeneity

Figure 4.1 shows an example density plot of the parameter point estimates
for µ across all methods, where the true value is indicated by a dashed line.
Jackson et al. (2014) derived that the frequentist point estimate for µ is unbi-
ased. Our simulation shows the expected behavior with µ fluctuating around
zero. A similar behavior can be found for the Bayesian point estimates. We
found further that with increased τ, the distribution of µ shows a larger vari-
ance. This can be seen in Figures A.6 and A.7 (Appendix).

FIGURE 4.1: Distribution of point estimates of the overall effect
µ for τ = 0.3, a sample size per subgroup of k =10 and a true

value of µ = 0

In Figure 4.2 we plot the bias of τ against the amount of between-trial het-
erogeneity that we introduced. We found that for small amounts of hetero-
geneity the frequentist methods tend to be positively biased, whereas if we
increase τ the bias becomes negative. A positive bias for very small values of
τ can be expected, since we do not allow negative τ point estimates.

The same holds for the Bayesian case with a HNP. Here we can see how the
choice of an informative prior influences the posterior. The bias is very low
when it is near to the prior median (around 0.3). If the true τ is smaller than
the prior median, a positive bias is introduced. A true τ that is larger than
the prior median, however, results in a negative bias. This can be seen as
an advantage since the point estimate is corrected towards the expectation
being the prior median. Using meta-regression instead of individual meta-
analyses reduces this effect. For the Bayesian case with a UP, we found that
it is positively biased for all choices of τ. The results for individual meta-
analyses are in general in agreement with the findings in Friede et al. (2017a).
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FIGURE 4.2: Bias in estimating τ for varying numbers of studies
per subgroup and varying true values of τ for both individual

meta-analyses and meta-regression

It is further evident that a larger sample size reduces the bias. The sample
size per subgroup is indicated by the gray shaded bar. When comparing
meta-analysis and meta-regression, we found that the larger sample size of
the meta-regression reduces the bias as well. In this scenario, the usage of
meta-regression effectively means a larger sample size for the estimation of
τ, since we can use all subgroups at once.

In Figure 4.3, a box plot of the estimated value minus the true value for
meta-regression and individual meta-analysis is shown. We found that the
variance of this value increases as we increase τ. In the case of individual
meta-analysis, the variability is over all choices of τ larger compared to meta-
regression, but also increases for increased τ.
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FIGURE 4.3: Box plot: Difference of τ point estimate and true
τ for varying sample size per subgroup, and varying true τ in
individual meta-analyses and meta-regression. Outliers were
removed in this figure. Outliers are values that are out of the

interquartile range (from the 25 or 75 percentile) times 1.5.

In Figure 4.4 we show the distribution of τ point estimates for meta-analysis
and sample size of 10 per subgroup. The method is shown by the gray
shaded bar at the top. The sample size and the value of τ is shown by the
gray shaded bars on the right-hand side. The true value of τ is indicated by
the red dashed line. The frequentist methods, analogous to the findings in
the Cochrane data, show an inflation of zero point estimates for τ. The in-
flation is larger for smaller sample sizes and for smaller true values of τ. We
found that using meta-regression instead of individual meta-analyses leads
to a smaller amount of zero point estimates for equal sample sizes and the
same choice of τ. The point estimates using a UP tend to follow a skewed
distribution for small values of the true τ parameter. The same holds for the
HNP. In the case of the HNP, we can also see the influence of the prior on the
estimation of τ. The mean of the distribution of estimated τ better represents
the true value of τ, the closer we are to the prior median.
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FIGURE 4.4: Distribution of τ point estimates for varying true
values of τ in individual meta-analyses for 10 studies per sub-
group. Note that the x-axis varies across methods. The gray
bar on the right indicates the sample size per subgroup and the

respective true τ

The mean difference of τ (meta-analysis and meta-regression) is shown in
Figure 4.5. We can see that the mean difference for the frequentist methods is
dependent on the amount of between-trial heterogeneity and on the number
of studies included in the analysis. For small τ, the difference is positive,
whereas for larger τ, the difference becomes negative. We can see the same
behavior for the HNP. Only in the case of the UP, the difference is always
positive, indicating that the meta-analysis point estimate is on average larger
for all choices of τ. In case of the UP, meta-regression on average adjust τ

downward. For all other methods, the adjustment is dependent on the true
τ. When the true τ is small τ on average is adjusted downward, whereas for
large τ it is adjusted upward. In the frequentist case, this is despite the fact
that less τ are estimated to be zero in meta-regression.
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FIGURE 4.5: Mean difference of τ point estimates for varying
sample size per subgroup. The difference is defined as individ-
ual meta-analysis point estimate minus meta-regression point

estimate.

