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Abstract

Introduction: An estimand describes the treatment e�ect that should be measured in

the context of a clinical trial (Mehrotra et al., 2016, p. 457). In this thesis, the evaluation

of the hypothetical estimand and the treatment-policy estimand of a simulation study

is performed. The hypothetical estimand captures the treatment e�ect which could

be measured, if no treatment discontinuation occurred (Permutt, 2016, p. 2867). The

treatment-policy estimand would evaluate the e�ect of the combination of the new drug

and a rescue medication, if it was needed (Akacha et al., 2017b, p. 10).

Methods: The Log-linear Poisson model, the Log-linear negative-binomial model, the

Log rank test, the Cox proportional hazards model, the Likelihood ratio test, the Gamma

frailty model, the Shared gamma frailty model and the χ2-test are used for the evaluation

of both estimands. Hereby, the in�uence of the overdispersion, the mechanism and

proportion of the treatment discontinuation and the proportion of the study dropout are

examined.

Results: If overdispersion occurs, the type I error rate will increase and the power will

shrink. The bias of the methods isn't a�ected a lot. Treatment discontinuation will

have the strongest impact on the results, if the percentage of patients in the treatment

group is larger than the one in the placebo group. Hereby, the type I error rate and the

bias increase the most, the power shrinks. Study dropout enlarges the bias, the power

is diminished. The type I error rate of the methods evaluating the time to the �rst

event grows the most with very high percentages of study dropout. Under treatment

discontinuation mechanism missing not at random, the type I error rate and the bias

increase and the power shrinks compared to missing completely at random. This is

especially valid for the count data models and the Shared gamma frailty models as well

as for the χ2-test.

Conclusions: To yield a valid evaluation of a clinical trial in reality, the proportion

of patients with treatment discontinuation in both trial arms should be equal. For the

evaluation of these scenarios without overdispersion, the Shared gamma frailty model or

the Log-linear Poisson model are proposed. In scenarios with overdispersion, the Cox

proportional hazards model or the Log rank test are optimal for the evaluation of the

hypothetical estimand. For the treatment-policy estimand, the Shared gamma frailty

model is recommended as it respects the whole period of time including the time under

rescue medication by providing the largest power and smallest bias. It doesn't reveal an

acceptable type I error rate in some scenarios. But their 95%-con�dence intervals of the

calculated type I error rates include an acceptable type I error rate.
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Chapter 1 Introduction

1 Introduction
In the context of a clinical trial, the treatment e�ect of a newly developed drug can

be investigated. But before a clinical is permitted, a protocol must be elaborated. In

recommendation 1 of the National Research Council's report, which is called 'The Pre-

vention and Treatment of Missing Data in Clinical Trials' (National Research Council

et al., 2010, p. 26) requirements of such a clinical trial protocol are named:

"The trial protocol should explicitly de�ne (a) the objective(s) of the trial;

(b) the associated primary outcome or outcomes; (c) how, when and on

whom the outcome or outcomes will be measured; and (d) the measures of

intervention e�ects, that is, the causal estimands of primary interest. These

measures should be meaningful for all study participants, and estimable with

minimal assumptions. Concerning the latter, the protocol should address the

potential impact and treatment of missing data."

This recommendation announces several important aspects that should be addressed

in a clinical trial. Concerning a con�rmatory clinical trial in asthma, the objective of

the trial should be the investigation of the treatment e�ect of a newly developed drug.

Hence, information about e�cacy and safety of this drug can be provided to a regula-

tory agency (Committee for Medicinal Products for Human Use (CHMP) et al., 2017,

p. 3). The 'Guideline on the clinical investigation of medicinal products for the treat-

ment of asthma' proposes the exacerbation rate as the primary outcome (Committee for

Medicinal Products for Human Use (CHMP) et al., 2015). Other possibilities can be

the time to the �rst asthma exacerbation or the occurrence of at least one exacerbation.

A study duration of at least six months is required by the Guideline (Committee for

Medicinal Products for Human Use (CHMP) et al., 2015, p. 11). The grade of severity

of the asthma disease of the recruited patients should be comparable to the grade of

severity to which the new product is intended to be applied (Committee for Medicinal

Products for Human Use (CHMP) et al., 2015, p. 6). Furthermore, a strati�ed ran-

domisation of the patients regarding the aspects of smoking history, prior number of

exacerbations and use of further asthma drugs is proposed by the relevant Guideline

Committee for Medicinal Products for Human Use (CHMP) et al., 2015, p. 6). The

'ICH E9 addendum on estimands and sensitivity analysis in clinical trials to the guide-

line on statistical principles in clinical trials' refers to the measures of the intervention

e�ect. Consequently it proposes di�erent estimands for the estimation of the treatment

e�ect. Choosing the appropriate estimand, the strategy to address intercurrent events

must be prede�ned (Committee for Medicinal Products for Human Use (CHMP) et al.,

2017, p. 5). An intercurrent event in a con�rmatory clinical trial can be the change

1



Chapter 1 Introduction

of medication due to medical reasons. If the hypothetical estimand is measured, the

intercurrent events will be ignored (Committee for Medicinal Products for Human Use

(CHMP) et al., 2017, p. 7). In this case, the trial is evaluated as if the intercurrent event

had not occurred. Otherwise, if the treatment e�ect is based on data before and after

the intercurrent event, the treatment-policy estimand will be an appropriate choice. If

a change of medication after treatment discontinuation is performed, the estimand will

include the e�ect of the combination of treatments that is actually applied in practice.

An estimation of the hypothetical estimand with minimal assumptions would be possible

if a complete follow-up of all subjects in the absence of any intercurrent event was given.

Whereas the treatment-policy estimand would be estimable with minimal assumptions if

all patients were observed until the end of the study (Committee for Medicinal Products

for Human Use (CHMP) et al., 2017, p. 13). The impossibility of a complete follow-up,

e.g. because of a study dropout, leads to missing data (Leuchs et al., 2017, p. 13). For

the hypothetical estimand data after a treatment discontinuation is not considered and

a change of medication will lead to missing data. Whereas, for the treatment-policy

estimand, treatment discontinuation and study dropout are not the same. In this thesis,

hypothetical and treatment-policy estimands are estimated with di�erent methods in

the context of a simulated placebo-controlled con�rmatory clinical trial in asthma. In

particular, the treatment-policy estimand is simulated and evaluated with and without

study dropout. The type I error rate, power and bias of these methods are compared.

The 'Guideline on the clinical investigation of medicinal products for the treatment of

asthma' proposes the implementation of several endpoints to picture di�erent aspects

of this multidimensional disease (Committee for Medicinal Products for Human Use

(CHMP) et al., 2015, p. 12). In this thesis, the same three endpoints are chosen for

each estimand: the number of asthma exacerbations, the time to the �rst exacerbation

or the time between all suceeding exacerbations respectively and the occurrence of at

least one exacerbation. These endpoints are evaluated with adequate methods. The

�rst one representing the number of events is evaluated with a Log-linear Poisson model

(GLM Poisson) and a Log-linear negative-binomial model (GLM NB). The Log rank

test, Cox proportional hazards model (Cox Model), Likelihood ratio test (LR test),

Gamma frailty model (GF model), and Shared Gamma frailty model (SGF model) are

used for the analysis of the second endpoint considering the time to the �rst event or the

time between all succeeding events respectively. The third endpoint which contains the

occurrence of at least one exacerbation is assessed with a χ2-test of independence. These

methods are tested with the help of simulations. Hereby, a con�rmatory clinical trial in

asthma with a study duration of one year is created. Its most important characteristic

is the generation of data for patients with either the same grade of severity of the
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disease or with di�erent frailties. In this context, it is of interest, whether those methods

that are able to take into account di�erent severities of the asthma disease show a

better performance than those which can not. Furthermore, treatment discontinuation

mechanism can either occur missing completely at random (MCAR) or missing not

at random (MNAR). For the hypothetical estimand 48 scenarios are simulated. The

treatment policy estimand is evaluated on the basis of 144 scenarios. Hereby, additionally

to the treatment discontinuation, study dropout is considered in some scenarios. After

the treatment discontinuation, a change of medication from either the new drug or

placebo to a rescue medication takes place.

The thesis is structured the following way: �rst a theoretical background about treatment

e�ects in a con�rmatory clinical asthma trial is given. Second, the term 'estimand' is

brie�y de�ned, the conditions for the equivalence of null hypotheses of the hypothetical

and treatment-policy estimand are explained and the consequences of the choice of an

estimand for the design of a clinical trials are pictured. The third section deals with the

missing data mechanisms in a con�rmatory clinical trial. Fourth, the chosen endpoints

and their underlying distributions are presented. Hereby, the true treatment e�ects for

the hypothetical and treatment-policy estimand are derived. In the �fth section, the

statistical methods are described. Furthermore, the null hypotheses of the parametric

methods are transformed into each other to ensure the comparability of these models.

Sixth, the choice of scenarios and parameters as well as the generation process of the

data are shown. In the seventh, eighth and ninth section, the results are presented and

discussed and a conclusion of this thesis is given.

The goal of this thesis is to compare these methods with respect to their type I error rate,

power and bias to give advice concerning the analysis of such a study under di�erent

conditions in reality. Hence, the in�uence of the treatment discontinuation mechanism,

the proportion of patients with treatment discontinuation in treatment and placebo arm

and the occurrence of missing data are examined.
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2 Treatment e�ects in a con�rmatory clinical asthma

trial
In the following, the concept of di�erent treatment e�ects, which are called estimands,

is explained. First, a brief de�nition of the term 'estimand' is given. In this context,

the advantages and disadvantages of the hypothetical and treatment-policy estimand,

which are compared in this thesis, are discussed. Second, the conditions for equivalence

of the null hypotheses of the hypothetical and treatment-policy estimand are presented.

Third, the consequences for the design of a clinical trial resulting from the choice of an

estimand are explored.

2.1 De�nition of an estimand

The term 'estimand' denotes the treatment e�ect that "is to be estimated" with the help

of a clinical trial (Mehrotra et al., 2016, p. 457). This treatment e�ect is measured in

summary statistics which compare the e�ect of the new drug in relation to the one of a

placebo or alternative medication (National Research Council et al., 2010, p. 22). There

are mainly �ve di�erent estimands: The hypothetical estimand, the treatment-policy

estimand, the composite estimand, the principle stratum estimand and the while-on-

treatment estimand (Committee for Medicinal Products for Human Use (CHMP) et al.,

2017, pp. 7�8). In the context of this thesis, only the hypothetical and treatment-policy

estimands are relevant as they represent to opposed possibilities to handle the occurrence

of intercurrent events. Therefore, only these two estimands and their way to deal with

intercurrent events are explained in greater detail in this section. But in general, an

estimand is characterized by three components (Akacha et al., 2017a, p. 270; Phillips

et al., 2016, p. 7):

1. The population that is included into the study sample

2. The variable denoting the clinical outcome to measure the treatment e�ect

3. The handling of an intercurrent event

The hypothetical estimand represents the treatment e�ect which could be measured, if

no treatment discontinuation had occurred (Permutt, 2016, p. 2867). The population

which is included into the study for the estimation of the hypothetical estimand is chosen

through characteristics re�ecting the examined disease. Referring to a con�rmatory

clinical asthma trial which is the example for the simulations in this thesis, the population

consists of su�ering from asthma. The variable depends on the chosen endpoint, which is

in this thesis either the number of events at the end of the study, the time until the �rst
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event or the time between all succeeding events respectively or the occurrence of at least

one event. The endpoints are brie�y described in section 4. Treatment discontinuation,

which represents an intercurrent event, is ignored, as if it had not occurred.

Figure 1: Comparison of hypothetical and treatment-policy estimand

Whereas the treatment-policy estimand evaluates the e�ect of the combination of treat-

ments that is actually applied in practice (Akacha et al., 2017b, p. 10). The three

components characterizing an estimand only di�er between the hypothetical and the

treatment-policy estimand in the way of handling treatment discontinuation. For the

treatment-policy estimand data are analyzed regardless of the usage of rescue medica-

tion after treatment discontinuation.

Figure 1 compares the hypothetical and treatment-policy estimand. The graphic shows

that for the hypothetical estimand, only the time period until treatment discontinuation

is taken into account. For the treatment e�ect of the endpoint considering the number

of events at the end of the study, the number of events until treatment discontinuation

is extrapolated until the end of the study. The treatment e�ect of the second endpoint

considering the time until the �rst event contains only those patients, who su�er their

�rst event before their individual time of treatment discontinuation. All other persons

are censored. If the time between all succeeding events are of interest, only the time

between those events are evaluated, which occur before treatment discontinuation. The

third endpoint again evaluates if during the time until treatment discontinuation, at least

one event per patient had occurred. Therefore, the hypothetical estimand is appropriate

for the estimation of e�cacy whereby no treatment discontinuation occurs. E�cacy

denotes the treatment e�ect under ideal conditions (Hernán et al., 2013, p. 561). The

e�ectiveness of the combination of the new drug and an alternative medication is assessed,
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if treatment-policy estimand is used. E�ectiveness represents the treatment e�ect under

a realistic scenario (Hernán et al., 2013, p. 561). The treatment-policy estimand evaluates

the e�ect of the new treatment of the endpoint considering the number of events until

the end of the study on the basis of all available data. This is also valid for the two

further endpoints.

Both estimands have their speci�c advantages and disadvantages. With the help of the

hypothetical estimand, the pharmacological e�ect can be assessed as it only considers

the time under treatment of the new drug (Leuchs et al., 2015, p. 585). Thus, the e�ect

of the medication can be evaluated as if the treatment was taken as originally adviced

(Mallinckrodt et al., 2017, p. 30). Therefore, the goal in an early development phase

of the new medication should be oriented towards the evaluation of e�ciency (Leuchs

et al., 2015, p. 588). But the e�ectiveness of the therapeutic strategy applied in clinical

practice can't be evaluated. The guideline on missing data in con�rmatory clinical trials

requires from a con�rmatory clinical trial that it "should estimate the e�ect of the

experimental intervention in the population of patients with greatest external validity

and not the e�ect in the unrealistic scenario where all patients receive treatment with

full compliance to the treatment schedule and with a complete follow-up as per protocol"

(Committee for Medicinal Products for Human Use (CHMP) et al., 2010, pp. 3�4). This

requires the estimation of the treatment-policy estimand for the submission of a new

drug. But for this estimand, the collection of data after treatment discontinuation must

already be intended during the planning phase of the study (Phillips et al., 2016, p. 7).

Because of the follow-up of patients, it can be documented if patients su�ered severe side

e�ects after their treatment discontinuation. For the submission of the new drug, it is

of interest if these side e�ects can be related to this medication (Permutt, 2017, p. 20).

Furthermore, treatment discontinuation should be noticed as it often represents a proof

of low e�cacy (Permutt, 2016, p. 2866).

There are scenarios in clinical trials in which the validity of the treatment-policy estimand

is limited.

Figure 2: Scenarios showing limitations of treatment-policy estimand (Akacha et al.,
2017b, p. 10)
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In �gure 2, two of these scenarios are shown. Both of them are cited from Akacha et al.

(2017b, p. 10) and arise from a randomized controlled trial. In the �rst scenario, a new

drug is compared to an already established medication. Patients in the treatment group

receive the investigational treatment, but after the �rst dose, they stop the treatment

and receive the established medication from now on. Patients in placebo group are only

treated with the established medication. The analysis in this scenario is actually based on

a comparison between the established medication and a delayed start of the established

medication where patients are treated with the new drug before. In this scenario, it can't

be proved that the new drug is worse than the already established one. Consequently, if

the period under the new drug is very short, a comparison between both trial arms can't

lead to valid conclusions. Scenario 2 shows a placebo controlled trial where patients

in placebo group receive the already established treatment as rescue medication after

taking one dose of placebo. From this constellation, it can not be concluded that the

new drug shows no e�ect at all. If the period under placebo is very short, it can only be

shown that the new drug is not superior to the rescue medication. These two scenarios

may not seem to be very realistic, but the idea behind it shows that the period under

the new drug and the placebo should be as long as possible.

2.2 Conditions for equivalence of null hypotheses of the hypo-

thetical and treatment-policy estimand

As the hypothetical estimand
(

log(∆hyp)
)
and treatment-policy estimand

(
log(∆tp)

)
di�er in the way of handling treatment discontinuation, certain conditions must exist to

ensure the equivalence of their null hypotheses. In this thesis, the treatment e�ects are

provided in logarithmized form. The null hypotheses are the same if:

H0 : log(∆hyp) = log(∆tp) = 0 (2.1)

Figure 3 shows the basic scenario of a clinical trial in asthma consisting of a treatment and

placebo arm. The λ1A denotes the event rate of asthma exacerbations in the treatment

arm before treatment discontinuation, whereas the λ1PL
represents the event rate in the

placebo arm before treatment discontinuation under the investigational drug. The λ2A

and the λ2PL
denote the event rates under rescue medication in the treatment or the

placebo arm after treatment discontinuation. The λTDA
and the λTDPL

are the event

rates describing the time to the treatment discontinuation in treatment and placebo arm.
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Figure 3: Conditions for equivalence of null hypotheses of the hypothetical and
treatment-policy estimand

If λ1A = λ1PL
, it holds:

H0 : log(∆hyp) = 0 (2.2)

If λ1A = λ1PL
and λ2A = λ2PL

and λTDA
= λTDPL

, then

H0 : log(∆tp) = 0 (2.3)

For the equivalence of both null hypotheses, λ1A = λ1PL
and λ2A = λ2PL

and λTDA
=

λTDPL
must be valid.

If λ1A = λ1PL
= λ2A = λ2PL

, which is a special case of the above stated parameter

combination, λTDA
= λTDPL

is not necessary to hold for the equivalence of both null

hypotheses.

2.3 Consequence of the choice of estimand for the design of a

clinical trial

As the hypothetical and the treatment-policy estimand address di�erent treatment ef-

fects, the design of a clinical trial must be appropriate for the evaluation of the desired

estimand. Figure 4 shows the relation between the aim of a clinical trial, the estimand

to be chosen, and the statistical analysis methods to evaluate the treatment e�ect. First,

the goal of the study must be determined. It depends on the di�erent stakeholders who

are involved in the study, e.g. the patient, the doctor, the pharmaceutical company, the

pharmaceutical or the regulator (Akacha et al., 2017b, p. 7). In this context, it should be

clari�ed how to deal with the occurrence of intercurrent events, e.g. treatment discon-

tinuation before the end of the study (Mallinckrodt et al., 2017, p. 31). After all these

decisions, the appropriate estimand can be chosen. The estimand a�ects the design of

the study, as it determines whether data after treatment discontinuation should be col-

lected in form of a follow-up of patients or not. The selection of the statistical methods
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of analysis is limited to those which are able to evaluate the �xed estimand. Hence, the

choice of an estimand in�uences the statistical evaluation of the trial. A problem will

arise if the treatment-policy estimand is selected but patients are not followed up after

their treatment discontinuation or if they discontinue their follow-up period before the

end of the study because this leads to missing data (Little and Kang, 2015, p. 2381).

The mechanisms underlying the occurrence and the consequences of missing data are

brie�y described in section 3.

Figure 4: Consequences for the design of a clinical trial based on (Leuchs et al., 2015,
p. 586)

In practice, the order of de�ning and analyzing a clinical trial illustrated in �gure 4

is often reversed. Then, the estimand results from the chosen statistical methods of

analysis (Mehrotra et al., 2016, p. 457). But this is not the correct way to de�ne the

design of the study in dependence of the methods of analysis that will be applied. The

choice of the estimand determines the design and methods. Regulatory decision making

must take into account the evaluated estimand in a submitted trial (National Research

Council et al., 2010, p. 26).
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3 Missing data mechanisms in a con�rmatory clinical

trial
This section deals with the missing data mechanisms in a con�rmatory clinical trial. In

general, there exist three di�erent ways in which missing data are linked to the outcome

variable: missing completely at random (MCAR), missing at random (MAR) and miss-

ing not at random (MNAR) (Akacha and Benda, 2010, p. 1636). These mechanisms

are relevant to describe the treatment discontinuation and the study dropout in asthma

trial in this thesis. Hereby the treatment discontinuation mechanisms can either occur

MCAR or MNAR. For the hypothetical estimand, it leads to missing values whereas

for the treatment-policy estimand it does not necessarily cause missing data because of

the follow-up. Whereas the study dropout mechanism is simulated just under MCAR

for those patients who have discontinued treatment. Study dropout leads to missing

data. As for this thesis only MCAR and MNAR are used, only these two mechanisms

are described. If data is missing completely at random, their probability of not being

observed during a clinical trial is neither related to the observed values nor to the un-

observed values of the dependent variable (Mallinckrodt, 2013, p. 10). Therefore, their

missing can be caused by di�erent circumstances, e.g. mistimed or too often requested

clinic visits, relocation of a trial participant or any health reason if it is not linked to

the response of the trial (Carpenter et al., 2002, p. 1047). Data that can be collected

after a missing completely at random mechanism simply represent a random sample of

all the data that could originally have been observed (Ibrahim et al., 2005, p. 333). But

as Kenward (2013, p. 244) states, the missing completely at random assumption seems

not to be a very realistic mechanism.

If data is missing not at random, the probability of missing values is related to the

unobserved values of the dependent variable (Akacha and Benda, 2010, p. 1636). In

an asthma trial, the MNAR mechanism arises if a patient's treatment discontinuation

depends on the theoretical total number of events supposed the patient was observed

until the end of the study. Therefore, the person would withdraw from treatment earlier

if his potential number of events was higher. In this case, treatment discontinuation

is linked to the therapy as the unobserved total number of events is in�uenced by the

treatment if a treatment e�ect exists. In this context, the MNAR mechanism appears

to describe a study dropout more realistically.

The occurrence of missing data leads to biased estimates of the treatment e�ect (National

Research Council et al., 2010, p. 26). Thus, missing data after treatment discontinuation

has a stronger impact on the estimate than treatment discontinuation itself (Leuchs et
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al., 2014, p. 194). In this thesis, the bias of the treatment-policy estimand due to missing

values will be explored. Furthermore it is of interest, if the mechanism of the treatment

discontinuation, which does not necessarily lead to missing values has an impact on the

bias, too. In this thesis, this will be explored for the hypothetical and treatment-policy

estimand. For the treatment-policy estimand, biased estimates are expected even under

the MCAR treatment discontinuation mechanism if study dropout occurs. These biased

estimates are reasoned by the missing information about the actual treatment e�ect.

11



Chapter 4 Endpoints and their true treatment e�ects

4 Endpoints and their true treatment e�ects
This chapter explains the three chosen endpoints which are of interest for this simula-

tion study. In this context, the distribution of the underlying data of each endpoint is

presented. Furthermore, the true treatment e�ect of each endpoint of the hypothetical

estimand are shown. The true treatment e�ect of the �rst endpoint of the treatment-

policy estimand is derived. The remaining treatment e�ects are calculated numerically.

These treatment e�ects are needed for the bias calculations of the statistical methods.

4.1 Choice of endpoints and their underlying distributions

Recurrent events can either be recorded as the number of events or as the time between

the single events (Lawless, 1987, p. 808). Therefore, data can be analyzed with respect

to the counted number of events, or the time until the �rst event or the time between

all occurring events respectively. The di�ering emphases of evaluation lead to several

endpoints. For this study, three endpoints are chosen:

1. number of a patient's asthma exacerbations during one year

2. time to �rst exacerbation of each patient or time between all succeeding exacerba-

tions

3. occurrence of at least one exacerbation per patient

Each of these endpoints show speci�c advantages. For the analysis of the �rst one, infor-

mation about the whole number of exacerbations is used. Whereas it is not considered

whether the time period to the �rst asthma exacerbation is decreased by the new drug

ot not. This possible reduction of the time to �rst exacerbation is accounted for with the

second endpoint instead. The third one represents the simplest one by just remarking

the occurrence of at least one event.

4.1.1 Underlying distributions of the hypothetical estimand

The �rst endpoint represents a patient's number of exacerbations. To get this number, it

is counted how often an event occurs. In the case of all patients su�ering from the same

severity of asthma, the time until the next exacerbation tE is drawn from an Exponential

distribution with probability density function f(tE) and cumulative distribution function

F (tE) (Held and Sabanés Bové, 2014, p. 336):

tE ∼ Exp(λE) (4.1)

f(t) = λ · e−λt (4.2)
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F (t) = 1− e−λt (4.3)

If the time between succeeding events is exponentially distributed with parameter λE,

the total number of events y during the study of one year follows a Poisson distribution,

where ∆t denotes the time period of interest (Johnson et al., 1993, p. 153):

λP = λE ·∆t (4.4)

y ∼ Po(λP ) (4.5)

The Poisson distribution is given as follows (Zucchini et al., 2009, p. 152):

f(y) =

{
λyP
y!
e−λP for y = 0, 1, 2, ...

0 otherwise
(4.6)

The number of exacerbations is carried out via a Poisson process (Lawless, 1987, p. 808).

The resulting recurrent events are independent between patients (Metcalfe and Thomp-

son, 2006, p. 167). Furthermore, as events occur with constant rate within an individual,

a patient's exacerbation does not depend on any preceding event. This feature charac-

terizes a homogeneous Poisson process (Jahn-Eimermacher, 2008, p. 4990). Its intensity

function, which shows the "instantaneous probability of an event occurring at t" and

depends on the process history M(t), is de�ned by (Cook and Lawless, 2007, p. 10):

h
(
t|M(t)

)
= lim

∆t→0

P
(
∆Y (t) = 1|M(t)

)
∆t

(4.7)

Y (t) gives the number of exacerbations su�ered during the time interval [0, t] (Cook and

Lawless, 2007, p. 9). To include the e�ect of covariates, e.g. the in�uence of the belonging

to one trial arm, the intensity function is described as follows (Cook and Lawless, 2002,

p. 144):

h
(
t|M(t),X

)
= h0

(
t;M(t)

)
g(X) (4.8)

with

g(X) = eβ
T
X (4.9)

h0

(
t;M(t)

)
represents the baseline hazard function.
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This kind of count data has no overdispersion, as it holds (Fahrmeir et al., 2013, p. 294):

y ∼ Po(λP ), (4.10)

λP = E(y) = Var(y) (4.11)

In reality, patients taking part of a clinical trial show individual severities of asthma.

Therefore, the rate λP may now vary between patients but is still kept constant over

time within one person. In this thesis, it is assumed to follow a Gamma distribution

(Held and Sabanés Bové, 2014, p. 336):

λP ∼ Ga(α, β); α, β > 0 (4.12)

f(λP ) =
βα

Γ(α)
λα−1
E e−βλE (4.13)

E(λP ) =
α

β
⇒ α = E(λP ) · β (4.14)

Var(λP ) =
α

β2
(4.15)

In this case, the number of exacerbations y is no longer described by the Poisson distri-

bution but by the Poisson-Gamma distribution (Held and Sabanés Bové, 2014, p. 335):

y ∼ PoGa(α, β, ϑ) (4.16)

f(y) =

(
β

ϑ+ β

)α
1

Γ(α)

Γ(α + y)

y!

(
ϑ

ϑ+ β

)y
(4.17)

This results in overdispersed data, as

E(y) = ϑ
α

β
= λP , α, β > 0 (4.18)

Var(y) = ϑ
α

β
(1 +

ϑ

β
) = λP (1 +

ϑ

β
) (4.19)

⇒ Var(y) = φE(y) (4.20)

⇒ φ =
Var(y)

E(y)
=
αϑ
β

(
1 + ϑ

β

)
ϑα
β

= 1 +
ϑ

β
(4.21)
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Chapter 4 Endpoints and their true treatment e�ects

⇒ β =
ϑ

φ− 1
(4.22)

where φ = (1 + ϑ
β
) is called the overdisperison parameter whereby overdispersion only

exists if φ > 1 (Fahrmeir et al., 2013, p. 294).

The mixture of a Poisson distribution with a Gamma distribution leads to the Poisson-

Gamma distribution shown above which can be transformed into the Negative-Binomial

distribution. The density of a Poisson-Gamma distribution is derived as follows (Hardin

and Hilbe, 2012, p. 244; Held and Sabanés Bové, 2014, p. 335):

f(y) =

∞∫
0

λyP e
−λP

y!

βα

Γ(α)
λα−1
P e−βλP dλP (4.23)

=
βα

Γ(y + 1)Γ(α)

∞∫
0

λyP e
−λPλα−1

P e−βλP dλP (4.24)

=
βα

Γ(y + 1)Γ(α)

∞∫
0

λy+α−1
P e−λP (1+β)dλP (4.25)

=
βα

Γ(y + 1)Γ(α)

Γ(y + α)

(1 + β)y+α

(1 + β)y+α

Γ(y + α)

∞∫
0

λy+α−1
P e−λP (1+β)dλP (4.26)

Substituting z = λP (1 + β)⇒ λP =
z

1 + β

dz = (1 + β)dλP ⇒ dλP =
dz

1 + β

=
βα

Γ(y + 1)Γ(α)

Γ(y + α)

(1 + β)y+α

(1 + β)y+α

Γ(y + α)

∞∫
0

(
z

1 + β

)y+α−1

e−z
dz

1 + β
(4.27)

=
βα

Γ(y + 1)Γ(α)

Γ(y + α)

(1 + β)y+α

(1 + β)y+α

Γ(y + α)

∞∫
0

zy+α−1

(1 + β)y+α
e−zdz (4.28)

=
βα

Γ(y + 1)Γ(α)

Γ(y + α)

(1 + β)y+α

1

Γ(y + α)

∞∫
0

zy+α−1e−zdz (4.29)

=
βα

Γ(y + 1)Γ(α)

Γ(y + α)

(1 + β)y+α
(4.30)

=
Γ(y + α)

Γ(y + 1)Γ(α)

βα

(1 + β)y+α
(4.31)

15
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=
Γ(y + α)

Γ(y + 1)Γ(α)

βα

(1 + β)y(1 + β)α
(4.32)

=
Γ(y + α)

Γ(y + 1)Γ(α)

(
β

1 + β

)α(
1

1 + β

)y
(4.33)

=

(
β

ϑ+ β

)α
1

Γ(α)

Γ(α + y)

y!

(
ϑ

ϑ+ β

)y
(4.34)

In equation 4.34, it can be observed that ϑ equals 1, but this parameter will be kept

in the following equations to use the same notation as Held and Sabanés Bové (2014,

p. 335).

The �rst part of equation 4.33 equals the binomial coe�cient (Johnson et al., 1993, p. 3;

Hilbe, 2011, p. 189): (
y + α− 1

y

)
=

(y + α− 1)!

y!(y + α− 1− y)!
(4.35)

=
Γ(y + α− 1 + 1)

Γ(y + 1)Γ(y + α− 1− y + 1)
(4.36)

=
Γ(y + α)

Γ(y + 1)Γ(α)
(4.37)

Therefore, the density of the Negative-Binomial distribution can be derived, whereby

p =
(

β
1+β

)
denotes the probability of success in each trial (Hardin and Hilbe, 2012,

p. 248):

f(y) =

(
y + α− 1

y

)(
β

1 + β

)α(
1

1 + β

)y
(4.38)

=

(
y + α− 1

y

)
pα(1− p)y (4.39)

Hence, the Poisson-Gamma distribution can be transformed into the Negative-Binomial

distribution.

Recurrent event data are in case of individual event rates still simulated via a homo-

geneous Poisson process but with individual intensity function λPi
(Jahn-Eimermacher,
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Chapter 4 Endpoints and their true treatment e�ects

2008, p. 4991; Cook and Lawless, 2007, p. 76):

hi
(
t|Mi(t), zi

)
= lim

∆t→0

P
(
∆Yi(t) = 1|Mi(t), zi

)
∆t

, (4.40)

Hereby, zi denotes the unobservable frailty of individual i (Lawless, 1995, p. 491). The

term frailty paraphrases the patient's severity of the asthma disease, whereby a person

with a higher frailty will su�er the exacerbation earlier than one with a lower frailty

(Sölkner, 1996, p. 238; Therneau and Grambsch, 2000, p. 232).

The second endpoint considers the time to the �rst exacerbation or the time between

all succeeding exacerbations tE respectively. These periods of time are drawn from an

Exponential distribution as already described above if patients su�er from the same

severity of asthma. Otherwise, the parameter λE is drawn from a Gamma distribution

which gives the following mixture distribution:

f(tE) =

∞∫
0

λEe
−λtE βα

Γ(α)
λα−1
E e−βλEdλE (4.41)

=
βα

Γ(α)

Γ(α + 1)

(tE + β)α+1

(tE + β)α+1

Γ(α + 1)

∞∫
0

λαEe
−λ(tE+β) (4.42)

Substituting z = λE(tE + β)⇒ λE =
z

tE + β

dz = (tE + β)dλE ⇒ dλE =
dz

tE + β

=
βα

Γ(α)

Γ(α + 1)

(tE + β)α+1

(tE + β)α+1

Γ(α + 1)

∞∫
0

zα

(tE + β)α
e−z

dz

tE + β
(4.43)

=
βα

Γ(α)

Γ(α + 1)

(tE + β)α+1

(tE + β)α+1

Γ(α + 1)

∞∫
0

zα

(tE + β)α+1
e−zdz (4.44)

=
βα

Γ(α)

Γ(α + 1)

(tE + β)α+1

1

Γ(α + 1)
Γ(α + 1) (4.45)

=
βα

Γ(α)

Γ(α + 1)

(tE + β)α+1
(4.46)

=
αβα

(tE + β)α+1
(4.47)

=
αβα

(tE + β)α+1
· β · 1

β
(4.48)
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=
α 1
β
βα+1

(tE + β)α+1
(4.49)

=
α

β

(
β

tE + β

)α+1

(4.50)

=
α

β

(
1 +

tE
β

)−(α+1)

(4.51)

This distribution equals the Pareto Type II distribution which is also known as the

Lomax distribution (Siri et al., 2012, p. 143). It's cumulative density function can be

derived by:

F (tE) =

tE∫
0

α

β

(
1 +

x

β

)−(α+1)

dx (4.52)

= −

(
1 +

x

β

)−α∣∣∣∣∣
tE

0

(4.53)

= 1−

(
1 +

tE
β

)−α
(4.54)

As it can be observed, this mixture distribution no longer depends on the parameter λE
but on the parameters of the Gamma distribution or the Gamma-Poisson distribution

respectively.

The evaluation of the third endpoint is based on binary data. This binary data documents

whether an event has occurred or not.

4.1.2 Underlying distributions for the treatment-policy estimand

For the de�nition of the underlying distribution for the treatment-policy estimand, the

distribution of the time until treatment discontinuation tTD must be known. In this

thesis, it comes from an exponential distribution with parameter λTD. Referring to the

count data models, the total number of events y under treatment-policy estimand is

described by the sum of the number of events before treatment discontinuation y1 and

the number of events after treatment discontinuation y2. In the following, the index 1

denotes the period before treatment discontinuation and the index 2 describes the period

18



Chapter 4 Endpoints and their true treatment e�ects

after treatment discontinuation.

Y = Y1 + Y2 (4.55)

This sum is described by the convolution of two discrete distributions (Johnson et al.,

1993, p. 50):

fY (y) = fY1+Y2 = P (Y = y) =

y∑
y1=0

fy1(y)fy2(y − y1) (4.56)

For the Log-linear Poisson model y1 and y2 come from two Poisson distributions, and

therefore y is calculated by:

fY (y) =

y∑
y1=0

λyP11

y1!
e−λP1

λy−y1P2

(y − y1)!
e−λP2 (4.57)

= e−(λP1
+λP2

)

y∑
y1=0

λyP11

y1!

λy−y1P2

(y − y1)!
(4.58)

With the use of the binomial theorem (Johnson et al., 1993, p. 3):

(a+ b)n =
n∑
j=0

(
n

j

)
an−jbj, (4.59)

the �nal distribution results, whereby n = y, a = λP2 and b = λP1 :

fY (y) = e−(λP1
+λP2

)

y∑
y1=0

(λP1 + λP2)
y

y!
(4.60)

Therefore,

Y ∼ Po(λP1 + λP2) (4.61)

In analogy to, the convolution of the Negative-Binomial distribution underlying the

Log-linear negative-binomial model is built. Hereby, α1 denotes the parameter for the

Negative-Binomial distribution describing the number of events y1 before treatment dis-

continuation. The parameter α2 speci�es the Negative-Binomial distribution after treat-

ment discontinuation. As β depends on the overdispersion parameter φ (see equation
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5.60) which is constant over time, it holds that p = p1 = p2 (Furman, 2007, p. 170):

fY (y) =

y∑
y1=0

(
y1 + α1 − 1

y1

)
pα1(1− p)y1

(
y2 + α2 − 1

y2

)
pα2(1− p)y2 (4.62)

=

y∑
y1=0

(
y1 + α1 − 1

y1

)(
β

1 + β

)α1
(

1

1 + β

)y1
·(

y2 + α2 − 1

y2

)(
β

1 + β

)α2
(

1

1 + β

)y2 (4.63)

=

y∑
y1=0

(
y1 + α1 − 1

y1

)(
β

1 + β

)α1
(

1

1 + β

)y1
·

(
y − y1 + α2 − 1

y − y1

)(
β

1 + β

)α2
(

1

1 + β

)y−y1 (4.64)

=

(
β

1 + β

)α1+α2
(

1

1 + β

)y y∑
y1=0

(
y1 + α1 − 1

y1

)(
y − y1 + α2 − 1

y − y1

)
(4.65)

With (Johnson et al., 1993, p. 3):(
−n
r

)
= (−1)r

(
n+ r − 1

r

)
, (4.66)

the binomial coe�cients can be transformed into:

y∑
y1=0

(
y1 + α1 − 1

y1

)(
y − y1 + α2 − 1

y − y1

)
(4.67)

=

y∑
y1=0

(−1)y1
(
−α1

y1

)
(−1)y−y1

(
−α2

y − y1

)
(4.68)

=(−1)y
y∑

y1=0

(
−α1

y1

)(
−α2

y − y1

)
(4.69)

With help of Vandermonde's theorem (Johnson et al., 1993, p. 3):(
a+ b

n

)
=

n∑
j=0

(
a

j

)(
b

n− j

)
, (4.70)
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the binomial coe�cients can be merged.

(−1)y
y∑

y1=0

(
−α1

y1

)(
−α2

y − y1

)
(4.71)

=(−1)y
(
−α1 − α2

y

)
(4.72)

=

(
y + α1 + α2 − 1

y

)
(4.73)

Finally, the convolution gives:

fY (y) =

(
y + α1 + α2 − 1

y

)(
β

1 + β

)α1+α2
(

1

1 + β

)y
(4.74)

The underlying distribution of the second endpoint describing the time to the �rst event

represents a Schuhl distribution which represents a mixture of two Exponential distri-

butions (Johnson et al., 1994, p. 547). Because of the property of the Exponential

distribution of being memoryless, f(tE) is the sum of the distribution of the time to the

�rst event before treatment discontinuation f1(tE) and of the distribution after treatment

discontinuation f2(tE). Both distributions are weighted by the probability of su�ering

the �rst event before or after the change of medication. In the case of scenarios without

overdispersion, this distribution is given by:

f(tE) = f1(tE)P(tTD > tE) + f2(tE)P(tTD ≤ tE) (4.75)

= λE1e
−λE1

te−λTDt + λE2e
−λE2

t(1− e−λTDt) (4.76)

= λE1e
t(−λE1

−λTD) + λE2e
−λE2

t − λE2e
t(−λE2

−λTD) (4.77)

Otherwise, in scenarios re�ecting the individual frailties of patients f(t) represents a

mixture of two Lomax distributions:

f(tE) = f1(tE)P(tTD > tE) + f2(tE)P(tTD ≤ tE) (4.78)

=
α1

β

(
1 +

tE
β

)−(α1+1)

e−λTDt +
α2

β

(
1 +

tE
β

)−(α2+1)

(1− e−λTDt) (4.79)

The third endpoint evaluates again the occurrence of at least one event based on the

distributions of endpoint 1.
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These three endpoints di�er with respect to the information they require for the analysis.

A patient taking part of a con�rmatory trial bene�ts of a shorter study duration. That

could be achieved by focusing on the second or third endpoint. The analysis of the

�rst endpoint takes additionally into account all further exacerbations after the �rst

one. Consequently, methods for the analysis of the �rst endpoint or methods for the

second endpoint considering the time between all succeeding events might estimate the

treatment e�ect closer to the true one.

4.2 True treatment e�ects of the endpoints

The true treatment e�ect of each endpoint of the hypothetical estimand are shown. The

true treatment e�ect of the �rst endpoint of the treatment-policy estimand is derived.

The remaining treatment e�ects are calculated numerically. In general, the true treat-

ment e�ect measures the true di�erence between both trial arms. Each di�erence is

based on the recorded information of the chosen endpoint. All treatment e�ects are

calculated on the log-scale to measure the treatment e�ect of the active group (A) in

relation to the one of the placebo group (PL). Therefore, a better comparability of the

treatment e�ects between the models is ensured.