When using the metafor package, the confint.rma.uni() uses profile likeli-
hood to compute the CI for τ. In case of numerical problems the bounds are
arbitrarily set to [0,100] or, for the upper bound, ten times the point estimate
of τ, whichever is greater. Therefore, the CI length for τ could be biased.
We found in Figure 4.6 that the mean CI lengths for τ are reduced for meta-
regression in comparison to separate analyses with an UP, REML, DL and
PM. The change in CI lengths with the HNP are small compared to the other
methods. For an increase in τ, the CIs are estimated to be wider. This is to be
expected since the heterogeneity is increased.
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FIGURE 4.6: Mean τ 95% CI length for varying sample sizes
per subgroup and varying τ in meta-regression and individual
meta-analyses. The frequenist CI is based on profile likelihood
and therefore does not differ across methods. In the frequentist

case, the CI lengths are from the Z-CI.

In Figure 4.7 we display the coverage probability for individual meta-analyses.
The gray shaded bars on the right show the CI that is used in each case. We
found that the CI based on the normal approximation (Z) performs the worst.
Here the aimed 95% are only covered for very small τ. The KnHa-CI also
was not able to adhere to the 95%. However, we can observe that the cover-
age probability does not fall much below 93%. Both t- and Adhoc-CI tend to
be conservative for small τ and for larger τ then cover roughly the 95%. In
the case of the shortest CI, we found that the UP is more conservative with a
lower sample size, but it overall covered the aimed 95% coverage probabil-
ity. The effect of the HNP is clearly visible, as the CI is liberal for larger τ and
conservative for smaller τ. One has to keep in mind that the difference be-
tween the frequentist τ point estimates are small compared to the differences
of the CI computation (Z, t, KnHa, Adhoc).
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FIGURE 4.7: CI coverage probability of the true µ in individual
meta-analyses for varying sample size per subgroup and true
τ. The shown y-axis values multiplied by 100 represent per-

centages.

Figure 4.8 shows that the overall coverage probability is better across all
methods when using meta-regression. In the cases where the 95% were not
attained, the coverage probability is higher than before, e.g., Z, KnHa, HNP.
For the CIs that tended to be conservative before, we found that the coverage
probability is less conservative for the small sample sizes and small τ.
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FIGURE 4.8: CI coverage probability of the true µ in meta-
regression for varying sample size per subgroup and true τ.
The shown y-axis values multiplied by 100 represent percent-

ages.

We were also able to show that the µ CIs shrunk on average when we used
meta-regression in comparison to individual meta-analyses. This is shown
in Figure 4.9. If the ratio is larger than one (indicated by the dashed line)
then the meta-analysis CI is wider. We found that for Adhoc-, KnHa-, t-
and the shortest-CI with UP that the meta-regression shrinks the CIs for all
sample sizes and choices of τ. However, we found that the shrinkage for
small sample sizes was more evident. For the shortest-CI with a HNP and
the Z-CI, we found that the CIS for large τ are actually wider in the case
of meta-regression. This is probably due to the coverage of individual meta-
analysis CIs for small τ being larger than the aimed level of 95% and for large
τ being smaller. The coverage of meta-regression CIs then should be closer
to the 95% level. We also found that the larger the sample size, the later the
ratio drops below one.
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FIGURE 4.9: 95% µ CI length ratio meta-analysis and meta-
regression for varying sample size per subgroup, true τ and
CIs. A ratio larger than 1 indicates that the CIs of individ-
ual meta-analyses are wider on average compared to meta-

regression.

In Figure 4.10 we show the ratio of the MSE of µ for meta-analysis and meta-
regression. Except for the case with the HNP, we can show that the use of
meta-regression lowers the MSE over all choices of τ. In the case of the HNP,
we found that for τ close to the prior mean, the MSE appears to be lower
for meta-analysis. For the frequentist methods, we can show that the MSE
becomes smaller for larger τ. However, the differences in MSE are very small.
This is to be expected since the point estimate of µ is only very indirectly
influenced. Different estimation of τ only leads to slight changes in the study
weighs. More relevant are the effect on the precision, e.g., CI length and
coverage.
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FIGURE 4.10: Ratio of µ MSE for varying sample size per
subgroup and true τ in individual meta-analyses and meta-
regression. A ratio of larger than 1 indicates that the MSE for in-
dividual meta-analyses is larger compared to meta-regression.