4.2.1 True treatment e�ects for the hypothetical estimand

As for the hypothetical estimand, the time of treatment discontinuation is not taken

into account and the mechanism of treatment discontinuation is irrelevant. First, the

true logarithmized treatment e�ect log(∆trueCDhyp
) of the count data of the �rst endpoint

for the hypothetical estimand is derived. This endpoint considers the total number of

a patient's asthma exacerbations during one year. Therefore, the true treatment e�ect

measures the true di�erence between the number of events in treatment and placebo arm

based on their underlying distributions. As there is no distinction between data with and

without overdispersion the Poisson distribution and the Negative-Binomial distribution

holds:

E(y) = λP1 (4.80)

Hereby, λP1 denotes the parameter of the Poisson distribution describing the number of

events before treatment discontinuation. With equation 4.4 on page 13:

λP1 = λE1 ·∆t = λE1 , (4.81)

as ∆t equals one year for the hypothetical estimand. λE1 represents the parameter
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of the exponential distribution describing the periods of time between the events until

treatment discontinuation.

The logarithmized true treatment e�ect log(∆trueCDhyp
) of the count data of the �rst

endpoint for the hypothetical estimand is calculated as follows:

log(∆trueCDhyp
) = log

(
E(y|A)

E(y|PL)

)
(4.82)

= log
(
E(y|A)

)
− log

(
E(y|PL)

)
(4.83)

= log
(
λP1A

)
− log

(
λP1PL

)
(4.84)

The true treatment e�ect log(∆trueEhyp
) for the second endpoint for the hypothetical

estimand describes the ratio of the hazard rates of the treatment h(tE|A) and the placebo

arm h(tE|PL):

log(∆trueEhyp
) = log

(
h(tE|A)

h(tE|PL)

)
(4.85)

= log
(
h(tE|A)

)
− log

(
h(tE|PL)

)
(4.86)

For scenarios without overdispersion, h(tE) forms the hazard rate of the exponential

distribution which is the fraction of the density divided by the survival function
(
S(tE)

)
(Klein and Moeschberger, 1997, p. 37):

h(t) =
f(tE)

S(tE)
=

f(tE)

1− F (tE)
=
λEe

−λEtE

e−λEtE
= λE (4.87)

Consequently, log(∆trueEhyp
) represents:

log(∆trueEhyp
) = log

(
h(tE|A)

)
− log

(
h(tE|PL)

)
(4.88)

= log
(
λE1A

)
− log

(
λE1PL

)
(4.89)

For scenarios with overdispersion, the individual frailties zi in�uence the hazard rate.

This results in a conditional hazard rate hi(tE|zi) (Omori and Johnson, 1993, p. 910).

The Gamma density, which is the distribution of the frailties, describes the frailties of

the sample at the beginning of the trial (Wienke, 2010, p. 60). But, patients with higher

frailty will experience their �rst event earlier. Afterwards, they are no longer taken into
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account for the following course of the trial. Therefore, the distribution of the frailty

term decreases with longer study duration. To derive the unconditional hazard rate

h(tE), the unconditional survival function is needed and will be derived in the following.

The conditional survival function S(tE|zi) is de�ned as (Rodríguez, 2005, p. 1):

S(tE|z) = S0(tE)z, (4.90)

with S0(tE) denoting the baseline survival function.

S(tE) =

∞∫
0

S(tE|z) · f(z)dz (4.91)

=

∞∫
0

S0(tE)z · f(z)dz (4.92)

=

∞∫
0

e(−λEtE)z βα

Γ(α)
zα−1e−βzdz (4.93)

=
βα

Γ(α)

∞∫
0

zα−1e−(β+λEtE)zdz (4.94)

Substituting v = (β + λEtE)z ⇒ z =
v

β + λEtE

dv = (β + λEtE)dz ⇒ dz =
dv

β + λEtE

=
βα

Γ(α)

∞∫
0

(
v

β + λEtE

)α−1

e−v
dv

β + λEtE
(4.95)

=
βα

Γ(α)

∞∫
0

vα−1

(β + λEtE)α
e−vdv (4.96)

=
βα

Γ(α)

1

(β + λEtE)α

∞∫
0

vα−1e−vdv (4.97)

=
βα

Γ(α)

Γ(α)

(β + λEtE)α
(4.98)

=

(
β

β + λEt

)α
(4.99)

With the de�nition of the unconditional cumulative hazard function H(tE) (Klein and
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Moeschberger, 1997, p. 27):

H(tE) = − log
(
S(tE)

)
, (4.100)

S(tE) can be tranformed into H(tE).

H(tE) = − log

((
β

β + λEtE

)α)
(4.101)

= −α · log(β) + α · log(β + λEtE) (4.102)

As h(tE) forms the �rst derivative of H(tE) with respect to tE (Klein and Moeschberger,

1997, p. 27; Wienke, 2010, p. 74):

h(tE) =
∂H(tE)

∂tE
(4.103)

=
αλE

β + λEtE
(4.104)

=

α
β2αλE

α
β2β + α

β2λEtE
(4.105)

=

α2

β2λE
α
β

+ α
β2λEtE

(4.106)

=
µ2λE

µ+ σ2λEtE
(4.107)

Hereby, µ represents the mean of the Gamma distribution (see equation 4.18) and σ2

denotes its variance (see equation 4.19). For the calculation of the unconditional average

hazard ratio (AHR), the unconditional hazard ratio of each trial arm is set into relation

with the total hazard ratio. This procedure is published by Kalb�eisch & Prentice (1981,

p. 106). Hereby, the total hazard function represents:

htotal(tE) = hA(tE) + hPL(tE) (4.108)

The AHR averages the unconditional hazard ratio over time and is therefore calculated
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by (Schemper et al., 2009, p. 2475):

AHR =

1∫
0

hA(tE)

htotal(tE)
w(tE)fA+PL(tE)dtE

1∫
0

hPL(tE)

htotal(tE)
w(tE)fA+PL(tE)dtE

(4.109)

Hereby, w(tE) denotes the weight function. With the choice of w(tE) = 1, which is used

in this thesis, the hazard ratios of each time point are included into AHR with the same

weight. fA+PL(tE) represents the density describing the time to the �rst event of both

joint trial arms. This distribution is built analogously to the Schuhl distribution which

represents a mixture of two exponential distributions (Johnson et al., 1994, p. 547).

The time until the �rst event tE of both joint groups is described by the Lomax distri-

bution, fA+PL(tE) represents a mixture of the Lomax distributions of both trial arms:

fA+PL(tE) = γA
αAβ

αA

(tE + β)αA+1
+ (1− γA)

αPLβ
αPL

(tE + β)αPL+1
(4.110)

Hereby, the notation of the Lomax distribution in equation 4.47 is used. γA denotes the

proportion of patients in the treatment group and γPL = 1−γA represents the proportion

of patients in the placebo group.

Finally, the true treatment e�ect on the log-scale log(∆trueEhyp
) is:

log(∆trueEhyp
) = log(AHR) (4.111)

For the bias calculations in this thesis, the AHR is estimated using the R-package 'AHR'

(Brueckner, 2016). This package provides procedures to estimate the average hazard

ratio as de�ned by Kalb�eisch and Prentice (1981). Hereby, the Kaplan-Meier estimator

is chosen for the estimation of the survival function.
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The true treatment e�ect log(∆trueOChyp
) for the third endpoint which measures the

occurrence of at least one event is represented by the logarithmized odds ratio (OR):

log(∆trueORhyp
) = log

( P(Y >0|A)

1−P(Y >0|A)

P(Y >0|PL)

1−P(Y >0|PL)

)
(4.112)

= log

(
P(Y > 0|A) ·

(
1− P(Y > 0|PL)

)(
1− P(Y > 0|A)

)
· P(Y > 0|PL)

)
(4.113)

= log

((
1− P(Y = 0|A)

)
· P(Y = 0|PL)

P(Y = 0|A) ·
(
1− P(Y = 0|PL)

)) (4.114)

In the case of data with overdispersion, the calculation of the odds ratio is based on

the Negative-Binomial distribution. Whereas for non-overdispersed data, the Poisson

distribution is used.

4.2.2 True treatment e�ects for the treatment-policy estimand

4.2.2.1 True treatment e�ects for the treatment-policy estimand with treat-

ment discontinuation MCAR

The true treatment e�ect on the log-scale log(∆trueCDtp
) for the treatment-policy esti-

mand of the �rst endpoint with treatment discontinuation missing completely at random

is calculated analogously to the hypothetical estimand. log(∆trueCDtpMCAR
) measures the

true di�erence between the number of events in treatment and placebo arm. Hereby, the

number of events before treatment discontinuation y1 and after treatment discontinua-

tion y2 must be combined. As E(Y1) and E(Y2) are independent (Johnson et al., 1993,

p. 40):

E(Y ) = E(Y1 + Y2) = E(Y1) + E(Y2) (4.115)

E(Y ) = E(Y1 + Y2|TTD ≤ 1)P(TTD ≤ 1) + E(Y1|TTD > 1)P(TTD > 1) (4.116)

=

1∫
0

f(tTD) ·
(
E(Y1) + E(Y2)

)
dtTD + E(Y1|TTD > 1)P (TTD > 1) (4.117)

=

1∫
0

λTDe
−λTDtTD

(
λE1tTD + λE2(1− tTD)

)
dtTD + λE1e

−λTD (4.118)
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=

1∫
0

λTDλE1tTDe
−λTDtTD + λTDλE2e

−λTDtTD −

λTDλE2tTDe
−λTDtTDdtTD + λE1e

−λTD

(4.119)

= λE1e
−λTD +

( λE1

λTD
e−λTDtTD

)∣∣∣∣∣
1

0

+
(
− λE2e

−λTDtTD

)∣∣∣∣∣
1

0

−

(
− λE2tTDe

−λTDtTD

)∣∣∣∣∣
1

0

−
( λE2

λTD
e−λTDtTD

)∣∣∣∣∣
1

0

+ λE1e
−λTD

(4.120)

= −λE1e
−λTD − λE1

λTD
e−λTD +

λE1

λTD
− λE2e

−λTD + λE2+

λE2e
−λTD +

λE2

λTD
e−λTD − λE2

λTD
+ λE1e

−λTD

(4.121)

Consequently, the true treatment e�ect on the log-scale log(∆trueCDtpMCAR
) is calculated

by:

log(∆trueCDtpMCAR
) =

= log
(
− λE1A

e−λTDA −
λE1A

λTDA

e−λTDA +
λE1A

λTDA

− λE2A
e−λTDA + λE2A

+

+ λE2A
e−λTDA +

λE2A

λTDA

e−λTDA −
λE2A

λTDA

+ λE1A
e−λTDA

)
− log

(
− λE1PL

e−λTDPL −
λE1PL

λTDPL

e−λTDPL +
λE1PL

λTDPL

− λE2PL
e−λTDPL+

+ λE2PL
λE2PL

e−λTDPL +
λE2PL

λTDPL

e−λTDPL −
λE2PL

λTDPL

+ λE1PL
e−λTDPL

)
(4.122)

Hereby, the index A symbolizes the parameters of the treatment group and PL denotes

the parameters of the placebo group.

The underlying distribution of the second endpoint describing the time to the �rst event

is the Schuhl distribution which was already used in equation 4.75. The AHR and

therefore log(∆trueEtpMCAR
) is again numerically calculated with the R-package 'AHR'

(Brueckner, 2016). Furthermore, the logarithmized true values for the treatment-policy

estimand under MCAR mechanism log(∆trueORtpMCAR
) are calculated numerically.

Finally, the hypothetical and treatment-policy estimand are compared graphically for

each of the three endpoints. For this purpose, the di�erence between both estimands
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Figure 5: Di�erence between both logarithmized estimands
(

log(∆tp) − log(∆hyp)
)
for

each endpoint depending on the percentage of patients with treatment discontinuation
in placebo group (%TDPL

) and on the di�erence between the percentage of patients with
treatment discontinuation in both trial arms (%TDA

−%TDPL
) for missing completely at

random

(log(∆tp)− log(∆hyp)) is calculated for the percentages that are used later in the context

of the simulations. The according parameters for the simulation of these percentages

are explained in section 6. In �gure 5, the comparison is done under MCAR. Hereby,

the di�erence between these estimands is calculated for a percentage of patients with

treatment discontinuation in the placebo group (%TDPL
) of either 20% or 50%. The

percentage of patients with treatment discontinuation in the treatment group (%TDA
) is

determined by the discrepancy of patients with treatment discontinuation between both

trial arms (%TDA
−%TDPL

), which can either be equal to -20%, 0 or +20%. In the �rst

case, the percentage of patients with treatment discontinuation in placebo group is about

20% higher than in the treatment group, referred to the total population. In the last

case, this is vice versa. With a di�erence of 0%, there are equal proportions of patients

with treatment discontinuation in both groups. These constellations are explored either

without overdispersion (φ = 1) or with overdispersion (φ = 2). Furthermore, if no

treatment discontinuation occurs, 70% of the patients will su�er at least one asthma

exacerbation in the placebo group and for 50% of the patients an event will happen in the

treatment group. The e�ect of the rescue medication is located between the placebo and
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the new drug. Hence, 60% of the patients would su�er at least one event if they were just

treated with this alternative medication. The study duration is considered to be one year.

In the context of such a visualization, the hypothetical estimand is held constant for each

φ, as treatment discontinuation does not in�uence the treatment e�ect of the hypothetical

estimand. But because of the changing percentages of treatment discontinuation, the

treatment e�ect of the treatment-policy estimand varies. For each combination of φ

and %TDPL
, the di�erences of all three endpoints are increasing monotonously with a

larger proportion of patients with treatment discontinuation in the treatment group. To

understand this phenomenon it must be reminded that the treatment e�ects are measured

on the log-scale. Hence, these e�ects result in negative values. The more patients in

treatment group change to rescue medication, the smaller the treatment-policy estimand

becomes. This is reasoned by the treatment e�ect of the rescue medication which is

smaller than the one of new drug. Less negative values, thus larger one will result on the

log-scale. Therefore, the di�erence between the rising treatment-policy estimand and

the hypothetical estimand increases.

4.2.2.2 True treatment e�ects for the treatment-policy estimand with treat-

ment discontinuation MNAR

If treatment discontinuation is considered to appear missing not at random, patients with

a higher hypothetical number of events will change their medication earlier. If the patient

su�ers at least one exacerbation, the λTD is multiplied with the individual hypotheti-

cal number of events, which either comes from a Poisson or from a Negative-Binomial

distribution. Consequently, a 'continuous' Poisson distribution or a 'continuous' Poisson-

Gamma distribution will result. If φ = 1 and y > 0, then

λTD · y ∼ 'continuous' Po(λP1) (4.123)

The distribution of tTD can be expressed with the indicator function IB(y):

IB(y) =

{
1 for y ∈ B
0 for y /∈ B

(4.124)
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fP (tTD) =
∞∑
y=0

λyP1

y!
e−λP1

(
λTDe

−λTDtTDI[0](y) + (λTD · y)e−(λTD·y)tTDI[1;∞)(y)
)

(4.125)

=
∞∑
y=0

(λyP1

y!
e−λP1λ

TD
e−λTDtTDI[0](y)+

+
λyP1

y!
e−λP1 (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

) (4.126)

=
0∑
y=0

λyP1

y!
e−λP1λTDe

−λTDtTDI[0](y)+

+
∞∑
y=1

λyP1

y!
e−λP1 (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

(4.127)

=
λyP1

y!
e−λP1λTDe

−λTDtTDI[0](y)+

+
∞∑
y=1

λyP1

y!
e−λP1 (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

(4.128)

Otherwise, if φ = 2 and y > 0:

λTD · y ∼ 'continuous' PoGa(α1, β, ϑ) (4.129)

Consequently, f(tTD) is de�ned by:

fNB(tTD) =
∞∑
y=0

(
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
·

·
(
λTDe

−λTDtTDI[0](y) + (λTD · y)e−(λTD·y)tTDI[1;∞)(y)
) (4.130)

=
0∑
y=0

(
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
· λTDe−λTDtTDI[0](y)+

+
∞∑
y=1

(
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
· (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

(4.131)
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=

(
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
· λTDe−λTDtTDI[0](y)+

+
∞∑
y=1

(
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
· (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

(4.132)

For the �rst endpoint, the treatment-policy estimand under MNAR log(∆trueCDtpMNAR
)

for scenarios without overdispersion is based on:

E(Y ) = E(Y1 + Y2|TTD ≤ 1)P(TTD ≤ 1) + E(Y1|TTD > 1)P(TTD > 1) (4.133)

=

1∫
0

f(tTD) ·
(
E(Y1) + E(Y2)

)
dtTD + E(Y1|TTD > 1)P(TTD > 1) (4.134)

=

1∫
0

(
λyP1

y!
e−λP1λTDe

−λTDtTDI[0](y)+

+
∞∑
y=1

λyP1

y!
e−λP1 (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

)
·

·
(
λE1tTD + λE2(1− tTD)

)
dtTD + λE1e

−λTD

(4.135)

Whereas for scenarios with overdispersion log(∆trueCDtpMNAR
) is derived by:

E(Y ) = E(Y1 + Y2|TTD ≤ 1)P(TTD ≤ 1) + E(Y1|TTD > 1)P(TTD > 1) (4.136)

=

1∫
0

f(tTD) ·
(
E(Y1) + E(Y2)

)
dtTD + E(Y1|TTD > 1)P(TTD > 1) (4.137)

=

1∫
0

((
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
· λTDe−λTDtTDI[0](y)+

+
∞∑
y=1

(
β

ϑ+ β

)α1 1

Γ(α1)

Γ(α1 + y)

y!

(
ϑ

ϑ+ β

)y
·

· (λTD · y)e−(λTD·y)tTDI[1;∞)(y)

)
·

·
(
λE1tTD + λE2(1− tTD)

)
dtTD + λE1e

−λTD

(4.138)

The logarithmized treatment-policy estimand under MNAR log(∆trueCDtpMNAR
) is calcu-

32



Chapter 4 Endpoints and their true treatment e�ects

lated numerically. Furthermore, the AHR for the second endpoint under MNAR mecha-

nism and therefore log(∆trueEtpMNAR
) is again calculated numerically with the R-package

'AHR' (Brueckner, 2016). The true values for the treatment-policy estimand under

MNAR mechanism log(∆trueORtpMNAR
) are also calculated numerically.
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Figure 6: Di�erence between both logarithmized estimands
(

log(∆tp) − log(∆hyp)
)
for

each endpoint depending on the percentage of patients with treatment discontinuation
in placebo group (%TDPL

) and the di�erence between the percentage of patients with
treatment discontinuation in both trial arms (%TDA

−%TDPL
) for missing not at random

In analogy to the MCAR mechanism, the di�erences between the hypothetical and

treatment-policy estimand under MNAR are visualized in �gure 6. For the simulations

of these treatment e�ects, the same percentages, which are already explained in the con-

text of �gure 5, are used. Because of the MNAR treatment discontinuation mechanism,

the resulting percentages are di�erent from those under MCAR. If φ = 1, the %TDPL

denotes either 27% or 60%, and if φ = 2, the %TDPL
represents either 28% or 60%.

Section 7.1 deals with the explanation of the resulting percentages under MCAR and

MNAR. In �gure 6, it becomes obvious that the di�erence log(∆tp) − log(∆hyp) is not

increasing monotonously under the MNAR mechanism. The di�erences between both

estimands in those scenarios with minimal divergence of treatment discontinuation are
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lower than in scenarios with a maximal negative divergence, although the proportion of

patients with treatment discontinuation in the treatment group increases. In scenarios

without overdispersion, this phenomenon is more clearly developed than in scenarios

with overdispersion.
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5 Statistical methods

5.1 Count data models

For the evaluation of the three chosen endpoints adequate methods are needed. Two

count data models are used in this thesis to analyse the �rst endpoint. In this context

the number of asthma exacerbations y is considered as count variable.

In the case of no overdispersed data, all patients are believed to su�er from the same

severity of asthma. Thus, exacerbations occur with the same rate λP , which is constant

over the whole time period. A Log-linear Poisson model is appropriate, if the number

of exacerbations of the individual patients is independent of each other (Fahrmeir et al.,

2013, p. 293).

To predict the number of exacerbations of each patient i for the hypothetical estimand,

the linear predictor

ηi = β0 + β1xi + log(tTDi
) (5.1)

is linked to the rate λPi
in log-linear form (Fahrmeir et al., 2013, p. 293).

The following equation results (McCullagh and Nelder, 1987, p. 138):

log(λPi
) = ηi = β0 + β1xi + log(tTDi

) (5.2)

The binary independent variable xi denotes a patient's belonging to one of both trial

arms, in which xi = 0 stands for the placebo group and xi = 1 codes for treatment group.