4.3 Scenario II: Effects of assumption violation

In Scenario II, we want to investigate the robustness of the meta-regression
approach by generating data that does not meet the assumptions made in the
meta-regression. In Figure 4.11 we plot the coverage probability of µ against
the factor we used to vary τ across the three subgroups for individual meta-
analyses. The assumptions made by the individual meta-analysis are not
violated. One τ is always 0.3 in the simulations, where the other two either
shrunk or are increased by the factor on the x-axis. For small factors j , we
would expect the simulation to produce results similar to those in Scenario
I. We observe a fairly constant coverage probability across most methods.
Taking a look at the shortest-CI in the case of a HNP, we can see the effect of
the prior. The coverage probability for µ tends to shrink for an increase in the
factor of τ. Since we plot the coverage of all τ in one plot, we have to recall
what we found in Scenario I. We found that a τ smaller than the posterior
median leads to a conservative CI, whereas a τ larger than the posterior mean
leads to a liberal CI. We found that the coverage deteriorates for a larger
difference in τ across subgroups. For the other methods we found similar
coverage probabilities as in Scenario I with a τ of 0.3.
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FIGURE 4.11: Coverage of CI for µ in individual meta-analyses
for varying sample sizes, factor of τ variation. The shown y-

axis values multiplied by 100 represent percentages.

The results of the meta-regression are shown in Figure 4.12. The coverage
probability seems to show a slight downwards slope. This behavior is to be
expected since the assumptions for large τ are severely violated. We, how-
ever, found that the decrease in coverage probability in comparison to the
severity of the violation is very moderate. Moreover, we found that using
meta-regression leads to coverage probabilities of conservative CIs closer to
the 95% level. In the case of liberal CIs, e.g., Z, we found that for a small vari-
ation of τ across subgroups the meta-regression still leads to better coverage
probabilities.
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FIGURE 4.12: µ CI Coverage in meta-regression for varying
sample sizes and factor of τ variation. The shown y-axis val-

ues multiplied by 100 represent percentages.

In Figure 4.13 we plotted the ratio of the coverage probabilities for individual
meta-analysis and meta-regression. We found that the ratio of the coverages
shows an increase if the factor of τ is increased. However, if we look at the
scale of the y-axis, we see that this effect is fairly small. The Z-CI, for individ-
ual meta-analysis, has a worse coverage for all used factors of τ and sample
sizes. We would conclude, for our scenario, that using meta-regression with
a Z-CI is beneficial in all cases. In the case of the KnHa-CI, we found that for
large sample sizes, the coverage of the meta-regression is larger compared to
individual meta-analysis. The same can be found for a sample size of five per
subgroup and a factor of τ up to 1.7. In the case of conservative CIs, a ratio of
larger than one does not necessarily indicate an advantage. We would expect
for conservative CIs that the respective CIs are wider as well and, therefore,
indicate less precision.



Chapter 4. Simulation 41

FIGURE 4.13: Coverage ratio of µ meta-analysis and meta-
regression for varying τ per subgroup. A ratio of < 1 indi-
cates that the coverage probability of individual meta-analyses

is smaller compared to meta-regression and viceversa.

The ratio of the coverage probability of τ is shown in Figure 4.14. We found
that in the case of individual meta-analyses, the CI for τ covers the targeted
95%. In the case of meta-regression, we observed a clear trend that the cov-
erage for an increased difference in τ tends to be less and less good. This is
to be expected since the assumptions were violated.
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FIGURE 4.14: Coverage ratio of τ for varying sample sizes, fac-
tor of τ variation and CIs in meta-analysis and meta-regression.
A ratio of < 1 indicates that the coverage probability of individ-
ual meta-analyses is smaller compared to meta-regression and

vice versa.

Next, we consider the ratio of the average CI lengths for individual meta-
analysis and meta-regression, as shown in Figure 4.15. We found that the
use of meta-regression in nearly all cases leads to shorter CIs on average. We
only found that for factors lager than 1.9 the Z-CIs for DL, PM and REML
are wider. Especially for smaller sample sizes, the CI using e.g., KnHa, Ad-
hoc and t shrunk substantially. The larger the sample size, the smaller the
shrinkage. We observed the same in the Bayesian case with the use of a UP.
If a HNP is used, the CIs are always shorter, but we cannot see that the sam-
ple size would affect this. The precision gain by shorter CIs combined with
a similar, if not better coverage indicates that the use of meta-regression is
beneficial even for moderately different τ.
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FIGURE 4.15: 95% CI length ratio of µ for varying sample
sizes, factor of τ variation and CIs in meta-analysis and meta-
regression. A ratio larger than 1 indicates that the CIs of indi-
vidual meta-analyses are wider on average compared to meta-

regression

In Figure 4.16 we show the ratio of MSE for µ. We found that only for large
sample sizes and large differences in τ the frequentist setting leads to a larger
MSE in meta-regression. In all other cases, meta-regression also has a bene-
ficial effect on the MSE of µ. In the Bayesian setting we found that for small
differences in τ the MSE is fairly equal, whereas for large differences in τ

across subgroups the MSE of the individual meta-analyses is smaller. For a
HNP and a small sample size, we would say that the MSE of meta-regression
and meta-analysis is similar.
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FIGURE 4.16: Mean squared error ratio of µ for varying sam-
ple sizes, factor of τ variation and CIs in meta-analysis and
meta-regression for varying τ. A ratio of larger than 1 indicates
that the MSE for individual meta-analyses is larger compared

to meta-regression.

We would conclude that the use of meta-regression even for differing τ is
overall beneficial across all CIs and methods.

4.4 Scenario III: Calibration

In Scenario III, we sampled τ from a half-normal distribution with a scale
parameter of 0.5. Analogous to Röver (2020) Appendix E we want to demon-
strate that the model yields consistent results. The distribution we use here is
the same as the HNP used for analyzing the data. The resulting distribution
of point estimates is shown in Figure 4.17. We know that for small sample
sizes, the Bayesian point estimates tend to overestimate τ, since the point
estimate is corrected more towards the prior median the less information is
available. In fact, Bayesian methods estimate fewer τ to be close to zero for
small sample sizes compared to larger sample sizes.

The same can be found for the comparison of meta-analyses and meta-regression.
The effect of larger sample sizes is more evident in the UP case. For large
sample sizes, the point estimates should be close to the true value and there-
fore the distribution should be close to HN(0.5). The larger sample size in
the meta-regression leads to a better representation of the half-normal dis-
tribution. The frequentist methods tend to estimate more τ to be zero for
smaller sample sizes and when individual meta-analysis is used instead of
meta-regression.
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FIGURE 4.17: Distribution of τ point estimates if τ is sampled
from HN(0.5). The gray bar on the right indicates the sample
size per subgroup and if meta-analyses or meta-regression were

used.

In the Bayesian case, we can look at the distribution of the true τ quantiles.
These quantiles can be calculated from the posterior distribution. For this,
we use so-called probability integral transform (PIT) values (Gneiting et al.,
2007):

pt = Ft(xt),

where Ft(·) in our case is the cumulative distribution function of τ from the
posterior and xt is the true value of τ used in the simulations. pt is then
nothing else than the quantile from the posterior distribution of the true τ

used in the simulations.

In the case of the HNP, we would expect a uniform distribution if the prior
and the true distribution are the same for both µ and τ. Since we set µ = 0, we
expect only roughly a uniform distribution for the PIT values of τ. The PIT
values are shown for the Bayesian methods in Figure 4.18. We can see that
for the HNP, the distribution is roughly a uniform distribution for both indi-
vidual meta-analysis and meta-regression. In the case of the UP, we found a
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skewed distribution, indicating that the UP overestimates τ to a degree. This
overestimation of τ can be regarded as a conservative form of bias. Further
on this topic is written in Röver (2020) Appendix B. The skewness is less ap-
parent if the sample size is increased, either by more studies per subgroup or
using meta-regression.

FIGURE 4.18: PIT values (or quantile) of true τ parameter for
Bayesian methods and sample sizes per subgroup when sam-
pling τ from HN(0.5) in individual meta-analyses and meta-
regression. The gray bar on the right indicates the sample
size per subgroup and if meta-analyses or meta-regression were

used.

We further found that the use of a HNP leads to a 95% coverage probability
of µ for all sample sizes and methods. The use of a UP however, leads to
coverage probabilities of µ larger than 95%. The coverage probabilities of µ

for UP, HNP and REML are shown in Table 4.1. For REML we found that the
Z-CI is liberal. The Adhoc- and t-CI tend to be conservative, while for large
sample sizes k and meta-regression covering the 95%. The KnHa-CI for cov-
ers at least 94%, while for large sample sizes and meta-regression also covers
the 95%. The coverage of µ for DL and PM is given in Table A.7 (Appendix).
They show a similar picture as REML. Friede et al. (2017a) also concluded
that the τ estimator is not so important, what is more important is whether
the τ estimation uncertainty is taken into account.
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Interval: shortest Z KnHa Adhoc t

k Type UP HNP REML REML REML REML

2 Meta-Analyses . 0.95 0.90 0.94 1 1
2 Meta-Regression 0.99 0.95 0.92 0.94 0.99 0.99

5 Meta-Analyses 0.99 0.95 0.92 0.94 0.98 0.97
5 Meta-Regression 0.97 0.95 0.93 0.94 0.96 0.95

10 Meta-Analyses 0.97 0.95 0.93 0.94 0.96 0.96
10 Meta-Regression 0.96 0.95 0.94 0.95 0.95 0.95

TABLE 4.1: Coverage of µ for τ sampled from HN(0.5) for UP,
HNP and REML. The shown values multiplied by 100 represent

percentages.

Table A.8 (Appendix) shows the mean µ CI lengths for UP, HNP and REML.
DL and PM are shown in Table A.9 (Appendix). The HNP leads to the short-
est CIs on average that maintain the 95% level. The Z-CI is found to have
shorter CIs than the HNP. However, it does not maintain the 95% level for
µ. The coverage probability is overall never lower than 90%. For small sam-
ple sizes, KnHa-, Adhoc- and the t-CI have very wide CIs on average. The
widest CI originate from the UP. KnHa-, Adhoc- and the t-CIs produce wide
CIs for small sample sizes. The usage of meta-regression with small sample
sizes drastically shrinks the average CI length. All CI are shorter when either
using meta-regression or with larger sample sizes. This is analogous to the
previous findings.