There aren't used any further predictor variables in the models of this thesis. The β

represents the coe�cient of the predictor variable. As for the hypothetical estimand,

only the number of exacerbations until treatment discontinuation is used, there exists

the need of an o�set parameter. It is represented by the last term of this model. By

involving a patient's individual time on treatment ti into the model, it is taken into

account that people with a longer time on treatment may have more events than those

with a shorter one. The o�set parameter enters the model as the natural logarithm of

t
TDi

to be adequate to the linear predictor ηi (Hardin and Hilbe, 2012, p. 226).

For the treatment-policy estimand, the linear predictor for scenarios without study-

dropout

ηi = β0 + β1xi (5.3)

does not contain an o�set parameter. As all patients are followed up after their treatment

discontinuation until the end of the study, the number of events of all patients is recorded
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for the same period of time of one year. Therefore, the model is built in the following

way:

log(λPi
) = ηi = β0 + β1xi (5.4)

But for scenarios with study dropout, the linear predictor containing again an o�set

parameter is de�ned similarly to the hypothetical estimand

ηi = β0 + β1xi + log(tSDi
) (5.5)

Here, tSDi
denotes the individual time until study dropout of patient i. The model is

described:

log(λPi
) = ηi = β0 + β1xi + log(tSDi

) (5.6)

If individual severities of the asthma disease of the patients are taken into account, the

number of exacerbations y is no longer described by the Poisson distribution but by

the Poisson-Gamma distribution, as already described in section 4.1. To master the

heterogeneity between patients in the analysis, a Log-linear negative-binomial model is

used. For the hypothetical estimand, the model contains an o�set parameter analogous

to the Log-linear Poisson model, to take into account the individual time on treatment

tTDi
(Nicholas et al., 2011, p. 1212):

log(λPi
) = ηi = β0 + β1xi + log(tTDi

) (5.7)

For the treatment-policy estimand, the model is built again similar to the Log-linear

Poisson model. In the case of scenarios without study-dropout, the model does not

contain an o�set parameter:

log(λPi
) = ηi = β0 + β1xi (5.8)

Whereas in the case of scenarios with study-dropout, an o�set parameter with the time

until study-dropout tSDi
joins the model:

log(λPi
) = ηi = β0 + β1xi + log(tSDi

) (5.9)

For all models explained above, the estimated treatment e�ect is representend by the

parameter β1 (Schneider et al., 2013, p. 5450).

The Negative-Binomial distribution is a common choice to describe between-patient het-
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erogeneity (Friede, Schmidli, et al., 2010, p. 619). The resulting Log-linear negative-

binomial models give an easily interpretable estimate of the treatment e�ect (Cook et

al., 2009, p. 2618). Siri et al. (2012, p. 140) state a superiority of the Log-linear neagtive-

binomial model to the Log-linear Poisson model in that way as it is possible to estimate

the expected number of events and the overdispersion simultaneously. This thesis ex-

plores whether this advantage of the Log-linear negative-binomial model in considering

heterogeneity between patients is re�ected in a decreased type I error rate and bias or

an increased power compared to the Log-linear Poisson model. In the context of missing

data, Keene et al. (2007, p. 91) expect a lower bias of the estimated treatment e�ect

under the MNAR mechanism with the Log-linear neagtive-binomial model. They see

the advantage of this method compared to the Log-linear Poisson model again in the

consideration of the individual frailties.

5.2 Time-To-First-Event Methods and extension

For the evaluation of the second endpoint �ve methods are compared. Four of them

are used to analyse whether the time to the �rst asthma event tE di�ers between both

trials arms. Whereas the �fth method, a Shared gamma frailty model, takes into account

the time between all succeeding exacerbations as an extension to the time-to-�rst-event

methods. These methods do not vary between both estimands with respect to their

model equations, but they just need di�erent censoring variables. On the one hand,

those patients are censored who do not su�er an exacerbation until their individual

study dropout. Therefore, the censoring mechanism represents a common tool to deal

with missing data (Keene et al., 2007, p. 96). The presented time-to-event methods are

based on right censoring, as each observation after the end of the study or the study

dropout is cut (Klein and Moeschberger, 1997, p. 56).

To begin with, it will be explored with the nonparametric Log rank test whether the new

asthma drug is able to signi�cantly extend the time to the �rst asthma exacerbation. Two

assumptions must be satis�ed. Firstly, proportional hazards have to exist, which means

that the ratio of the risks to experience an event of both trial arms must be independent

of time t (Ziegler et al., 2007, e41). Secondly, the time of censoring has to be random so

that it is not in�uenced by the patient's time of event (Klein and Moeschberger, 1997,

p. 61). These assumptions are valid for each of the following methods of the second

endpoint.

The test statistics of the Log rank test χ2
logrank is based on the squared di�erence between

the number of observed Oj and expected Ej asthma exacerbations (Machin et al., 2006,

p. 58). For each trial arm j, this di�erence is calculated and each of them is divided by
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the expected number of events Ej. The test statistic is now calculated by the summation

of these quotients which follows a χ2 distribution withm-1 degrees of freedom (df), where

m is the number of trial arms:

χ2
Logrank =

m∑
j=1

(Oj − Ej)2

Ej
∼ χ2

1 (5.10)

In the case of one treatment arm and one placebo arm, then df = 2− 1 = 1. Under the

validity of the null hypothesis, the order of events is selected randomly. Hence, the time

to the �rst exacerbation is independent of the trial arm (Ziegler et al., 2007, e39).

Next, the semiparametric Cox proportional hazards model is used to analyse the second

endpoint. It estimates the in�uence of the trial arm under consideration of experiencing

a patient's individual hazard h(t|X) of an asthma exacerbation (Klein and Moeschberger,

1997, p. 229). The model is built as follows (Lee and Wang, 2013, p. 283):

h(t|X) = h0(t) · g(X), (5.11)

with

g(X) = eβ
T
X (5.12)

The nonparametric part of the model in 5.11 contains the baseline hazard function h0(t),

that describes the hazard of an event in the absence of any in�uencing variable. As

it represents the nonparametric part, no assumption is made about its distribution. A

person's belonging to one of both trial arms describes the parametric part g(X), in which

x = 0 codes for the placebo group and x = 1 represents the treatment arm. β denotes

the vector with coe�cients of the predictor variable. This notation is also valid for the

Gamma frailty model and the Shared gamma frailty model. The hazard ratio (HR) is

calculated as the ratio of the hazards of both trial arms (Klein and Moeschberger, 1997,

p. 231):

HR =
h0(t) · e1·β1

h0(t) · e0·β1
= eβ1 (5.13)

As the Cox proportional hazards model in this thesis only includes one explanatory vari-

able, it does not di�er from the Log rank test (Klein and Moeschberger, 1997, p. 229).

The third model for the evaluation of the second endpoint is the parametric Likelihood
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ratio test. By comparing the distributions describing the time to the �rst event in both

trial arms, it tests if they come from one common distribution or not (Lee and Wang,

2013, p. 229). In this thesis, the time to �rst event tE follows an Exponential distribution

with parameter λE (Held and Sabanés Bové, 2014, p. 336). For simplicity, the index E

will be left for the description of the Likelihood ratio test:

t ∼ Exp(λ) (5.14)

f(t) = λ · e−λt (5.15)

F (t) = 1− e−λt (5.16)

The Likelihood ratio test works with the ratio of the likelihood of the one resulting sample

after combining the trial arms L(λ̂C) divided by the joint likelihood for the two groups

L(λ̂A, λ̂PL) (Lee and Wang, 2013, p. 230). λ̂C denotes the maximum likelihood estimator

(MLE) of the likelihood function under the assumption of one common Exponential

distribution for the time to the �rst event for all patients. Whereas λ̂A and λ̂PL represent

the MLEs for the likelihood function for the active (λ̂A) and placebo (λ̂PL) group based

on di�erent exponential distributions.

The likelihood function L(λ) for right censored data in general is given by (Klein and

Moeschberger, 1997, p. 69):

L(λ) ∝
N∏
i=1

f(ti)
δiS(ti)

1−δi , (5.17)

where N denotes the total number of patients taking part in the clinical trial. δi repre-

sents the censoring status of individual i with a coding δi = 0 for censored and δi = 1

uncensored. S(ti) describes the survival function which looks in the case of an expo-

nentially distributed time to �rst event random variable (Klein and Moeschberger, 1997,

p. 22):

S(t) = 1− F (t) (5.18)

= 1− (1− e−λt) (5.19)

= e−λt (5.20)

Therefore, the likelihood function L(λ) can be calculated, where r gives the number of
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uncensored patients in the trial:

L(λ) ∝
N∏
i=1

f(ti)
δiS(ti)

1−δi (5.21)

=
N∏
i=1

(
λ · e−λti

)δi(e−λti)1−δi (5.22)

=
N∏
i=1

λδi · e−λtiδi · e−λti(1−δi) (5.23)

= λ
∑N

i=1 δi · e
∑N

i=1−λtiδi · e
∑N

i=1−λti(1−δi) (5.24)

= λr · e−λ
∑N

i=1 tiδi−λ
∑N

i=1 ti(1−δi) (5.25)

= λr · e−λ
∑N

i=1 ti (5.26)

The log-likelihood function l(λ) is given by:

l(λ) = log
(
L(λ)

)
(5.27)

= r · log(λ)− λ
N∑
i=1

ti (5.28)

The score function s(λ) is derived:

s(λ) =
∂l(λ)

∂λ
(5.29)

=
r

λ
−

N∑
i=1

ti (5.30)

Finally, the general MLE (λ̂) can be calculated:

s(λ)
!

= 0 (5.31)

r

λ
−

N∑
i=1

ti
!

= 0 (5.32)

r

λ
=

N∑
i=1

ti (5.33)

λ̂ =
r

N∑
i=1

ti

(5.34)
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The joint likelihood function for the two trial arms L(λA, λP ) is derived in analogy

to L(λ). Taking into account that the joint likelihood function is the product of the

likelihood function of the treatment and placebo arm, where nA gives the number of

patients in the treatment group and nPL contains the number of patients in the placebo

group. rA is the number of uncensored patients in the treatment arm, whereas rPL stands

for the number of uncensored patients in the placebo arm.

L
(
λA, λP

)
∝

nA∏
i=1

f(tAi
)δAiS(tAi

)1−δAi ·
nPL∏
i=1

f(tPLi
)δPLiS(tPLi

)1−δPLi (5.35)

=

nA∏
i=1

(
λA · e−λAtAi

)δAi
(
− e−λAtAi

)1−δAi ·

nPL∏
i=1

(
λPL · e−λPLtPLi

)δPLi
(
− e−λPLtPLi

)1−δPLi

(5.36)

= λ
∑nA

i=1 δAi
A · e

∑nA
i=1−λAtAi

δAi · e
∑nA

i=1−λAtAi
(1−δi)·

λ
∑nPL

i=1 δi
PL · e

∑nPL
i=1 −λPLtPLi

δPLi · e
∑nPL

i=1 −λPLtPLi
(1−δPLi)

(5.37)

= λrAA · e
−λA

∑nA
i=1 tAi · λrPL

PL · e
−λPL

∑nPL
i=1 tPLi (5.38)

= λrAA · λ
rPL
PL · e

−λA
∑nA

i=1 tAi
−λPL

∑nPL
i=1 tPLi (5.39)

The log-likelihood function l(λA, λPL) can again be calculated by:

l(λA, λPL) = log
(
L(λA, λPL)

)
(5.40)

= rA · log(λA) + rPL · log(λPL)− λA
nA∑
i=1

tAi
− λPL

nPL∑
i=1

tPLi
(5.41)

The test statistic for the Likelihood ratio test is de�ned as (Lee and Wang, 2013, p. 230):

χ2
LR = −2 · log

(
L(λ̂C)

L(λ̂A, λ̂PL)

)
(5.42)

= −2 ·
(

log
(
L(λ̂C)

)
− log

(
L(λ̂A, λ̂PL)

))
(5.43)

= −2 ·
(
l(λ̂C)− l(λ̂A, λ̂PL)

)
(5.44)
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= −2 ·

((
r · log

(
r∑N
i=1 ti

)
− r
)

−
(
rA · log

(
rA∑nA

i=1 tAi

)
+ rPL · log

(
rPL∑nPL

i=1 tPLi

)
− rA − rPL

)) (5.45)

= −2 ·

(
r · log

(
r∑N
i=1 ti

)
− r

− rA · log

(
rA∑nA

i=1 tAi

)
− rPL · log

(
rPL∑nPL

i=1 tPLi

)
+ rA + rPL

) (5.46)

Under the validity of the null hypothesis, the test statistic χ2
LR follows a χ2 distribution

with m− 1 degrees of freedom:

χ2
LR ∼ χ2

1 (5.47)

The fourth method for analyzing the second endpoint is a parametric Gamma frailty

model. This model compares, similar to the semiparametric Cox proportional hazards

model, the in�uence of the two trials arms on the hazard h(t|X,Z) of the occurrence of

the �rst event (Therneau and Grambsch, 2000, p. 231). But furthermore, it is able to take

into account the impact of the frailty Z on the time to the �rst exacerbation. Therefore,

the Gamma frailty model considers the heterogeneity between patients in a clinical trial

which is constant within one individual. As explained in section 5.1, the frailty is drawn

from a Gamma distribution in this thesis. For this reason, the Gamma frailty model is

used. Belonging to the parametric methods, a distribution for the baseline hazard h0(t)

is assumed. In this thesis the Exponential distribution is chosen, as for the Likelihood

ratio test on page 39 already described.

The model is built as follows (Wienke, 2010, p. 58):

h(t|X,Z) = Z · h0(t) · g(X) (5.48)

Similar to equation 5.12, g(X) is de�ned as:

g(X) = eβ
T
X (5.49)

It represents again the trial arms, whereby x = 0 de�nes the belonging to the placebo

group and x = 1 represents the treatment arm.

The last model which is used for evaluating the second endpoint is a parametric Shared
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gamma frailty model. Similar to the parametric Gamma frailty model, the individual

frailty of each patient is taken into account. In general, the Shared gamma frailty

model considers all observations within one cluster to have the same frailty in common

(Duchateau and Janssen, 2007, p. 44). In the case of recurrent events, frailty Z is shared

over all exacerbations of one patient (Box-Ste�ensmeier and De Boef, 2006, p. 3520).

Therefore, the time between all events of each person are taken into account whereby

each patient forms one cluster with individual frailty. The frailty describes analogous to

the Gamma frailty model the heterogeneity between patients but is constant within one

patient.

The model of the Shared gamma frailty model is equivalent to the one of the Gamma

frailty model in equation 5.48 (Munda et al., 2012, p. 3):

h(t|X,Z) = Z · h0(t) · g(X), (5.50)

with

g(X) = eβ
T
X (5.51)

5.3 χ2-test of Independence

For the third endpoint it is of interest if there exists a dependence between the belonging

to one trial arm j and the occurrence of at least one asthma exacerbation a. This results

in binary data for the occurrence or no occurrence of at least one asthma exacerbation

and the group respectively, which is analysed by the help of the χ2-test of independence.

In this context, a completer evaluation is performed by only considering those, who did

not discontinue their treatment before the end of the study. For an appropriate use of

this test, the expected counts of Eaj of all possible combinations of the trial arm j and

the occurrence of at least one asthma exacerbation a must be equal or even larger 5

(Bamberg et al., 2011, p. 189):

Eaj ≥ 5 (5.52)

The test statistic for the χ2-test of independence χ2
Ind. is calculated in analogy to the

test statistic of the Log rank test which is given in equation 5.10. It is the sum over

all squared di�erences between the observed Oaj and the expected Eaj counts which are

respectively divided by its expected count Eaj. Under the validity of the null hypotheses

with the assumption of the independence of the belonging to one trial arm and the

occurrence of at least one exacerbation, the test statistic χ2
Ind. follows approximately a

χ2-distribution with (m-1)(s-1) degrees of freedom (Zucchini et al., 2009, p. 338). Hereby
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m denotes again the number of trial arms and s contains the two possibilities of either

one occurrence of an event or no occurrence. Hence, the degrees of freedom result:

χ2
Ind. =

m∑
j=1

s∑
a=0

(Oaj − Eaj)2

Eaj
∼ χ2

1 (5.53)

The variety of these methods is oriented towards Benda et al. (2010, p. 312), who use

among others the Log-linear Poisson model, Log-linear negative-binomial model and the

Cox proportional hazards model to evaluate recurrent events or the time to the �rst

event respectively. In this thesis, the Gamma frailty model, Shared gamma frailty and

the Likelihood ratio test are chosen to include parametric methods into the evaluation of

the second endpoint. Furthermore, this thesis explores whether the results of the Shared

gamma frailty model are comparable to the results of the methods of the �rst endpoint as

it takes into account the time between all succeeding events. The Log rank test completes

the selection of the basic time-to-�rst-event methods. The χ2-test is taken into account

to investigate whether a simple binary evaluation of a clinical trial is su�cient.

5.4 Comparability of the statistical methods

To ensure the comparability of the parametric statistical methods explained above, their

null hypotheses are transformed into each other. Firstly, this is done for the hypothetical

estimand and secondly for the treatment-policy estimand. In general, the parametric

methods state the equivalence of the distribution in the treatment and placebo group

in their null hypotheses. So, the treatment e�ect is zero because the hypothetical and

treatment-policy e�ects are logarithmized in this thesis. No treatment e�ect exists if the

parameters specifying the according distributions are the same in both trial arms. In

this section, the hypotheses of the Log-linear Poisson model represent the starting point.

The hypotheses of the other models are transformed into this initial one.

5.4.1 Comparability of the statistical methods for the hypothetical estimand

For the logarithmized hypothetical estimand
(
log(∆hyp)

)
it holds:

H0hyp : log(∆hyp) = 0 (5.54)

By using the Poisson Model, the Poisson distribution is assumed to describe the number

of events depending on the parameter λPA
in the treatment group and on λPPL

in the

placebo group. To have the same Poisson distribution in both trial arms, the following
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equation must hold:

H0Poishyp
: λPA

= λPPL
(5.55)

The null hypothesis of the Log-linear negative-binomial model H0NBhyp
is given by:

H0NBhyp
: αA = αPL ∧ βA = βPL (5.56)

To link the null hypothesis of the Log-linear Poisson model with the one of the Log-linear

negative-binomial model, the parameters α, β and ϑ must be de�ned with the help of

the Gamma distribution and Poisson-Gamma distribution given in section 4.1:

E(λP ) =
α

β
(5.57)

⇒ α = E(λP ) · β (5.58)

φ =
V ar(y)

E(y)
=
αϑ
β

(
1 + ϑ

β

)
ϑα
β

= 1 +
ϑ

β
= φ (5.59)

⇒ β =
ϑ

φ− 1
(5.60)

The null hypothesis of the count data models will now be transformed into the null

hypothesis of the parametric time-to-�rst-event methods. For this connection, the rela-

tionship

λP = λE ·∆t, (5.61)

already given in equation 4.4 between λP and λE must be remembered.

The Likelihood ratio test compares both exponential distributions of treatment and

placebo arm describing the time to the �rst event tE. These distributions depend on

the parameters λEA
respectively λEPL

. The null hypothesis of the Likelihood ratio test

H0LRhyp
is therefore (Lee and Wang, 2013, p. 229):

H0LRhyp
: λEA

= λEPL
=
λPA

∆t
=
λPPL

∆t
(5.62)

To compare the null hypothesis of the Gamma frailty model, the Lomax distributions

in treatment and placebo arm resulting of the mixture of the exponential distribution

describing the time to the �rst event tE and the Gamma distribution describing λE must

be equal:
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Therefore, the null hypothesis of the Gamma frailty model H0GFhyp
is equivalent to the

one of the Log-linear negative-binomial model:

H0GFhyp
: αA = αPL ∧ βA = βPL (5.63)

In consequence, the Shared gamma frailty model which evaluates the time between all

succeeding events possesses the same null hypothesis H0SGFhyp
:

H0SGFhyp
: αA = αPL ∧ βA = βPL (5.64)

5.4.2 Comparability of the statistical methods for the treatment-policy es-

timand

The null hypotheses for the logarithmized treatment-policy estimand
(
log(∆tp)

)
is given

by:

H0tp : log(∆tp) = 0 (5.65)

Consequently, both parameters λP1 and λP2 must be equal in treatment and placebo arm

under validity of the null hypothesis H0Poistp
:

H0Poistp
: λP1A

= λP1PL
∧ λP2A

= λP2PL
(5.66)

The null hypothesis of the Log-linear negative-binomial modelH0NBtp
is therefore de�ned:

H0NBtp
: α1A = α1PL

∧ α2A = α2PL
∧ βA = βPL (5.67)

The Likelihood ratio test compares the Schuhl distributions of both trial arms depending

on the parameters λE1 and λE2 . Because of the relationships

λP1 = λE1 · tTD (5.68)

and

λP2 = λE2 · (1− tTD), (5.69)

it becomes obvious that tTD must be drawn from the same distributions in treatment

and placebo arm, to ensure comparability between the null hypothesis for count data

models and those for the second endpoint.
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Therefore, H0LRtp
equals:

H0LRtp
= λE1A

= λE1PL
∧ λE2A

= λE2PL
∧ λTDA

= λTDPL
(5.70)

In general:

λE1 =
λP1

tTD
(5.71)

λE2 =
λP2

1− tTD
(5.72)

The Gamma frailty model additionally takes into consideration the individual frailty of

the patients. Its null hypothesis H0GFtp
is therefore:

H0GFtp
: α1A = α1PL

∧ α2A = α2PL
∧ βA = βPL ∧ λTDA

= λTDPL
(5.73)

With the general de�nition of

α1 =
λP1A

tTD
· β (5.74)

α2 =
λP1A

1− tTD
· β, (5.75)

it becomes obvious, that tTD must again be described by the same distributions. The

same is valid for the Shared gamma frailty model:

H0SGFtp
: α1A = α1PL

∧ α2A = α2PL
∧ βA = βPL ∧ λTDA

= λTDPL
(5.76)

5.5 Type I error rate, Power and Bias to assess statistical meth-

ods

To assess the quality of the chosen statistical methods, their two-sided type I error rate,

power and bias are evaluated. The aim of this thesis is to explore in scenarios without

treatment e�ect whether the methods reject their null hypotheses only in maximal 5%

of the testing decisions. If the null hypothesis is rejected in scenarios without treatment

e�ect, a new ine�ective drug will be approved (Zucchini et al., 2009, p. 244). Therefore,

the type I error rate of each method may not be larger than 5% for each scenario.

The corresponding 95%-con�dence intervals of the calculated type I error rate (α̂) is
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calculated by: α̂− 1.96

√
α̂(1− α̂)

Nconv

; α̂ + 1.96

√
α̂(1− α̂)

Nconv

 (5.77)

Nconv denotes the number of converged models.

Those methods which do not show a larger type I error rate than 5% are compared with

respect to their power. Hereby, these methods are used to analyze the equivalent sce-

narios with treatment e�ect to investigate the method with the largest power. Whereby

power is de�ned as follows:

Power = 1 − β-error (5.78)

The β-error arises if the treatment e�ect is not found by the statistical method, and

therefore the null hypothesis is not rejected (Zucchini et al., 2009, p. 244). Hence, the

power denotes the capability to recognize a e�ective drug.

The third criterion is the bias which measures an average di�erence between the esti-

mated and true treatment e�ect of each method (Kneib and Hambuckers, winter term

2017/2018, p. 26). Usually, the bias is calculated on the logarithmized scale (see e.g.

Wan et al., 2015, p. 2240). This is also done in this thesis to provide an improved com-

parability between the models. The calculation of the bias on this log-scale ensures the

measurement of the relative di�erence between the true and estimated treatment e�ect.

Bias = log

(
∆estimated

∆true

)
= log(∆estimated)− log(∆true) (5.79)

If the bias is zero, the method will estimate the true treatment e�ect. With a bias >

0, log(∆estimated) is too small, and therefore the true treatment e�ect is underestimated.

Whereas the true treatment e�ect is overestimated if bias < 0. In this case, log(∆estimated)

is too large. It must be remembered that the bias is measured on the logarithmized scale.

Consequently, a treatment e�ect which is smaller than zero depicts that the medication

in the active group is more e�ective than the one in the placebo group. Otherwise, a

treatment e�ect larger than zero indicates a superiority of the medication strategy in the

placebo group compared to the one in the active group. This can especially be the case

for the treatment-policy estimand. If the new drug is ine�ective and if there is a higher

percentage of patients with treatment discontinuation in the placebo group than in the

treatment group, there are more patients medicated with an e�ective rescue medication

in the placebo group.
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6 Simulations
After the description of adequate statistical methods for analyzing the samples, the sim-

ulation of this data now comes to the fore. Firstly, the chosen scenarios are de�ned.

Secondly, the generation of data with the according parameters is presented. The func-

tion of simulation for the scenarios with treatment discontinuation mechanism MCAR

is shown in the appendix B.1 on page 145. The function of simulation for the scenarios

with MNAR is presented in the appendix B.2 on page 151.

6.1 Choice of scenarios and parameters

For the evaluation of the hypothetical estimand, scenarios based on six varying para-

meters are chosen:

1. The �rst parameter encompasses the treatment discontinuation in the placebo

group. Patients in the placebo group refuse the participation in the trial at some

point of time as they recognize their belonging to the placebo group. Furthermore,

they could need an e�ective medication because of the severity of their disease. The

percentage of treatment discontinuation (%TDPL
) changes between either 20% or

50% of patients in the placebo group who discontinue their treatment early. Hence,

this parameter contains two di�erent variations. Hereby, the choice of the lowest

discontinuation proportion of 20% is oriented towards the real study 'Dose Rang-

ing E�cacy And safety with Mepolizumab (DREAM) in severe asthma' (Pavord

et al., 2012, p. 651). In the study, a dropout percentage of 18% is observed which

includes treatment discontinuation and study dropout for any other reason (Keene

et al., 2014, p. 256). In this thesis, the referred dropout is rounded to 20% and

is used as percentage for the treatment discontinuation only. It will be explored

if such a low proportion leads to a di�erence between both estimands. Whereas

with a high treatment discontinuation percentage of 50% an obvious distinction

between the two treatment e�ects is expected.

2. With the treatment discontinuation in the placebo group, the treatment discontin-

uation in the treatment group is closely related. It is chosen in that way to generate

a di�erence in the treatment discontinuation of -20%, 0%, and +20% between both

trial arms. For each of the two possible percentages of treatment discontinuation

in the placebo group, the percentage of treatment discontinuation in the treatment

group (%TDA
) varies between -20%, 0% and +20% of patients in the treatment

group. If the treatment discontinuation in the treatment arm reaches a very high

percentage, patients su�er from side e�ects of the new drug and stop their med-
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ication. Otherwise, if the new drug shows a great treatment e�ect, only a low

percentage of patients in the treatment group will discontinue their treatment.

3. Data are simulated with two di�erent treatment discontinuation mechanisms which

are either missing completely at random or missing not at random. For MCAR,

patients are randomly chosen to interrupt their medication. Whereas for MNAR,

patients who would potentially have a high number of exacerbations at the end of

the study, discontinue treatment earlier.

4. The fourth parameter describes the percentage of patients with at least one asthma

exacerbation in the placebo group (%EPL
). The DREAM study graphically shows

the proportion of patients without any exacerbation before treatment discontinu-

ation which approximately are 34% (which are 66% of patients with at least one

event during the whole period) (Pavord et al., 2012, p. 654). For a close reproduc-

tion of such a trial, it is simulated that 70% of the patients in the placebo group

potentially su�er an exacerbation during the whole year. This yields a propor-

tion of 64% of patients with at least one asthma exacerbation until the treatment

discontinuation.

5. Two di�erent values are used for the simulation of the percentage of patients with

at least one asthma exacerbation in the treatment group (%EA
). If no treatment

e�ect exists, it represents 70%, too. In the case that the new drug shows an

impact on the number of asthma exacerbations, only 50% of the patients in the

treatment group su�er at least one event if no treatment discontinuation occurs in

the active group. This value for the simulation of the treatment e�ect represents

approximately the mean of the active groups of patients with at least one event

(Pavord et al., 2012, p. 654).

6. The last parameter represents the overdispersion which arises with the simulation

of independent event rates. The overdispersion parameter φ can either take the

value 1 or 2. In the �rst case, if φ = 1, overdispersion does not exist what results in

equation 4.11. Otherwise, if φ = 2, data with a strong overdispersion are simulated.

In this case, a high type I error rate of the Log-linear Poisson model is expected.

Therefore, for the hypothetical estimand 2 x 3 x 2 x 1 x 2 x 2 = 48 scenarios are chosen.

For the treatment-policy estimand, two further parameters are used:

7. The percentage of patients who su�er at least one exacerbation after their treat-

ment discontinuation is 60%. But only those patients, whose treatment discon-

tinuation takes place before the end of the trial, can su�er an event after their
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treatment discontinuation. In this case, the rescue medication which is adminis-

tered to those who discontinue their treatment is less e�ective than the new drug

but more than a placebo.

8. The last parameter describes the percentage of patients with study dropout after

their treatment dropout (%SD) whereby three variations exist. First, no study

dropout occurs, therefore data of all patients until the end of the study can be

collected. Second, 50% of those patients, who discontinue treatment, stop the

participation in the study at the same time. At last, 100% of the patients with

treatment discontinuation will drop out of the study.

There result 2 x 3 x 2 x 1 x 2 x 2 x 1 x 3 = 144 scenarios for the treatment-policy

estimand.

As already described in section 2.1, for the hypothetical estimand only data until treat-

ment discontinuation is considered. Whereas for the hypothetical estimand, all data

until the end of the study respectively until the study dropout are taken into account.

The hypothetical estimand is evaluated on the basis of the samples, that include the

scenarios with the percentage of patients, who su�er at least one exacerbation after their

treatment discontinuation of 60%. To reach a power of 90% in the evaluation of the

hypothetical estimand with the Negative-binomial model in a scenario with treatment

discontinuation of 20% in placebo and treatment group, 50% of patients with at least

one exacerbation in the placebo group, 70% of patients with at least one exacerbation

in the treatment group and an overdispersion of 2, a sample size of 330 patients for all

scenarios is chosen. Each scenario is simulated 10.000 times.

6.2 Generation of data

In the MCAR case patients are randomly assigned to either placebo or treatment group

at �rst. Then, time to treatment discontinuation tTD is simulated with parameter λTD:

tTD ∼ Exp(λTD) (6.1)

The density function and cumulative probability function of the exponential distribution

are already given in equation 4.2 and 4.3 in other context. λTDPL
must be derived from

the parameters given in section 6.1. This calculation is exempli�ed for 20% of patients

with treatment discontinuation. All other parameter values described in section 6.1 are

achieved the same way. Table 2 shows λTDPL
.
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F (tTD ≥ 1) = 0.8 (6.2)

1− F (tTD ≤ 1) = 0.8 (6.3)

1− (1− e−λTDPL ) = 0.8 (6.4)

e−λTDPL = 0.8 (6.5)

−λTDPL
= log(0.8) (6.6)

λTDPL
= − log(0.8) (6.7)

λTDPL
= 0.22 (6.8)

Table 2: λTDPL
for proportions of patients with treatment discontinuation in placebo

group

%TDPL
0.2 0.5

λTDPL
0.22 0.69

In table 3 the λTDA
is listed. As mentioned in section 6.1, the percentage of treatment

discontinuation in treatment group %TDA
depends on the percentage of treatment dis-

continuation in the placebo group %TDPL
. %TDA

is calculated from the sum of %TDPL

plus either -20%, 0% or +20%. If %TDA
becomes 0, no treatment discontinuation is

simulated for the according scenarios. Therefore, λTDA
is not speci�ed in this case.

Table 3: λTDA
for proportions of patients with treatment discontinuation in treatment

group

%TDA
−%TDPL

%TDPL 0.2 0.5

-0.2 --- 0.36

±0.0 0.22 0.69

+0.2 0.51 1.20

Third, time between events until treatment discontinuation is simulated. Hereby, the

time until the next exacerbation tE is drawn from an Exponential distribution:

tE ∼ Exp(λE) (6.9)
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In case of overdispersed data, both parameters α and β of the Poisson-Gamma distribu-

tion need to be determined. These are derived exemplarily for 50% of patients with at

least one exacerbation in the placebo group and an overdispersion parameter φ = 2 and

ϑ = 1 below. As λEPL
∼ Ga(α, β):

E(λEPL
) =

α

β
= 0.69 (6.10)

⇒ α = E(λEPL
) · β = 0.69 · β (6.11)

(6.12)

φ =
Var(y)

E(y)
=
αϑ
β

(
1 + ϑ

β

)
ϑα
β

= 1 +
ϑ

β
= 2 (6.13)

⇒ β =
ϑ

φ− 1
= 1 (6.14)

⇒ α = 0.69 (6.15)

In table 4, λE1PL
and λE1A

are given. α and β are calculated for φ = 2. If φ = 1, no

overdispersion exists, hence α1 and β are not needed. The index 1 denotes the period

until treatment discontinuation.

Table 4: λE1PL
, λE1A

and parameters of Poisson-Gamma distribution for proportions of
patients with at least one event in placebo or trial arm

%E1PL
0.5 %E1A

0.5 0.7

λE1PL
0.69 λE1A

0.69 1.20

α1PL
0.69 αA 0.69 1.20

β 1.00 β 1.00 1.00

Fourth, the time between the events after treatment discontinuation follow an Exponen-

tial distribution in analogy to the time between the events before treatment discontinu-

ation. In table 5, λE2 and the parameters of the Poisson-Gamma distribution α and β

are shown:
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Table 5: λE2 and parameters of Poisson-Gamma distribution for proportions of patients
with at least one event after treatment discontinuation

%E2 0.6

λE2 0.92

α 0.92

β 1.00

In the case of scenarios with treatment discontinuation missing not at random, the time

between events until the end of the study is simulated �rst. Those patients with a higher

number of exacerbation will stop their treatment earlier. To calculate the individual

λTD, the general λTDPL
, given in table 2, and λTDA

, in table 3, are multiplied by the

patient's number of events. If a person su�ers no exacerbation until the end of the study,

the original λTD is still valid for this patient. With help of the individual λTD, the time

until treatment discontinuation is simulated. Afterwards, the time between events until

treatment discontinuation are chosen. Events which occur later are not counted any

more.

Finally, a censoring variable is generated. It is needed for the evaluation of the second

endpoint. The de�nition of the censoring variable is described in section 5.2.

For scenarios that include a study dropout of 50% of the patients that discontinue treat-

ment during the time of the study, the time until study dropout tSD is simulated after-

wards. Hereby, tSD is the sum of the time until treatment discontinuation tTD and the

time between treatment discontinuation and study dropout tSD−TD:

tTD ∼ Exp(λTD), tSD−TD ∼ Exp(λSD−TD) (6.16)

tSD = tTD + tSD−TD (6.17)

The distribution of tSD can be derived by the convolution of two exponentially distributed

random variables. For simplicity, this substitution holds:

tSD = Z, tTD = X, tSD−TD = Y, λTD = λX , λSD−TD = λY (6.18)

Z = X + Y (6.19)
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Then, the convolution gives:

f(z) =

z∫
0

f(x)f(z − x)dx (6.20)

=

z∫
0

λXe
−λXx · λY e−λY (z−x)dx (6.21)

= λXλY e
−λY z

z∫
0

ex(−λX+λY )dx (6.22)

= λXλY e
−λY z

(
ex(−λX+λY )

−λX + λY

)∣∣∣∣∣
z

0

(6.23)

= λXλY e
−λY z

(
ez(−λX+λY )

−λX + λY
− 1

−λX + λY

)
(6.24)

=
λXλY
−λX + λY

(
e−λXz − e−λY z

)
(6.25)

Hence, the density describing the time until study dropout tSD is de�ned as:

f(tSD) =
λTDλSD−TD
−λTD + λSD−TD

(
e−λTDtSD − e−λSD−TDtSD

)
(6.26)

The cumulative density function is derived in general by:

F (z) =

z∫
0

f(z)dz (6.27)

=

z∫
0

λXλY
−λX + λY

(
e−λXz − e−λY z

)
dz (6.28)

=
λXλY
−λX + λY

( z∫
0

e−λXzdz −
t∫

0

e−λY zdz

)
(6.29)

=
λXλY
−λX + λY

(
− e−λXz

λX

∣∣∣∣∣
z

0

−
(
− e−λY z

λY

)∣∣∣∣∣
z

0

)
(6.30)

=
λXλY
−λX + λY

(
− e−λXz

λX
+

1

λX
+
e−λY z

λY
− 1

λY

)
(6.31)
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=
λY (−e−λXz + 1) + λX(−e−λY z − 1)

−λX + λY
(6.32)

Consequently, the cumulative density function of f(tSD) is given by:

F (tSD) =
λSD−TD(−e−λTDtSD + 1) + λTD(−e−λSD−TDtSD − 1)

−λTD + λSD−TD
= P (6.33)

Hereby, for each possible %TD is %SD = 0.05 ·%TD. To ensure a study dropout of 50%

of the patients with treatment discontinuation in each treatment and placebo group,

F (tSD) must be solved with respect to λSD−TD. As this is not possible in closed form,

e−λSD−TD is approximated by a Taylor series to the fourth degree:

−e−λSD−TDtSD = 1− λSD−TD +
λ2
SD−TD

2!
−
λ3
SD−TD

3!
+
λ4
SD−TD

4!
(6.34)

This approximation is now set into F (tSD) and further simpli�ed:

λSD−TD(−e−λTD + 1) + λTD

(
− λSD−TD +

λ2
SD−TD

2
−
λ3
SD−TD

6
+
λ4
SD−TD

24

)
= P (λSD−TD − λTD)

(6.35)

λTD
24
· λ4

SD−TD −
λTD

6
· λ3

SD−TD +
λTD

2
· λ2

SD−TD

+ (−e−λTD + 1− λTD − P ) · λSD−TD + λTDP = 0
(6.36)

This equation to the power of four can be solved with respect to λSD−TD using Ferrari's

formula. As these solutions represent just an approximation, they are adjusted by hand

to reach the correct value of %SD. In table 6, the solutions for λSD−TD used for the

simulations are shown:

Table 6: values for λSD−TD

%TD %SD λSD−TD

0.2 0.2·0.5 = 0.1 1.52

0.3 0.3·0.5 = 0.15 1.48

0.4 0.4·0.5 = 0.2 1.44

0.5 0.5·0.5 = 0.25 1.39

0.7 0.7·0.5 = 0.35 1.27
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The censoring variable and the number of events until study dropout is adjusted at the

end.
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7 Results
The following section deals with the presentation of the results. First, the actual pa-

rameters of the simulated scenarios are provided. Second, the results of the evaluation

of these scenarios are shown for the hypothetical estimand and the treatment-policy

estimand.

The simulation and analysis of scenarios is implemented with the statistical software R

version 3.4.3 (R Core Team, 2017). It is used with the interface RStudio version 1.1.383

(RStudio Team, 2017). The Log-linear Poisson model and χ2-test are calculated with the

functions of the basic software. The Log-linear negative-binomial model is implemented

in the MASS-package (Ripley et al., 2017). The Log rank test and the Cox proportional

hazards model are evaluated using the survival-package (Therneau and Lumley, 2017).

The package parfm contains the functions for the Gamma frailty model and the Shared

gamma frailty model (Munda et al., 2017). The function for the calculation of the

Likelihood ratio test is not yet implemented in R.

7.1 Description of the simulated scenarios

7.1.1 Description of the simulated scenarios for the hypothetical estimand

To begin with, the simulated scenarios for the hypothetical estimand are described. In

table 39 on page 136 the actual parameters for scenarios of the hypothetical estimand

are given. In �gure 7 on page 60 these parameters are visualized. For the scenarios

1-12 which contain an overdispersion parameter φ = 1 and treatment discontinuation

mechanism MCAR, the percentage of patients with treatment discontinuation in placebo

(%TDPL
) of either 20% or 50% and in treatment group (%E1A

) with either a di�erence of

-20%, 0% or +20% compared to placebo group represent exactly the planned scenarios.

The percentage of patients with at least one event is lower than the in table 4 described

%E1PL
and %E1A

. This is caused by the fact that table 4 gives the parameters for a period

of one year but in the simulated scenarios patients may drop out of the treatment or

placebo group earlier. Hence, %E1PL
is either 64% or 54% of the patients, which depends

of the lower or higher %TDPL
. In the case of a treatment e�ect, the %E1A

changes from

50% to 31% again in�uenced by a low or high %TDA
. If no treatment e�ect is simulated,

%E1A
lies in the range between 70% and 45%. This phenomenon of a lower percentage

of patients with at least one event is valid for all scenarios of either hypothetical or

treatment-policy estimand.

Scenarios 13-24 again are simulated with φ = 1 but with the treatment discontinuation

mechanism MNAR. Therefore, %TDPL
and %TDA

give other values than those described
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in the scenarios before. %TDPL
represents now either 27% or 60%. They are therefore a

bit higher than in the scenarios with MCAR, as patients with a higher number of events

discontinue treatment earlier. In the treatment arm for scenarios 13-18 with treatment

e�ect, the aimed di�erences of %TDA
compared to placebo group are are not achieved.