4.5 Scenario VI: Location invariance

As a last scenario, we want to show that the variation of µ in the subgroups
does not influence the results from the other scenarios, aside from the loca-
tion of the µ point estimates. In Figure 4.19 we show the distribution of µ

point estimates for τ = 0.3. All models were able to differentiate between
the true parameters of µ across the subgroups. The true values are indicated
by the dashed lines. Each subgroup µ is represented by one color. We can see
that each subgroup point estimate distribution of µ has a mean around the
true µ (indicated by the dashes line) per subgroup. This holds also for the
other τ parameters, which are shown in Figures A.8 and A.9 (Appendix).

We found that the coverage probabilities of µ from a simulation using µ = 0
and parameters from simulations using varying µ are very similar. The cov-
erage probabilities for µ given τ = 0.3 are shown in Table A.10 (Appendix).



Chapter 4. Simulation 48

The coverage probabilities for Scenario I are shown in Figure 4.8. In Scenario
I, we can see that in Figure 4.1 the point estimates are centered around zero,
whereas the point estimates are distributed around the true µ for each sub-
group with approximately equal variances.

FIGURE 4.19: Distribution of point estimates of µ split by sub-
group for τ = 0.3 in meta-regression. Bayesian models use the
posterior median. The true value of µ per subgroup is indicated
by color. The gray bar on the right indicates the sample size per

subgroup and the respective true τ
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Conclusions and discussion

Our expectations were that meta-regression should improve the estimation
of τ , since more data is available. Associated with the improved estimation
for τ, we also expected an improved estimation of µ, i.e., more precise CIs.
Especially, the tendency of frequentist methods to estimate τ to be equal to
zero should be reduced as well. This approach was mentioned, e.g., in Dias et
al. (2013) and Donegan et al. (2015). However, it is not often used in practice.

We found that when subgroups are present, meta-regression seems to have
an advantage over individual meta-analyses. To study meta-regression un-
der realistic conditions, we used data from the CDSR. We demonstrated that
when meta-regression is used on the empirical dataset from the CDSR, the
mean CI lengths shrunk when using meta-regression instead of individual
meta-analyses. One exception to this finding is the CI based on normal ap-
proximation (Z). We also found that using meta-regression in a frequentist
setting reduces the number of estimated zeros for τ.

After applying meta-regression on the empirical dataset, we conducted a
simulation study to systematically check the properties, where we can con-
trol the parameters and certain boundary cases. First, we used fixed τ (and
µ). We again found that using a meta-regression, rather than individual
meta-analyses, shrinks the CI lengths of µ. In the same moment the cov-
erage probability of µ for liberal CIs is increased, while for conservative CIs
meta-regression brings the coverage probability closer to the 95% level.

In a second scenario, we showed that meta-regression is also robust when
the assumptions of equal τ values is violated to a degree. Here, the coverage
probability for µ does not severely drop while the CI lengths still shrink even
with severe differences in τ. In the third scenario, we showed what happens
if the true τ in the simulations is the same as the HNP prior used in the
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analysis. The distribution we sample from is here equivalent to the prior
HNP for τ. This was done to check the calibration of our model. In the short
fourth scenario, we showed that the choice of µ in each subgroup does not
influence the other scenarios, aside from the location of µ.

One has to keep in mind, however, when investigating differences between
subgroups, the credibility of this effect modification should be assessed first
(Schandelmaier et al., 2020). Once the analysis was found to be credible, we
found that using a meta-regression was beneficial compared with individ-
ual meta-analyses. The credibility assessment needs to be done even if only
individual subgroup meta-analyses are conducted.

Meta-regression promises advantages over individual meta-analyses in the
context of subgroups, as shown in an application on CDSR dataset and sim-
ulations. Therefore, meta-regression should be considered more often. Es-
pecially for small sample sizes, one should consider using a Bayesian frame-
work for the analysis, if an educated guess on the distribution of τ can be
made. The bayesmeta package provides a straightforward and easy way to
do so.
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Appendix

A.1 Code

The code can be made available on request.

A.2 Computational aspects

The bayesmeta package uses the DIRECT (divergence restricting conditional
tessellation) algorithm described in Röver and Friede (2017), to approximate
the marginal posterior distribution of µ. In our context, it can be seen as a
way of doing Bayesian analysis without the need of Markov chain Monte
Carlo sampling (Röver, 2020). Alternatives to this approach are probabilistic
languages using MCMC methods like Stan and Jags. Since no assessment of
convergence is required, the bayesmeta package has advantages in the con-
text of simple meta-analysis/-regression compared to approaches using Jags
or Stan.