Because of the treatment e�ect, the time until treatment discontinuation is in�uenced

in di�erent way in both trial arms. Thus, %TDA
changes between 0%, 23% and 45 % in

the case of low %TDPL
and between 34%, 54% and 74% for the higher %TDPL

. But for

the scenarios 19-24, the planned di�erences %TDPL
-%TDA

are approximately achieved.

%E1PL
and %E1A

di�er, compared to scenarios 1-12 as the periods of time until treatment

discontinuation are not the same. The %E1PL
represents either 62% or 61% respectively,

or 48%. Here %E1A
lies in the range of 50% and 29% for scenarios with treatment e�ect

and between 70% and 40%, if no treatment e�ect occurs.

Next, the scenarios 25-36 are presented which are based on φ = 2 and the treatment

discontinuation mechanism MCAR. The %TDPL
and the %TDA

denote exactly the same

values as in scenarios 1-12. The %E1PL
and the %E1A

are lower than in the corresponding

scenarios without overdispersion. The %E1PL
is either 52% for the lower %TDPL

and 44%

for the higher %TDPL
. In scenarios with treatment e�ect 25-30, the %E1PL

ranges between

38% and 25% and in the scenarios 31-36 without treatment e�ect between 57% and 38%.

Finally, the scenarios 37-48 contain overdispersed data with φ = 2, but with treatment

discontinuation mechanism MNAR. Again, the %TDPL
and the %TDA

represent compa-

rable parameter values to scenarios 13-24. In anaLogy to these scenarios, the %E1PL
and

the %E1A
are lower than the percentage of the corresponding scenarios with treatment

discontinuation mechanism MCAR, as patients with higher number of events discontinue

treatment earlier. Hereby, the %E1PL
denotes either 49% or 39% or 38% respectively. For

the scenarios 37-42 with treatment e�ect, varies in the range between 38% and 23%. For

the scenarios 43-48 which do not contain a treatment e�ect, the %E1A
is in the interval

from 57% to 33% .
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Figure 7: The percentage of patients with at least one event before treatment discontinuation (%E1) and the percentage of patients
with treatment discontinuation (%TD) in treatment (A) and placebo (PL) group for each scenario under missing completely at
random (MCAR) and missing not at random (MNAR) for hypothetical estimand
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7.1.2 Description of the simulated scenarios for the treatment-policy esti-

mand

In table 40 starting on page 138, the resulting percentages of patients with treatment

discontinuation in treatment (%TDA
) and placebo group (%TDPL

) are documented. Fur-

thermore, this table contains the percentage of patients with study dropout after treat-

ment discontinuation in treatment (%SDA
) and placebo group (%SDPL

), the percentage of

patients with at least one asthma exacerbation before treatment discontinuation in treat-

ment (%E1A
) and placebo group (%E1PL

), the percentage of patients with at least one

event after treatment discontinuation in treatment (%E2A
) and placebo group (%E2PL

),

the percentage of patients with at least one exacerbation during the whole study in

treatment (%EtotalA
) and placebo group (%EtotalPL

), the mechanism of treatment dis-

continuation and the overdispersion parameter φ for treatment-policy estimand. The

parameters concerning treatment discontinuation and study discontinuation are plotted

in �gure 8 on page 63. Furthermore, �gure 9 on page 64 visualizes the percentages of

the patients with at least one event before and after treatment discontinuation.

Scenarios 1-36 have φ = 1 and the treatment discontinuation mechanism MCAR in

common. The %TDPL
is either 20% or 50%, and the %TDA

is either the di�erence of

-20%, 0% or +20%, compared to placebo group. The %SDA
and %SDPL

are zero for the

scenarios 1-12, and one for the scenarios 25-36. In the scenarios 13-24, approximately 50%

of those patients with treatment discontinuation stop their study participation early. The

exact percentage of study dropout are not always reached, as the calculated parameters

explained in section 6.1 are just approximated via Taylor Series Expansion. The %E1PL

and the %E1A
represent the same values as the parameters for the hypothetical estimand

for scenarios without overdispersion and MCAR. The %E2PL
is either 7% in case of the

lower percentage of treatment discontinuation in placebo group, or 19%, if 50% of the

patients discontinue treatment. The %E2A
changes between 0% and 28%, which depends

on the lowest percentage of treatment discontinuation of 0% and the highest one of 70%.

The %EtotalPL
summarizes the events before and after treatment discontinuation. Hereby,

either 69% or 67% of the patients su�er at least one exacerbation in the placebo group.

Whereas in the treatment group and event occurs for only 50% of the patients in the

lowest case, and up to 70% of the patients in the highest case.

The scenarios 37-72 share φ = 1 and the treatment discontinuation mechanism MNAR.

The %TDPL
, the %TDA

, the %E1A
and the %E1PL

re�ect the same values as in the cor-

responding scenarios of the hypothetical estimand with φ = 1 and MNAR. In scenario

37-48 0% of the patients drop out of the study, in scenario 49-60, approximately 50% of

the patients with treatment discontinuation drop out of the study and in scenario 61-72
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all patients with treatment discontinuation drop out of the study before its o�cial end.

It must be taken into account that the higher the %TD, the more the %SD deviates from

50% in the scenarios 49-60. It appears to be noticeable that both the %E2PL
and the

%E2A
are higher than in the MCAR. This is reasoned by the fact that under MNAR, the

treatment discontinuation tends to be earlier. Therefore, the percentage of patients with

at least one event after treatment discontinuation can increase. %EtotalPL
and %EtotalA

have approximately the same values as in the MCAR case.

Next, the scenarios 73-108 with φ = 2 and the treatment discontinuation mechanism

MCAR are considered. Again, the %TDPL
, the %TDA

, the %E1A
and the %E1PL

are

the same values as in the corresponding scenarios of the hypothetical estimand. The

percentage of study dropout corresponds to the values of the scenarios with φ = 1

and MCAR. In anaLogy to the percentages of patients with at least one event before

treatment discontinuation, both the %E2PL
and the %E2A

are a little lower in scenarios

with overdispersion compared to those without. Hereby, the %E2PL
is either 6% or 15%,

and the %E2A
changes in the range between 0% and 23%. Consequently, the %EtotalPL

and

the %EtotalA
are also lower than in the MCAR case. The %EtotalPL

equals 56%, and the

%EtotalA
lies between 38% and 44% for the scenarios with treatment e�ect. In scenarios

without treatment e�ect, the %EtotalA
is between 55% and 57% for the scenarios without

treatment e�ect.

At last, the scenarios 109-144 are described, which have φ = 2 and MNAR in common.

The anaLogy between hypothetical and treatment-policy estimand can be continued.

The %TDPL
, the %TDA

, the %E1A
and the %E1PL

adopt the same values as in the scenarios

of the hypothetical estimand with overdispersion and MNAR. Both the %SDPL
and the

%SDA
are comparable to those values of study dropout for scenarios with φ = 1 and

MNAR of the treatment-policy estimand. The %E2PL
and the %E2A

are both again

higher than in the MCAR scenarios. This phenomenon has already been observed and

explained for the scenarios without overdispersion. The values for the %EtotalPL
and the

%EtotalA
are again comparable to those of the scenarios with φ = 2 and MCAR. This is

in analogy to the scenarios without overdispersion.
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Figure 8: The percentage of patients with treatment discontinuation (%TD) and the percentage of patients with study dropout
(%SD) in treatment (A) and placebo (PL) group for each scenario under missing completely at random (MCAR) and missing not
at random (MNAR) for treatment-policy estimand
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Figure 9: The percentage of patients with at least one event before treatment discontinuation (%E1), the percentage of patients
with at least one event after treatment discontinuation (%E2) and the percentage of patients with at least one event during the
whole study (%Etotal

) in treatment (A) and placebo (PL) group for each scenario under missing completely at random (MCAR)
and missing not at random (MNAR) for treatment-policy estimand
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7.2 Results for hypothetical estimand

This section presents the results for the hypothetical estimand seperated by both treat-

ment discontinuation mechanisms MCAR and MNAR.

7.2.1 Results for the hypothetical estimand with treatment discontinuation

mechanism MCAR

The results for the hypothetical estimand with treatment discontinuation mechanism

MCAR, φ = 1 and %TDPL
= 20% are listed in table 7 on page 69 and for φ = 1 with

%TDPL
= 50% in table 8 on page 70. Furthermore, the results for the hypothetical

estimand with MCAR, φ = 2 and %TDPL
= 20% are given in table 9 and for φ = 12

and %TDPL
= 50% in table 10 on page 72. In table 9, the Log-linear negative-binomial

model reaches a power of 0.903, if %TDA
− %TDPL

= 0%. This scenario is used as

the reference scenariot the power of the Log-linear negative-binomial model was used

for the determination of the sample size. In general, power increases, if fewer patients

discontinue treatment than in the reference scenario. Otherwise, if more people have a

treatment discontinuation than in the reference scenario, the power of each method will

be less than the corresponding power of this method in the reference scenario. Figure 10

on page 73 visualizes the bias of the evaluated methods for the treatment discontinuation

mechanism MCAR. For the Log rank test, neither in context of the hypothetical estimand

nor of the treatment-policy estimand bias calculations are performed.

It must be noted that more than 40% of the Log-linear negative-binomial models do not

converge in scenarios without overdispersion. Therefore, these results must be treated

with caution and are not interpreted. However, they are listed in the corresponding tables

and �gures. This high percentage of not converged models for the Log-linear negative-

binomial model in scenarios without overdispersion also appears for the treatment-policy

estimand. But for scenarios with overdispersion, there are no problems concerning the

convergence of the Log-linear negative-binomial model. The remaining methods reveal

always reveal a high number of converged models.

In general, it can be observed that only a small number of evaluation methods present an

type I error rate lower or equal to 5% in scenarios without treatment e�ect (no tr. e�ect).

Additionally, the 95%-con�dence intervals (CI) for the calculated type I error rates are

provided to show if they include an acceptable type I error rate. But those methods

whose calculated type I error rate is lower or equal than 5% are considered to recognize

ine�ective drugs in at least 5%. Starting with the scenarios without overdispersion,

%TDPL
= 20% and %TDA

−%TDPL
= 0%, the Likelihood ratio test, the Gamma frailty

model, the Shared gamma frailty model and the χ2-test ful�ll this requirement without
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any bias. The Shared gamma frailty model reaches the highest power of these models

with a value of 0.994 without any bias in the scenario with treatment e�ect (with tr.

e�ect). If %TDA
− %TDPL

= −20%, only the Log-linear Poisson model and the Shared

gamma frailty model have a type I error rate smaller than 5%. Their type I error rates

represent 0.049 with a bias of 0.11 for the Log-linear Poisson model and 0.045 with

zero bias for the Shared gamma frailty model. Their power represents 0.996, whereby

the Shared gamma frailty model provides an estimate with zero bias. Otherwise, if

%TDA
− %TDPL

= +20%, only the Shared gamma frailty model shows an acceptable

type I error rate with a bias of -0.02. Its power reaches 0.920 with a bias of -0.04.

For %TDPL
= 50%, the scenario with %TDA

− %TDPL
= 0% is the one with the largest

number of models that return an acceptable the type I error rate. Hereby, again the

Likelihood ratio test, the Gamma frailty model, the Shared gamma frailty model and

the χ2-test show a correct type I error rate with zero bias. The Shared gamma frailty

model again provides the largest power of 0.983 without any bias. For the scenarios with

%TDA
− %TDPL

= −20%, again the Log-linear Poisson model and the Shared gamma

frailty model are the unique correct models with an type I error rate of 0.048 and a bias

of 0.15 for the Log-linear Poisson model and 0.045 with a bias of -0.01 for the Shared

gamma frailty model. The power of the Log-linear Poisson model in this scenario is 0.936

and the one of the Shared gamma frailty model represents 0.934. These values are both

a bit lower than in the case of %TDPL
= 20%. Their corresponding bias reveals 0.15 and

-0.02. If %TDA
− %TDPL

= +20%, now even for two models an acceptable type I error

rate is calculated. These are the Log-linear Poisson model with a type I error rate of

0.044 with a bias of -0.22 and the Shared gamma frailty model with an type I error rate

of 0.043 and a bias of -0.04. The last one provides the larger power of 0.820 and the

smaller bias of -0.08.

Now, the results of the scenarios with φ = 2 are presented. Hereby, much fewer models

show an acceptable type I error rate. Instead, the type I error rate increases, if overdis-

persion occurs. This is especially predominant for the Log-linear Poisson model, where

the type I error rate rises heavily compared to the scenarios without overdispersion. If

%TDPL
= 20%, %TDA

− %TDPL
= 0%, the χ2-test returns a type I error rate of 0.042

with a power of 0.871. The according bias reveals a value of 0.04. For the other values of

di�erence of treatment discontinuation between both trial arms, the Log-linear negative-

binomial model and the Shared gamma frailty model provide a type I error rate which is

smaller than 5%, if %TDPL
= 20% and even if %TDPL

= 50%. These models give exactly

the same values for the type I error rate and power. But the bias of the Shared gamma

frailty model is much smaller than the one of the Log-linear negative-binomial model.

This is true for all scenarios under MCAR for the hypothetical estimand with any dif-

66



Chapter 7 Results

ference between the proportions of patients with treatment discontinuation in both trial

arms. Comparing the Log-linear negative-binomial model with the Log-linear Poisson

model, it can be observed, that both models yield the same bias but di�erent values for

the type I error rate and power. This aspect is valid for scenarios with overdispersion

either for the hypothetical estimand or for the treatment-policy estimand. Finally, the

scenario with %TDPL
= 50% and %TDA

− %TDPL
= 0% is presented. The Log-linear

negative-binomial model, the Log rank test, the Cox proportional hazards model, the

Gamma frailty model, the Shared gamma frailty model and the χ2-test provide a type I

error rate smaller than 5%, each with a bias of zero. The Log-linear negative-binomial

model and the Shared gamma frailty model reach the highest power of 0.854 without

any bias or a very small one respectively.

As already mentioned, in �gure 10, bias of all methods can be easily compared for

each scenario. The bias of the Log-linear negative-binomial model is not plotted for

scenarios without overdispersion. This is reasoned by the high number of not converged

models. In the case of interpretable results of the Log-linear negative-binomial model,

the bias of the Log-linear negative-binomial model is the same as the one of the Log-linear

Poisson model. In each scenario without treatment e�ect, all methods estimated the true

treatment e�ect without any bias, if %TDA
−%TDPL

= 0%. But if φ = 1, %TDPL
= 20%

and %TDA
−%TDPL

= −20%, only the Shared gamma frailty model provides a bias of zero.

The Log-linear Poisson model and the χ2-test underestimate the true treatment e�ect.

Whereas the Cox proportional hazards model, the Likelihood ratio test and the Gamma

frailty model estimate overestimate the treatment e�ect. If %TDA
− %TDPL

= +20%,

the direction of the bias of each method is reversed. The Shared gamma frailty model

is no longer zero but it slightly overestimates the hypothetical estimand. The χ2-test

gives the largest absolute value of the bias which is also valid for all other scenarios

without treatment e�ect under the hypothetical estimand. If φ = 1, %TDPL
= 50%

and %TDA
− %TDPL

= −20%, all models but the Cox proportional hazards model and

the Shared gamma frailty model keep the direction of the bias, compared to φ = 1,

%TDPL
= 20% and %TDA

− %TDPL
= −20%. Now, the bias of the Cox proportional

hazards model is zero and the Shared gamma frailty model slightly overestimates the

true treatment e�ect with a bias of -0.01. For the combination of φ = 1, %TDPL
= 50%

and %TDA
−%TDPL

= +20%, the models keep the direction of their bias as described for

the scenario under φ = 1, %TDPL
= 20% and %TDA

−%TDPL
= +20%, but the absolute

value of the bias increases now.

The bias of the scenarios under φ = 2, %TDPL
= 20% behaves like the bias of the

corresponding scenarios without overdispersion. For φ = 2, %TDPL
= 50% and %TDA

−
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%TDPL
= −20%, the bias of the Cox proportional hazards model is again zero, as it was

in the corresponding scenario without overdispersion. The remaining models also provide

a bias larger than zero. In the case of φ = 2, %TDPL
= 50% and %TDA

−%TDPL
= +20%,

the direction of the bias stays in the same direction compared to the according scenario

without overdispersion.

Describing the bias of scenarios with treatment e�ect, the Log-linear Poisson model and

the Log-linear negative-binomial model (if φ = 2) estimate the true treatment e�ect

if there is no di�erence in the percentage of patients with treatment discontinuation

between both trials arms. For scenarios with and without overdispersion, the Shared

gamma frailty model additionally estimates a bias of zero or close to zero, if %TDA
−

%TDPL
= 0%. If %TDA

− %TDPL
= −20% without overdispersion and %TDPL

= 20%,

the Log-linear Poisson model and the χ2-test again provide a bias larger zero. The

Cox proportional hazards model, the Likelihood ratio test and the Gamma frailty model

overestimate the true treatment e�ect. If %TDPL
= 50% and %TDA

−%TDPL
= −20% in

the scenario without overdispersion, all models except the Shared gamma frailty model

have a positive bias.

For the scenarios with overdispersion, %TDPL
= 20% and %TDA

− %TDPL
= −20%,

the Log-linear negative-binomial model, the Log-linear Poisson model and the χ2-test

underestimate the hypothetical estimand. The remaining models give a negative bias

except the Shared gamma frailty model. It returns an unbiased estimate. But if φ = 2,

%TDPL
= 50% and %TDA

−%TDPL
= −20%, only the Likelihood ratio test, Gamma frailty

model and Shared gamma frailty model underestimate the true treatment e�ect. In

analogy to the scenarios without treatment e�ect, the bias of all scenarios with treatment

e�ect and with %TDA
−%TDPL

= +20% shows the reverse direction compared to %TDA
−

%TDPL
= −20%. Except if φ = 1 and %TDPL

= 50%, the direction of the bias of the

Cox proportional hazards model, the Likelihood ratio test, the Gamma frailty model and

the one of the Shared gamma frailty model is not turned. If φ = 2 and %TDPL
= 50%,

the Cox proportional hazards model and the Shared gamma frailty model do not change

the direction of their bias between the negative and positive di�erence of treatment

discontinuation in both trial arms. In general, the bias for %TDA
− %TDPL

= +20%

conducts absolutely larger values for most of the models.
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Table 7: Comparison of methods estimating the hypothetical estimand for scenarios with MCAR, φ = 1 and %TDPL
= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.039 0.11 5783 0.045 0.00 5800 0.046 -0.14 5846
[0.034;0.044] [0.04;0.05] [0.041;0.051]

GLM Poisson 0.049 0.11 10000 0.051 0.00 10000 0.051 -0.14 10000
[0.045;0.053] [0.047;0.055] [0.047;0.055]

Log rank test 0.066 - 10000 0.051 - 10000 0.314 - 10000
[0.061;0.071] [0.047;0.055] [0.305;0.323]

Cox model 0.065 -0.05 10000 0.051 0.00 10000 0.313 0.13 10000
[0.06;0.07] [0.047;0.055] [0.304;0.322]

LR test 0.064 -0.04 10000 0.047 0.00 10000 0.237 0.08 10000
[0.059;0.069] [0.043;0.051] [0.229;0.245]

GF model 0.060 -0.04 9999 0.044 0.00 10000 0.172 0.07 9778
[0.055;0.065] [0.04;0.048] [0.165;0.179]

SGF model 0.045 0.00 9982 0.047 0.00 10000 0.049 -0.02 9985
[0.041;0.049] [0.043;0.051] [0.045;0.053]

χ2-test 0.179 0.27 10000 0.039 0.00 10000 0.389 -0.34 10000
[0.171;0.187] [0.035;0.043] [0.379;0.399]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.996 0.11 5971 0.995 0.00 5936 0.923 -0.14 5877
GLM Poisson 0.996 0.11 10000 0.995 0.00 10000 0.920 -0.14 10000
Log rank test 0.988 - 10000 0.948 - 10000 0.837 - 10000
Cox model 0.988 -0.05 10000 0.948 0.04 10000 0.837 0.26 10000
LR test 0.988 -0.05 10000 0.946 0.05 10000 0.805 0.19 10000
GF model 0.986 -0.05 10000 0.942 0.04 10000 0.807 0.14 9225
SGF model 0.996 0.00 10000 0.994 0.00 9999 0.920 -0.04 9999
χ2-test 0.697 0.27 10000 0.917 0.08 10000 0.818 -0.27 10000
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Table 8: Comparison of methods estimating the hypothetical estimand for scenarios with MCAR, φ = 1 and %TDPL
= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.044 0.14 5857 0.047 0.00 6008 0.042 -0.22 5865
[0.039;0.049] [0.042;0.052] [0.037;0.047]