P(τ|Y) is the marginal posterior distribution of τ. For the application in
meta-analysis, it can be derived in closed form (Röver, 2020). The conditional
posterior P(µ|τ, Y) can also be computed. However, the marginal distribu-
tion P(µ|Y) that is of interest can not be easily computed and needs to be
approximated.

P(µ|Y) =
∫

P(µ|τ, Y)P(τ|Y)dτ (A.1)

We can approximate the marginal distribution of µ through a discrete set of
points:

P(µ|Y) ≈∑
i

P(µ|τi, Y)πi (A.2)
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The question is how to define the grid points for the approximation. The idea
of the DIRECT algorithm is to link the bin spacing to a measure of similar-
ity of the resulting conditional posterior distributions of µ (P(µ|τi, Y)). For
this, we use the symmetrized Kullback-Leibler Divergence (Ds). It is further
described in Section A.3. We use the symmetrized version to ensure that it
does not matter in which order we compare P(µ|τi, Y). We set the bin mar-
gins τi such that a predefined maximum divergence δ inside the bins is not
exceeded, e.g, δ = 0.01.

The binning procedure works as follows. The left bin margin for the first
bin is set to a point of choice, e.g., τ = 0 or τ equal to the ε/2 quantile of
the marginal posterior distribution of τ. ε is the amount of neglected tail
probability that we would allow. For example, it can be set to 0.001. For
the first bin, we set the reference point (τ̃1), that represents the bin, equal to
the left bin margin. To find the right margin for the bin, we increase τ until
Ds = δ. The resulting value of τ(1) is then our margin. The right margin of
the first bin is also the left margin of the second bin. After the left bin margin
for the second bin is known, we search for the reference point of the bin. We
increase τ again until Ds = δ. We then set this as the reference point τ̃2. From
this reference point, we then look for the point where P(µ|τi, Y) is different
from the distribution using τ̃2. This point τ(2) we set to the right margin of the
second bin. We do this until, for the last bin margin, P(T > τ) is less or equal
to the remaining predefined amount of neglected tail probability (εr). εr is
dependent on the first reference point τ̃1. It is given by: εr = ε− P(T ≤ τ̃1).
We then use the reference points to approximate the marginal distribution of
µ as the weighted sum of P(µ|τi, Y). The weights πi for each τ̃i are given by
the integral of P(τ|Y) inside the respective bin margins.

A.3 Kullback–Leibler divergence

The Kullback–Leibler Divergence (also known as relative entropy) is used to
quantify how one probability distribution P is different to another probabil-
ity distribution Q (Kullback & Leibler, 1951).

The discretized version of the Kullback–Leibler Divergence is given by:

D(P||Q) = ∑
x

P(x) log
(

P(x)
Q(x)

)
= −∑

x
P(x) log

(
Q(x)
P(x)

)
(A.3)
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Kullback–Leibler Divergence is also defined for continuous random vari-
ables:

D(P||Q) =
∫ ∞

−∞
p(x) log

(
p(x)
q(x)

)
dx (A.4)

The Kullback–Leibler Divergence is not symmetric. In case of comparing two
probability distributions (P, Q) a symmetrized version can be used:

Ds(P||Q) = D(P||Q) + D(Q||P) = Ds(Q||P) (A.5)

The Kullback–Leibler Divergence can be used in our application to compare
µ and τ estimates at the same time. It can be used to compare the estima-
tion of θ across the used methods. In the Bayesian case, we can integrate the
distribution of interest out of the posterior distribution. Then the resulting
distribution can be compared with the true distribution. The discrete Kull-
back–Leibler Divergence is based on a fine grid to represent the distributions.
In order to avoid point densities and errors in the used R method, we set the
heterogeneity

τ̂ =

0.01 if τ̂ < 0.01

τ̂ else.
(A.6)

The same holds for the true values of τ.

Meta-regression provides only a single estimate for τ. Thus, in case of dif-
fering τi across subgroups the Kullback–Leibler Divergence can not easily be
compared between individual meta-analysis and meta-regression. Moreover,
the assumptions of the meta-regression are violated. For example, one could
take a pooled τpooled of the true τi and then use this in the given functions or
compute one Kullback–Leibler Divergence estimate for each τi while always
using the estimated τ̂ from the meta-regression.

A.4 Additional plots and tables

A.4.1 Example meta-analyses and meta-regression
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FIGURE A.1: Example forest plot for first comparison and
fourth outcome in Goodwin et al. (2013). Shown are the µ
point estimates with CIs for subgroup specific meta-analyses
and meta-regression. This was done for the methods UP, HNP,
REML, DL and PM. In the frequentist case, the Z CI was used.
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A.4.2 Estimation of meta-regressions and individual meta-

analyses using the empirical data

Type UP HNP REML PM DL

Meta-Analysis 0 0 0.54 0.61 0.61
Meta-Regression 0 0 0.34 0.45 0.45

TABLE A.1: Proportion of zero point estimates for τ where the
number of studies per subgroup is at least two. The shown

values multiplied by 100 represent percentages.