GLM Poisson 0.048 0.15 10000 0.052 0.00 10000 0.044 -0.22 10000
[0.044;0.052] [0.048;0.056] [0.04;0.048]

Log rank test 0.303 - 10000 0.053 - 10000 0.519 - 10000
[0.294;0.312] [0.049;0.057] [0.509;0.529]

Cox model 0.302 0.00 10000 0.052 0.00 10000 0.518 0.21 10000
[0.293;0.311] [0.048;0.056] [0.508;0.528]

LR test 0.224 -0.03 10000 0.042 0.00 10000 0.359 0.12 10000
[0.216;0.232] [0.038;0.046] [0.35;0.368]

GF model 0.191 -0.04 9802 0.04 0.00 9998 0.286 0.11 9491
[0.183;0.199] [0.036;0.044] [0.277;0.295]

SGF model 0.045 -0.01 9993 0.048 0.00 9995 0.043 -0.04 9994
[0.041;0.049] [0.044;0.052] [0.039;0.047]

χ2-test 0.769 0.25 10000 0.043 0.00 10000 0.736 -0.50 10000
[0.761;0.777] [0.039;0.047] [0.727;0.745]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.933 0.15 5963 0.981 0.00 6038 0.819 -0.22 5858
GLM Poisson 0.936 0.15 10000 0.984 0.00 10000 0.822 -0.22 10000
Log rank test 0.863 - 10000 0.876 - 10000 0.713 - 10000
Cox model 0.863 0.08 10000 0.874 0.10 10000 0.712 0.45 10000
LR test 0.858 0.05 10000 0.858 0.13 10000 0.668 0.33 10000
GF model 0.880 0.01 9449 0.847 0.13 9996 0.707 0.27 8544
SGF model 0.934 -0.02 9995 0.983 0.00 10000 0.820 -0.08 9992
χ2-test 0.325 0.30 10000 0.837 0.17 10000 0.642 -0.36 10000
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Table 9: Comparison of methods estimating the hypothetical estimand for scenarios with MCAR, φ = 2, and %TDPL
= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.05 0.11 10000 0.051 0.00 10000 0.049 -0.15 10000
[0.046;0.054] [0.047;0.055] [0.045;0.053]

GLM Poisson 0.163 0.11 10000 0.16 0.00 10000 0.142 -0.15 10000
[0.156;0.17] [0.153;0.167] [0.135;0.149]

Log rank test 0.077 - 10000 0.052 - 10000 0.299 - 10000
[0.072;0.082] [0.048;0.056] [0.29;0.308]

Cox model 0.077 -0.06 10000 0.052 0.00 10000 0.298 0.16 10000
[0.072;0.082] [0.048;0.056] [0.289;0.307]

LR test 0.093 -0.07 10000 0.061 0.00 10000 0.286 0.12 10000
[0.087;0.099] [0.056;0.066] [0.277;0.295]

GF model 0.072 -0.06 10000 0.052 0.00 10000 0.211 0.10 9649
[0.067;0.077] [0.048;0.056] [0.203;0.219]

SGF model 0.05 0.00 10000 0.051 0.00 10000 0.049 -0.03 10000
[0.046;0.054] [0.047;0.055] [0.045;0.053]

χ2-test 0.11 0.18 10000 0.042 0.00 10000 0.322 -0.30 10000
[0.104;0.116] [0.038;0.046] [0.313;0.331]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.915 0.11 10000 0.903 0.00 10000 0.836 -0.14 10000
GLM Poisson 0.971 0.11 10000 0.968 0.00 10000 0.897 -0.14 10000
Log rank test 0.961 - 10000 0.890 - 10000 0.831 - 10000
Cox model 0.960 -0.06 10000 0.889 0.04 10000 0.830 0.28 10000
LR test 0.970 -0.09 10000 0.898 0.03 10000 0.815 0.20 10000
GF model 0.953 -0.18 10000 0.884 -0.05 10000 0.828 0.09 9472
SGF model 0.915 0.00 10000 0.903 0.00 10000 0.836 -0.04 10000
χ2-test 0.692 0.18 10000 0.871 0.04 10000 0.806 -0.25 10000
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Table 10: Comparison of methods estimating the hypothetical estimand for scenarios with MCAR, φ = 2, and %TDPL
= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.05 0.15 10000 0.05 0.00 10000 0.047 -0.22 10000
[0.046;0.054] [0.046;0.054] [0.043;0.051]

GLM Poisson 0.139 0.15 10000 0.15 0.00 10000 0.117 -0.22 10000
[0.132;0.146] [0.143;0.157] [0.111;0.123]

Log rank test 0.364 - 10000 0.049 - 10000 0.513 - 10000
[0.355;0.373] [0.045;0.053] [0.503;0.523]

Cox model 0.362 0.00 10000 0.048 0.00 10000 0.511 0.25 9999
[0.353;0.371] [0.044;0.052] [0.501;0.521]

LR test 0.356 -0.05 10000 0.051 0.00 10000 0.455 0.17 9999
[0.347;0.365] [0.047;0.055] [0.445;0.465]

GF model 0.29 -0.05 9726 0.044 0.00 10000 0.362 0.14 9300
[0.281;0.299] [0.04;0.048] [0.352;0.372]

SGF model 0.05 -0.01 10000 0.049 0.00 10000 0.047 -0.05 10000
[0.046;0.054] [0.045;0.053] [0.043;0.051]

χ2-test 0.558 0.14 10000 0.038 0.00 10000 0.599 -0.45 10000
[0.548;0.568] [0.034;0.042] [0.589;0.609]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.834 0.15 10000 0.854 0.00 10000 0.723 -0.22 10000
GLM Poisson 0.906 0.15 10000 0.941 0.00 10000 0.794 -0.22 10000
Log rank test 0.861 - 10000 0.794 - 10000 0.734 - 10000
Cox model 0.860 0.08 10000 0.792 0.11 10000 0.733 0.47 10000
LR test 0.862 0.01 10000 0.794 0.10 10000 0.697 0.35 9999
GF model 0.874 -0.07 9578 0.778 0.07 9997 0.741 0.26 8871
SGF model 0.835 -0.03 10000 0.854 -0.01 10000 0.724 -0.08 10000
χ2-test 0.376 0.18 10000 0.783 0.09 10000 0.661 -0.36 10000
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Figure 10: Bias of the Log-linear negative-binomial model (GLM NB), Log-linear Poisson model (GLM Poisson), Cox proportional
hazards model (Cox model), Likelihood ratio test (LR test), Gamma frailty model (GF model), Shared gamma frailty model (SGF
model) and χ2-test for hypothetical estimand depending on the percentage of patients with treatment discontinuation in placebo
group (%TDPL

), the di�erence of patients with treatment discontinuation between both trial arms (%TDA
− %TDPL

) and φ under
MCAR
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7.2.2 Results for the hypothetical estimand with treatment discontinuation

mechanism MNAR

Now, the results for the hypothetical estimand with treatment discontinuation mecha-

nism MNAR are presented. As already described in section 7.1, the values of the percent-

age received after the simulation process with MNAR di�er from those under the MCAR

mechanism. In table 11 on page 77, the results for scenarios without overdispersion and

%TDPL
= 27% are listed. The evaluated values for scenarios without overdispersion and

%TDPL
= 60% are tabulated in table 12 on page 78. Table 13 on page 79 summarizes

the results for the scenarios with φ = 2 and %TDPL
= 28% and table 14 on page 80

contains the results for the scenarios with φ = 2 and %TDPL
= 60%. Figure 11 on page

81 visualizes the bias for each method under the MNAR mechanism for the hypothetical

estimand.

Under the treatment discontinuation mechanism MNAR, the tested methods yield an

acceptable type I error rate of lower than 5% only if %TDA
−%TDPL

= 0%. There exists

one single exception if φ = 1, %TDPL
= 27% and %TDA

− %TDPL
= −27%. In this

scenario, the Gamma frailty model returns an acceptable type I error rate of 0.048 with

a bias of -0.03. Its power conducts 0.980 with a bias of -0.04. Now, the description

of scenarios without any di�erence between the percentage of patients with treatment

discontinuation in both trial arms follows. For the scenarios with φ = 1, %TDPL
= 27%

and %TDA
− %TDPL

= 0%, all interpretable methods show a correct type I error rate,

each with zero bias. Hereby, the Log-linear Poisson model and the Shared gamma frailty

model reach the highest and same value for the power of 0.988 with a bias of 0.05

and 0.02 respectively. If %TDA
− %TDPL

= +23%, the methods show very high type

I error rates. This phenomenon can also be observed if φ = 1 and %TDPL
= 60%.

Hereby, these high type I error rates appear both under %TDA
− %TDPL

= −26% and

%TDA
−%TDPL

= +14%. Only for %TDA
−%TDPL

= 0%, the Log-linear Poisson model,

the Likelihood ratio test, the Gamma frailty model, the Shared gamma frailty model

and the χ2-test lead to a wrong test decision under scenarios with treatment e�ect in

less than 5%, each with a bias of zero. In analogy to φ = 1, %TDPL
= 27% and

%TDA
− %TDPL

= 0%, now with %TDPL
= 60%, the Log-linear Poisson model and the

Shared gamma frailty model have the highest power of 0.921 with a bias of 0.12 and

0.05 respectively. Continuing with the scenarios based on φ = 2, %TDPL
= 28% and

%TDA
− %TDPL

= 0%, the Log rank test, the Cox proportional hazards model, the

Gamma frailty model and the χ2-test show a type I error rate, which is lower than

5%. Hereby, the bias of these methods is zero again. The Log rank test possesses the

largest power of these methods with a value of 0.871. For the scenarios with φ = 2,

%TDPL
= 60% and %TDA

− %TDPL
= 0%, the Log rank test, the Cox proportional
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hazards model, the Likelihood ratio test, the Gamma frailty model and the χ2-test yield

to acceptable type I error rates. Their bias is zero again. The Log rank test shows the

largest power of these models with a value of 0.741. For the other di�erences between the

percentages of patients with treatment discontinuation between treatment and placebo

arm under φ = 2, the methods again reach very high type I error rates. The discrepancies

between the Log rank test and the Cox proportional hazards model are due to di�erent

implementations in the statistical software.

Figure 11 is referred, where the bias of all methods for the scenarios under the hypo-

thetical estimand with treatment discontinuation mechanism MNAR are plotted. The

bias of all methods in scenarios without treatment e�ect and no di�erence between the

percentages of treatment discontinuation in treatment and placebo group equals zero.

This was already the case for the scenarios under the MCAR mechanism. Concerning

still the scenarios without treatment e�ect, the scenario with φ = 1, %TDPL
= 27% and

%TDA
− %TDPL

= −27%, the models except the Shared gamma frailty model behave

like in the according scenario under MCAR. The Shared gamma frailty model underes-

timates the true treatment e�ect under MNAR. This is comparable to the scenario with

φ = 1, %TDPL
= 27% and %TDA

− %TDPL
= +23%. Here, the Shared gamma frailty

model provides a bias larger than zero, too.

In the case of φ = 1, %TDPL
= 60% and %TDA

− %TDPL
= −21%, all methods yield a

positive bias. The Log-linear Poisson model and the χ2-test show the largest absolute

values. The bias of these two methods is reversed under the scenario φ = 1, %TDPL
= 60%

and %TDA
−%TDPL

= +18%. The remaining models keep the direction of their bias but

their absolute value increases.

In the scenario φ = 2, %TDPL
= 28% and %TDA

−%TDPL
= −28%, the same constellation

as in the corresponding scenario without overdispersion can be observed. The same is

valid for φ = 2, %TDPL
= 28% and %TDA

− %TDPL
= +22%. The Shared gamma

frailty model now keeps the positive direction of its bias. The bias of the Log-linear

negative-binomial model is again comparable to the one of the Log-linear Poisson model

under the MNAR mechanism as it was already the case under MCAR. The scenarios

with φ = 2, %TDPL
= 60% and %TDA

− %TDPL
= −21% and %TDA

− %TDPL
= +18%

respectively are considered next. They are absolutely comparable to the according one

without overdispersion. But in the scenario φ = 2, %TDPL
= 60% and %TDA

−%TDPL
=

+18%, the Log-linear negative-binomial model and the Log-linear Poisson model provide

a positive bias.

Now the bias of the scenarios with treatment e�ect is described. In general, these values
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are comparable to the appropriate scenarios under MCAR. The bias of the Shared gamma

frailty model is smaller than the one of the count data models, if they do not deliver an

unbiased estimate. In the case of φ = 1, %TDPL
= 27% and %TDA

−%TDPL
= −27% and

%TDA
−%TDPL

= +18% respectively, the Shared gamma frailty model does not longer

show a bias of zero respectively a negative bias but a positive one. This is also true for

%TDA
− %TDPL

= −4%, where additionally the count data models now provide a bias

larger than zero. In the next scenarios, which are based on φ = 1, %TDPL
= 60% and

%TDA
−%TDPL

= −26% and %TDA
−%TDPL

= +14% respectively, the Shared gamma

frailty model again shows a positive bias.

This is also valid for the scenario φ = 2, %TDPL
= 28%, %TDA

− %TDPL
= −28% and

in the scenarios with φ = 2, %TDPL
= 28%, %TDA

− %TDPL
= +17% additionally the

Log-linear Poisson model underestimates the true treatment e�ect. The last discrepancy

between the bias of the scenarios under MCAR and MNAR lies in the scenarios φ = 2,

%TDPL
= 60% and %TDA

−%TDPL
= −25% and φ = 2, %TDPL

= 60%, %TDA
−%TDPL

=

+15%. In these scenarios both count data models and the Shared gamma frailty model

underestimate the true treatment e�ect.
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Table 11: Comparison of methods estimating the hypothetical estimand for scenarios with MNAR, φ = 1, and %TDPL
= 27%

%TDPL
= 27%

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +23%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.089 0.23 5035 0.037 0.00 4349 0.08 -0.10 5000
[0.081;0.097] [0.031;0.043] [0.072;0.088]

GLM Poisson 0.098 0.23 10000 0.044 0.00 10000 0.085 -0.11 10000
[0.092;0.104] [0.04;0.048] [0.08;0.09]

Log rank test 0.055 - 10000 0.049 - 10000 0.391 - 10000
[0.051;0.059] [0.045;0.053] [0.381;0.401]

Cox model 0.054 -0.03 10000 0.048 0.00 10000 0.391 0.21 10000
[0.05;0.058] [0.044;0.052] [0.381;0.401]

LR test 0.051 -0.03 10000 0.046 0.00 10000 0.300 0.14 10000
[0.047;0.055] [0.042;0.05] [0.291;0.309]

GF model 0.048 -0.03 10000 0.043 0.00 10000 0.212 0.13 9642
[0.044;0.052] [0.039;0.047] [0.204;0.22]

SGF model 0.093 0.07 9995 0.043 0.00 9999 0.081 0.04 9996
[0.087;0.099] [0.039;0.047] [0.076;0.086]

χ2-test 0.329 0.38 10000 0.039 0.00 10000 0.507 -0.41 10000
[0.32;0.338] [0.035;0.043] [0.497;0.517]

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +18%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.983 0.23 5015 0.987 0.05 4446 0.869 -0.04 4995
GLM Poisson 0.980 0.23 10000 0.988 0.05 10000 0.867 -0.06 10000
Log rank test 0.982 - 10000 0.940 - 10000 0.815 - 10000
Cox model 0.982 -0.03 10000 0.939 0.05 10000 0.814 0.32 10000
LR test 0.981 -0.03 10000 0.937 0.05 10000 0.780 0.24 10000
GF model 0.980 -0.04 9999 0.932 0.05 9999 0.785 0.18 9048
SGF model 0.980 0.07 9999 0.988 0.02 10000 0.867 0.04 9997
χ2-test 0.529 0.37 10000 0.864 0.14 10000 0.718 -0.22 10000
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Table 12: Comparison of methods estimating the hypothetical estimand for scenarios with MNAR, φ = 1, and %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.247 0.40 4467 0.037 0.00 3465 0.193 -0.03 4318
[0.234;0.26] [0.031;0.043] [0.181;0.205]

GLM Poisson 0.252 0.37 10000 0.041 0.00 10000 0.204 -0.08 10000
[0.243;0.261] [0.037;0.045] [0.196;0.212]

Log rank test 0.327 - 10000 0.053 - 10000 0.622 - 10000
[0.318;0.336] [0.049;0.057] [0.612;0.632]

Cox model 0.325 0.08 10000 0.053 0.00 10000 0.621 0.32 10000
[0.316;0.334] [0.049;0.057] [0.611;0.631]

LR test 0.227 0.03 10000 0.041 0.00 10000 0.451 0.20 10000
[0.219;0.235] [0.037;0.045] [0.441;0.461]

GF model 0.191 0.02 9693 0.038 0.00 10000 0.379 0.19 9244
[0.183;0.199] [0.034;0.042] [0.369;0.389]

SGF model 0.244 0.15 9991 0.041 0.00 9997 0.199 0.11 9983
[0.236;0.252] [0.037;0.045] [0.191;0.207]

χ2-test 0.858 0.34 10000 0.043 0.00 10000 0.782 -0.54 10000
[0.851;0.865] [0.039;0.047] [0.774;0.79]

%TDA
−%TDPL

= −26% %TDA
−%TDPL

= −6% %TDA
−%TDPL

= +14%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.737 0.43 4138 0.925 0.11 3292 0.576 0.02 4066
GLM Poisson 0.721 0.41 10000 0.921 0.12 10000 0.558 -0.00 10000
Log rank test 0.854 - 10000 0.839 - 10000 0.724 - 10000
Cox model 0.853 0.15 10000 0.837 0.12 10000 0.723 0.55 10000
LR test 0.836 0.10 10000 0.811 0.15 10000 0.641 0.41 10000
GF model 0.874 0.06 9283 0.801 0.15 9992 0.718 0.36 8303
SGF model 0.719 0.15 9991 0.921 0.05 9997 0.557 0.10 9988
χ2-test 0.282 0.49 10000 0.630 0.30 10000 0.615 -0.24 10000
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Table 13: Comparison of methods estimating the hypothetical estimand for scenarios with MNAR, φ = 2, and %TDPL
= 28%

%TDPL
= 28%

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +22%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.122 0.28 10000 0.055 0.00 10000 0.113 -0.07 9999
[0.116;0.128] [0.051;0.059] [0.107;0.119]

GLM Poisson 0.315 0.31 10000 0.121 0.00 10000 0.265 -0.04 10000
[0.306;0.324] [0.115;0.127] [0.256;0.274]

Log rank test 0.073 - 10000 0.045 - 10000 0.375 - 10000
[0.068;0.078] [0.041;0.049] [0.366;0.384]

Cox model 0.072 -0.03 10000 0.045 0.00 10000 0.374 0.26 9999
[0.067;0.077] [0.041;0.049] [0.365;0.383]

LR test 0.086 -0.04 10000 0.054 0.00 10000 0.362 0.21 9999
[0.081;0.091] [0.05;0.058] [0.353;0.371]

GF model 0.067 -0.03 10000 0.045 0.00 10000 0.271 0.19 9517
[0.062;0.072] [0.041;0.049] [0.262;0.28]

SGF model 0.12 0.11 10000 0.052 0.00 10000 0.11 0.08 10000
[0.114;0.126] [0.048;0.056] [0.104;0.116]

χ2-test 0.229 0.29 10000 0.042 0.00 10000 0.434 -0.35 10000
[0.221;0.237] [0.038;0.046] [0.424;0.444]

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +17%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.751 0.27 10000 0.886 0.03 10000 0.658 -0.02 10000
GLM Poisson 0.840 0.31 10000 0.946 0.05 10000 0.720 0.02 10000
Log rank test 0.940 - 10000 0.871 - 10000 0.799 - 10000
Cox model 0.939 -0.04 10000 0.869 0.05 10000 0.798 0.36 10000
LR test 0.951 -0.07 10000 0.882 0.03 10000 0.776 0.27 10000
GF model 0.931 -0.15 10000 0.865 -0.04 10000 0.792 0.17 9399
SGF model 0.748 0.11 10000 0.883 0.00 10000 0.655 0.06 10000
χ2-test 0.514 0.28 10000 0.810 0.08 10000 0.702 -0.20 10000
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Table 14: Comparison of methods estimating the hypothetical estimand for scenarios with MNAR, φ = 2, and %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.35 0.47 9966 0.058 0.00 9970 0.3 0.03 9914
[0.341;0.359] [0.053;0.063] [0.291;0.309]

GLM Poisson 0.604 0.52 10000 0.086 0.00 10000 0.491 0.07 10000
[0.594;0.614] [0.081;0.091] [0.481;0.501]

Log rank test 0.396 - 10000 0.049 - 10000 0.618 - 10000
[0.386;0.406] [0.045;0.053] [0.608;0.628]

Cox model 0.394 0.12 9999 0.048 0.00 10000 0.617 0.41 9999
[0.384;0.404] [0.044;0.052] [0.607;0.627]

LR test 0.361 0.06 9999 0.048 0.00 10000 0.553 0.30 9999
[0.352;0.37] [0.044;0.052] [0.543;0.563]

GF model 0.308 0.06 9600 0.043 0.00 9999 0.475 0.29 9238
[0.299;0.317] [0.039;0.047] [0.465;0.485]

SGF model 0.34 0.24 10000 0.054 0.00 10000 0.294 0.20 10000
[0.331;0.349] [0.05;0.058] [0.285;0.303]

χ2-test 0.768 0.26 10000 0.038 0.00 10000 0.696 -0.45 10000
[0.76;0.776] [0.034;0.042] [0.687;0.705]

%TDA
−%TDPL

= −25% %TDA
−%TDPL

= −5% %TDA
−%TDPL

= +15%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.353 0.50 9977 0.792 0.08 9971 0.286 0.10 9934
GLM Poisson 0.365 0.56 10000 0.842 0.10 10000 0.284 0.15 10000
Log rank test 0.811 - 10000 0.741 - 10000 0.706 - 10000
Cox model 0.809 0.13 10000 0.738 0.08 10000 0.704 0.57 10000
LR test 0.804 0.05 10000 0.738 0.08 10000 0.654 0.43 10000
GF model 0.819 -0.01 9537 0.719 0.05 9999 0.707 0.36 8894
SGF model 0.343 0.17 10000 0.782 -0.04 10000 0.278 0.12 9999
χ2-test 0.260 0.38 10000 0.623 0.18 10000 0.573 -0.21 10000
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Figure 11: Bias of the Log-linear negative-binomial model (GLM NB), Log-linear Poisson model (GLM Poisson), Cox proportional
hazards model (Cox model), Likelihood ratio test (LR test), Gamma frailty model (GF model), Shared gamma frailty model (SGF
model) and χ2-test for hypothetical estimand depending on the percentage of patients with treatment discontinuation in placebo
group (%TDPL

), the di�erence of patients with treatment discontinuation between both trial arms (%TDA
− %TDPL

) and φ under
MNAR
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Chapter 7 Results

7.3 Results for the treatment-policy estimand

The results for the treatment-policy estimand are showed in this section. In analogy

to the presentation of the results for the hypothetical estimand, the following section

is divided by the two treatment discontinuation mechanisms MCAR and MNAR. Fur-

thermore, for each mechanism the results are provided separately for each of the three

percentages of study dropout. To compare the bias of the methods across the three

di�erent possibilities for the study dropout, �gure 12 shows the bias for all scenarios

under MCAR and �gure 13 visualizes bias under MNAR at the end of section 7.3.1 and

7.3.2 respectively.