UP HNP REML PM DL

shortest 1.84 1.05 . . .
Adhoc . . 1.62 1.56 1.55
KnHa . . 1.53 1.47 1.47
t . . 1.63 1.56 1.56
Z . . 1.04 1.02 1.02

TABLE A.2: Mean of µ interval length ratio, where the number
of studies per subgroup is at least two. The ratio is computed as
the interval length of individual meta-analyses divided by the
interval length of meta-regression. A ratio of< 1 indicates that
the interval of individual meta-analyses are shorter and vice

versa.
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FIGURE A.2: Distribution of log-transformed point estimates
for τ in meta-regression and meta-analysis. The log results in
zero point estimates for τ not being displayed. The relative

share of zero point estimates is shown in Table 3.3

A.4.3 Estimation of meta-regressions and individual meta-

analyses using the empirical data with subgroups, where

overall meta-analyses per subgroup were carried out

Thus far, we have considered subgroup analyses that did not necessarily in-
volve an overall meta-analysis. An overall analysis means that we combine
the study estimates from the subgroups and analyze them together in a sin-
gle meta-analysis. Here, we consider only the cases where such an over-
all analysis was conducted. Since the authors of the studies used an over-
all meta-analysis, they considered a common between-trial heterogeneity as
plausible. Therefore, the assumption of a common between-trial heterogene-
ity made by meta-regression should be plausible. The results show a similar
behavior compared to an analysis containing all data with subgroups.

Type Count

Reviews 2107
Comparisons 4621
Outcomes 16978
Subgroups 44721
Studies 166506

TABLE A.3: Summary of Cochrane database for subgroups sub-
set with binary data where overall analyses were carried out
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FIGURE A.3: Relative share of study counts and subgroups per
analysis where overall analyses were carried out

FIGURE A.4: Log-Odds ratios and their approximate variances
where overall analyses were carried out

FIGURE A.5: Log-Odds ratios and their approximate variances
if “single & double zero” studies are removed where overall

analyses were carried out
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Type UP HNP REML PM DL

Meta-Analysis 0 0 0.51 0.60 0.60
Meta-Regression 0 0 0.39 0.52 0.52

TABLE A.4: Relative share of zero point estimates for τ where
overall analyses were carried out. The shown values multiplied

by 100 represent percentages.

UP HNP REML PM DL

shortest 1.64 1.05 . . .
Adhoc . . 1.46 1.45 1.45
KnHa . . 1.39 1.38 1.38
t . . 1.47 1.45 1.46
Z . . 1.02 1.02 1.02

TABLE A.5: Mean of µ interval length ratio where overall anal-
yses were carried out. The ratio is computed as the inter-
val length of individual meta-analyses divided by the interval
length of meta-regression. A ratio of< 1 indicates that the inter-

val of individual meta-analyses are shorter and vice versa.

UP HNP REML PM DL

τdi f f 0.15 0.02 -0.01 -0.01 -0.003

TABLE A.6: Mean difference of τ meta-analysis and τ meta-
regression, where overall analyses were carried out. A differ-
ence < 0 indicates that on average, the point estimate of τ is

larger when using meta-regression
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A.4.4 Scenario I

FIGURE A.6: Point estimates of µ for varying τ values, a sample
size per subgroup of k=10 and a true µ = 0 for individual meta-
analyses. The gray bar on the right indicates the sample size per

subgroup and the respective true τ.
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FIGURE A.7: Point estimates of µ for varying τ values, a sample
size per subgroup of k=10 and a true µ = 0 for meta-regression.
The gray bar on the right indicates the sample size per sub-

group and the respective true τ.
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A.4.5 Scenario II

A.4.6 Scenario III

Interval: Z KnHa Adhoc t

k Type DL DL DL DL

2 Meta-Analyses 0.90 0.94 1 1
2 Meta-Regression 0.92 0.94 0.99 0.99

5 Meta-Analyses 0.92 0.94 0.98 0.97
5 Meta-Regression 0.93 0.94 0.95 0.95

10 Meta-Analyses 0.93 0.94 0.96 0.96
10 Meta-Regression 0.94 0.95 0.95 0.95

PM PM PM PM

2 Meta-Analyses 0.90 0.94 1 1
2 Meta-Regression 0.92 0.94 0.99 0.99

5 Meta-Analyses 0.92 0.94 0.98 0.98
5 Meta-Regression 0.93 0.94 0.96 0.96

10 Meta-Analyses 0.93 0.94 0.96 0.96
10 Meta-Regression 0.94 0.95 0.95 0.95

TABLE A.7: Coverage of µ for τ sampled from HN(0.5) for DL
and PM. The shown values multiplied by 100 represent percent-

ages.

Interval: shortest Z KnHa Adhoc t

k Type UP HNP REML REML REML REML

2 Meta-Analyses . 2.15 2.10 10.55 13.59 13.59
2 Meta-Regression 5.14 2.13 2.06 3.02 3.40 3.35

5 Meta-Analyses 2.29 1.30 1.24 1.64 1.40 1.76
5 Meta-Regression 1.46 1.28 1.24 1.34 0.96 1.37

10 Meta-Analyses 1.09 0.90 0.86 0.96 1.01 0.99
10 Meta-Regression 0.93 0.88 0.86 0.89 0.92 0.90

TABLE A.8: Mean Interval Length of µ for τ sampled from
HN(0.5) for UP, HNP and REML
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Interval: Z KnHa Adhoc t

k Type DL DL DL DL

2 Meta-Analyses 2.10 10.55 13.59 13.59
2 Meta-Regression 2.06 3.03 3.42 3.35

5 Meta-Analyses 1.24 1.64 1.82 1.76
5 Meta-Regression 1.24 1.34 1.41 1.37

10 Meta-Analyses 0.86 0.96 1.02 0.99
10 Meta-Regression 0.86 0.89 0.92 0.90

PM PM PM PM

2 Meta-Analyses 2.10 10.55 13.59 13.59
2 Meta-Regression 2.08 3.05 3.38 3.38

5 Meta-Analyses 1.26 1.66 1.79 1.79
5 Meta-Regression 1.25 1.35 1.39 1.39

10 Meta-Analyses 0.87 0.97 1.01 1.01
10 Meta-Regression 0.87 0.90 0.91 0.91

TABLE A.9: Mean Interval lengths of µ for τ sampled from
HN(0.5) for DL and PM

A.4.7 Scenario IV
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FIGURE A.8: Point estimates of µ split by subgroup for vary-
ing τ values, a sample size per subgroup of k=10 and a true
varying µ for individual meta-analyses. The true value of µ per
subgroup is indicated by color. The gray bar on the right indi-
cates the sample size per subgroup and the respective true τ.
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FIGURE A.9: Point estimates of µ split by subgroup for varying
τ values, a sample size per subgroup of k=10 and a true varing
µ for meta-regression. The true value of µ per subgroup is in-
dicated by color. The gray bar on the right indicates the sample

size per subgroup and the respective true τ.
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Method k τ UP HNP REML PM DL

Interval: Shortest

Meta-Analyses 10 0.3 0.98 0.96
Meta-Analyses 5 0.3 1.00 0.97
Meta-Analyses 2 0.3 . 0.98

Meta-Regression 10 0.3 0.96 0.95
Meta-Regression 5 0.3 0.97 0.96
Meta-Regression 2 0.3 1.00 0.97

Interval: Z

Meta-Analyses 10 0.3 0.92 0.93 0.93
Meta-Analyses 5 0.3 0.92 0.92 0.92
Meta-Analyses 2 0.3 0.92 0.92 0.92

Meta-Regression 10 0.3 0.93 0.93 0.93
Meta-Regression 5 0.3 0.93 0.93 0.93
Meta-Regression 2 0.3 0.93 0.93 0.93

Interval: KnHa

Meta-Analyses 10 0.3 0.93 0.93 0.93
Meta-Analyses 5 0.3 0.93 0.93 0.93
Meta-Analyses 2 0.3 0.95 0.95 0.95

Meta-Regression 10 0.3 0.94 0.94 0.94
Meta-Regression 5 0.3 0.94 0.94 0.94
Meta-Regression 2 0.3 0.94 0.94 0.94

Interval: Adhoc

Meta-Analyses 10 0.3 0.96 0.96 0.96
Meta-Analyses 5 0.3 0.98 0.98 0.98
Meta-Analyses 2 0.3 1.00 1.00 1.00

Meta-Regression 10 0.3 0.95 0.94 0.95
Meta-Regression 5 0.3 0.96 0.95 0.95
Meta-Regression 2 0.3 0.99 0.99 0.99

Interval: t

Meta-Analyses 10 0.3 0.95 0.96 0.96
Meta-Analyses 5 0.3 0.98 0.98 0.98
Meta-Analyses 2 0.3 1.00 1.00 1.00

Meta-Regression 10 0.3 0.94 0.94 0.94
Meta-Regression 5 0.3 0.95 0.95 0.95
Meta-Regression 2 0.3 0.99 0.99 0.99

TABLE A.10: Coverage probability for µ in the case of varying
µ and τ = 0.3. The shown values multiplied by 100 represent

percentages.
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