7.3.1 Results for the treatment-policy estimand with treatment discontinu-

ation mechanism MCAR

7.3.1.1 Results for the treatment-policy estimand without study dropout

with treatment discontinuation mechanism MCAR

At �rst, the results for the treatment-policy under MCAR without study dropout are

presented. Table 15 on page 85 shows the results for the scenarios with φ = 1 and

%TDPL
= 20%; in table 16 on page 86 the results for φ = 1 and %TDPL

= 50% are listed.

Furthermore, the results for scenarios with φ = 2 and %TDPL
= 20% are tabulated on

page 87 in table 17; table 18 on page 88 contains the results for the scenarios φ = 2 and

%TDPL
= 50%.

In general, it must be stated, that compared to the hypothetical estimand, much fewer

methods observe a type I error rate lower than 5%. This is valid for all percentages

of study dropout either under MCAR or MNAR. For scenarios without any di�erence

between the percentage of patients treatment discontinuation between both trial arms,

a correct evaluation method can be found in each scenario. But if there is a di�erence

between treatment discontinuation in treatment and placebo group, in most cases no

method can hold an acceptable type I error rate. The statistical test, which provides

an acceptable type I error rate the most is the χ2−test. For the scenarios with φ = 1,

%TDPL
= 20% and %TDA

− %TDPL
= 0%, the Log-linear Poisson model, the Gamma

frailty model, the Shared gamma frailty model and the χ2−test provide a type I error

rate which is lower than 5% each with a bias of zero. Hereby, the Log-linear Poisson

model and the Shared gamma frailty model have the larger power of 0.989 and 0.988

again with a bias of zero. If, φ = 1 and %TDPL
= 20% and %TDA

− %TDPL
= −20%,

only the χ2−test returns an acceptable type I error rate with a bias of 0.04. Its power

represents 0.929 with a bias of -0.06. In the case of φ = 1 and %TDPL
= 20% and

%TDA
−%TDPL

= +20%, no method is valid for an evaluation respecting the type I error
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rate. The methods, which evaluated these three scenarios, always possess a power larger

the one of the reference scenario as no study dropout occurs here. For the scenarios with

φ = 1 and %TDPL
= 50% only under %TDA

− %TDPL
= 0%, the Shared gamma frailty

model and the χ2−test contain an acceptable type I error rate with unbiased estimate

of the treatment e�ect. The Shared gamma frailty model reveals the larger power of

0.727 with a smaller bias of 0.03. If φ = 2 with %TDPL
= 20%, only the χ2−test returns

a type I error rate smaller than 5% under %TDA
− %TDPL

= 0%. In the scenario with

φ = 2, %TDPL
= 50% and %TDA

−%TDPL
= 0%, the Log rank test, the Cox proportional

hazards model, the Gamma frailty model and the χ2−test respect the type I error rate
of lower of equal to 5%. In this context, the Log rank test and the Cox proportional

hazards model provide the largest power of 0.762 and 0.760 without any bias. In the

scenarios with overdispersion, the calculated type I error rate is generally higher than

that of the scenarios without overdispersion. Especially if the di�erence between the

percentage of patients with treatment discontinuation in treatment and placebo arm is

positive, the type I error rates are even larger.

Referring to the bias of scenarios without treatment e�ect, which are plotted in �gure

12, the bias of all methods of scenarios without study dropout and %TDA
−%TDPL

= 0%

is zero. In scenarios with φ = 1, the Log-linear Poisson model is the single model,

which is unbiased for each di�erence of patients with treatment discontinuation between

treatment and placebo arm. The χ2−test is the one with the largest absolute bias

of 0.04, if %TDA
− %TDPL

= −20%, and of -0.03, if %TDA
− %TDPL

= +20% in the

scenario without overdispersion. Again, it can be noti�ed, that the direction of the bias

is changing with positive respectively negative di�erence of %TDA
−%TDPL

. In analogy

to the hypothetical estimand, the bias of the Log-linear negative-binomial model is not

showed in �gure 12, if φ = 1. Its results are not interpretable because of the low number

of converged models. The bias of the scenarios without treatment e�ect under φ = 2

with %TDPL
= 20% and %TDPL

= 50% are similar. Hereby, the absolute bias of the

methods is almost zero if %TDA
−%TDPL

= −20%.

The treatment e�ect of scenarios with treatment e�ect and φ = 1 is estimated unbiased

with the Log-linear Poisson model. The remaining methods manifest slightly biased

estimates. In this context, the χ2−test provides the largest negative bias compared

to the other models. If φ = 2, the Log-linear negative-binomial model and the Log-

linear Poisson model have the same bias, which is no longer zero. The Gamma frailty

model reveals strong overestimated treatment e�ect. The bias of the Shared gamma

frailty model, the Log-linear negative-binomial model and the Log-linear Poisson model

in the scenario φ = 2, %TDPL
= 20% and %TDA

− %TDPL
= −20% as well as the
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bias of the χ2-test in the scenario φ = 2, %TDPL
= 20% and %TDA

− %TDPL
= +20%

are slightly positive or zero respectively. Furthermore, the bias of the scenarios with

%TDA
−%TDPL

= +20% is absolutely larger than those with %TDA
−%TDPL

= −20%.

In the scenario with φ = 2, %TDPL
= 50% and %TDA

− %TDPL
= −20%, the Log-

linear negative-binomial model provides an unbiased estimate. The Log-linear Poisson

model and the Shared gamma frailty model return a small positive bias. If, φ = 2,

%TDPL
= 50% and %TDA

− %TDPL
= 0%, the Cox proportional hazards model is the

unique method to estimate an unbiased treatment e�ect.
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Table 15: Comparison of methods estimating the treatment-policy estimand for scenarios without study dropout, with MCAR,
φ = 1, and %TDPL

= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.050 0.00 5802 0.044 0.00 5924 0.138 0.00 5881
[0.044;0.056] [0.039;0.049] [0.129;0.147]

GLM Poisson 0.057 0.00 10000 0.048 0.00 10000 0.141 0.00 10000
[0.052;0.062] [0.044;0.052] [0.134;0.148]

Log rank test 0.057 - 10000 0.051 - 10000 0.094 - 10000
[0.052;0.062] [0.047;0.055] [0.088;0.1]

Cox model 0.056 0.02 10000 0.051 0.00 10000 0.093 -0.02 10000
[0.051;0.061] [0.047;0.055] [0.087;0.099]

LR test 0.057 0.02 10000 0.053 0.00 10000 0.097 -0.02 10000
[0.052;0.062] [0.049;0.057] [0.091;0.103]

GF model 0.054 0.02 10000 0.046 0.00 10000 0.09 -0.02 10000
[0.05;0.058] [0.042;0.05] [0.084;0.096]

SGF model 0.053 0.02 9940 0.045 0.00 9963 0.137 -0.02 9954
[0.049;0.057] [0.041;0.049] [0.13;0.144]

χ2-test 0.044 0.04 10000 0.039 0.00 10000 0.083 -0.03 10000
[0.04;0.048] [0.035;0.043] [0.078;0.088]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.994 0.00 6094 0.987 0.00 6153 0.938 -0.00 6030
GLM Poisson 0.995 0.00 10000 0.989 0.00 10000 0.943 0.00 10000
Log rank test 0.959 - 10000 0.941 - 10000 0.882 - 10000
Cox model 0.959 0.01 10000 0.940 -0.01 10000 0.881 -0.02 10000
LR test 0.959 0.01 10000 0.941 -0.01 10000 0.882 -0.02 10000
GF model 0.956 -0.01 10000 0.936 -0.02 10000 0.874 -0.04 10000
SGF model 0.994 0.02 10000 0.988 0.00 10000 0.940 -0.01 10000
χ2-test 0.929 -0.06 10000 0.894 -0.09 10000 0.819 -0.11 10000
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Table 16: Comparison of methods estimating the treatment-policy estimand for scenarios without study dropout, with MCAR,
φ = 1, and %TDPL

= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.111 0.00 5958 0.049 0.00 6138 0.158 0.00 6028
[0.103;0.119] [0.044;0.054] [0.149;0.167]

GLM Poisson 0.118 0.00 10000 0.053 0.00 10000 0.165 0.00 10000
[0.112;0.124] [0.049;0.057] [0.158;0.172]

Log rank test 0.086 - 10000 0.055 - 10000 0.106 - 10000
[0.081;0.091] [0.051;0.059] [0.1;0.112]

Cox model 0.085 0.02 10000 0.054 0.00 10000 0.104 -0.01 10000
[0.08;0.09] [0.05;0.058] [0.098;0.11]

LR test 0.089 0.02 10000 0.059 0.00 10000 0.112 -0.01 10000
[0.083;0.095] [0.054;0.064] [0.106;0.118]

GF model 0.08 0.02 10000 0.053 0.00 10000 0.101 -0.01 10000
[0.075;0.085] [0.049;0.057] [0.095;0.107]

SGF model 0.113 0.02 9966 0.049 0.00 9991 0.159 -0.02 9985
[0.107;0.119] [0.045;0.053] [0.152;0.166]

χ2-test 0.072 0.04 10000 0.041 0.00 10000 0.088 -0.03 10000
[0.067;0.077] [0.037;0.045] [0.082;0.094]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.916 0.00 6232 0.930 -0.00 6239 0.806 0.00 6217
GLM Poisson 0.922 0.00 10000 0.933 0.00 10000 0.817 0.00 10000
Log rank test 0.849 - 10000 0.833 - 10000 0.728 - 10000
Cox model 0.848 0.03 10000 0.832 0.01 10000 0.726 0.01 10000
LR test 0.851 0.02 10000 0.833 0.01 10000 0.728 0.01 10000
GF model 0.840 0.00 10000 0.824 -0.01 10000 0.716 0.00 10000
SGF model 0.918 0.04 10000 0.928 0.03 10000 0.809 0.03 9999
χ2-test 0.766 -0.04 10000 0.727 -0.07 10000 0.607 -0.08 10000
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Table 17: Comparison of methods estimating the treatment-policy estimand for scenarios without study dropout, with MCAR,
φ = 2, and %TDPL

= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.074 0.01 10000 0.056 0.00 10000 0.224 -0.02 9993
[0.069;0.079] [0.051;0.061] [0.216;0.232]

GLM Poisson 0.2 0.01 10000 0.161 0.00 10000 0.329 -0.02 10000
[0.192;0.208] [0.154;0.168] [0.32;0.338]

Log rank test 0.076 - 10000 0.052 - 10000 0.209 - 10000
[0.071;0.081] [0.048;0.056] [0.201;0.217]

Cox model 0.075 0.00 10000 0.051 0.00 10000 0.208 -0.02 10000
[0.07;0.08] [0.047;0.055] [0.2;0.216]

LR test 0.093 0.00 10000 0.064 0.00 10000 0.224 -0.03 10000
[0.087;0.099] [0.059;0.069] [0.216;0.232]

GF model 0.07 0.00 10000 0.053 0.00 10000 0.179 -0.03 10000
[0.065;0.075] [0.049;0.057] [0.171;0.187]

SGF model 0.074 0.04 10000 0.056 0.00 10000 0.224 -0.09 9995
[0.069;0.079] [0.051;0.061] [0.216;0.232]

χ2-test 0.067 0.00 10000 0.041 0.00 10000 0.221 0.02 10000
[0.062;0.072] [0.037;0.045] [0.213;0.229]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.872 0.01 10000 0.889 -0.01 10000 0.825 -0.03 9988
GLM Poisson 0.951 0.01 10000 0.958 -0.01 10000 0.891 -0.03 10000
Log rank test 0.901 - 10000 0.884 - 10000 0.829 - 10000
Cox model 0.900 -0.01 10000 0.883 -0.01 10000 0.828 -0.03 10000
LR test 0.915 -0.03 10000 0.898 -0.02 10000 0.837 -0.05 10000
GF model 0.896 -0.15 10000 0.877 -0.14 10000 0.820 -0.17 9996
SGF model 0.872 0.03 10000 0.889 -0.01 10000 0.825 -0.09 9986
χ2-test 0.874 -0.01 10000 0.841 -0.01 10000 0.804 0.00 10000
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Table 18: Comparison of methods estimating the treatment-policy estimand for scenarios without study dropout, with MCAR,
φ = 2, and %TDPL

= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.266 0.02 9966 0.052 0.00 10000 0.345 -0.03 9906
[0.257;0.275] [0.048;0.056] [0.336;0.354]

GLM Poisson 0.399 0.02 10000 0.139 0.00 10000 0.443 -0.03 10000
[0.389;0.409] [0.132;0.146] [0.433;0.453]

Log rank test 0.262 - 10000 0.049 - 10000 0.329 - 10000
[0.253;0.271] [0.045;0.053] [0.32;0.338]

Cox model 0.26 -0.01 10000 0.048 0.00 10000 0.327 -0.04 10000
[0.251;0.269] [0.044;0.052] [0.318;0.336]

LR test 0.286 -0.01 10000 0.059 0.00 10000 0.349 -0.04 9999
[0.277;0.295] [0.054;0.064] [0.34;0.358]

GF model 0.222 -0.01 10000 0.048 0.00 10000 0.273 -0.05 9997
[0.214;0.23] [0.044;0.052] [0.264;0.282]

SGF model 0.262 0.01 9986 0.052 0.00 10000 0.345 -0.13 9955
[0.253;0.271] [0.048;0.056] [0.336;0.354]

χ2-test 0.283 0.00 10000 0.04 0.00 10000 0.347 0.02 10000
[0.274;0.292] [0.036;0.044] [0.338;0.356]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.696 0.00 9956 0.788 -0.02 9999 0.695 -0.05 9906
GLM Poisson 0.799 0.01 10000 0.891 -0.02 10000 0.763 -0.05 10000
Log rank test 0.744 - 10000 0.762 - 10000 0.688 - 10000
Cox model 0.742 -0.01 10000 0.760 0.00 10000 0.686 -0.03 10000
LR test 0.755 -0.03 10000 0.779 -0.01 10000 0.698 -0.05 9999
GF model 0.749 -0.14 9995 0.755 -0.13 10000 0.679 -0.16 9995
SGF model 0.694 0.02 9978 0.788 -0.01 10000 0.693 -0.10 9950
χ2-test 0.694 -0.01 10000 0.674 -0.02 10000 0.644 -0.01 10000
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7.3.1.2 Results for the treatment-policy estimand with study dropout of

50% of patients with treatment discontinuation under MCAR

The results for the scenarios under MCAR and with a study dropout of 50% of patients

with treatment discontinuation, φ = 1 and %TDPL
= 20% are listed in table 19 on

page 91. Furthermore, the results for φ = 1 and %TDPL
= 50% are given on page 92

in table 20. Table 21 on page 93 reveals the results of the scenarios with φ = 2 and

%TDPL
= 20%. Finally, scenarios with φ = 2 and %TDPL

= 50% are presented in table

22 on page 94, each under MCAR and a study dropout of 50% of the patients with

treatment discontinuation.

In analogy to the scenarios without study dropout, the single scenario with a di�erence

between dropout rate of the treatment and placebo arm, where a method holds the type

I error rate of lower or equal to 5%, is the scenario with φ = 1 and %TDPL
= 20%

and %TDA
− %TDPL

= −20%. Here, the Log-linear Poisson model and the Shared

gamma frailty model show a type I error rate of 0.048 and 0.044 with a power of 0.998

and 0.996 both with a bias of zero. The scenario under φ = 1, %TDPL
= 20% and

%TDA
− %TDPL

= 0% is acceptably evaluated by the Log-linear Poisson model, the

Gamma frailty model, the Shared gamma frailty model and the χ2-test. The largest

power is provided by the Log-linear Poisson model and the Shared gamma frailty model

with a value of 0.989 and 0.990. In this context, the Log-linear Poisson model estimates

the treatment e�ect without any bias. No method respects a type I error rate of lower or

equal to 5% in a scenario with %TDA
−%TDPL

= +20%. The results for the scenarios with

φ = 1, %TDPL
= 50% behave like the corresponding scenarios without study dropout.

The Shared gamma frailty model and the χ2-test return an acceptable type I error rate

of 0.05 and 0.037 both with zero bias, if %TDA
− %TDPL

= 0%. Hereby, the Shared

gamma frailty model reveals the larger power of 0.947 with a small bias of -0.01. For the

scenarios with φ = 2 and %TDPL
= 20%, one adequate method of evaluation was found

under %TDA
−%TDPL

= 0%. This is the χ2-test with a type I error rate of 0.039 without

any bias and a power of 0.848 with a bias of -0.02. The results of the last scenarios

with φ = 2 and %TDPL
= 50% are similar to those without study dropout. Furthermore,

it is remarkable that the analyses with the Log-linear negative-binomial model and the

Shared gamma frailty model are not equal any more for scenarios with study dropout of

50% patients with treatment discontinuation under MCAR.

The bias of the scenarios with study dropout of 50% of patients with treatment discontin-

uation is visualized in �gure 12, too. In analogy to the scenarios without study dropout,

the bias of scenarios without treatment e�ect is zero, if %TDA
− %TDPL

= 0%. But if

φ = 2, %TDPL
= 50%, the Cox proportional hazards model, the Likelihood ratio test,
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the Gamma frailty model and the Shared gamma frailty model reveal slightly negatively

biased results. The estimated treatment e�ects of the scenarios without overdispersion

are equal in the way that the χ2-test estimates them heavily biased compared to the

other methods, if there is a di�erence between the percentage of patients with treatment

discontinuation between both trial arms. The remaining methods are just slightly biased

with a reversed direction of the bias for the two di�erences of treatment discontinuation

between both trial arms. The scenarios with φ = 2 display a larger variance of the

bias, if %TDA
−%TDPL

= −20% or %TDA
−%TDPL

= +20%, compared to those without

overdispersion. In particular, the χ2-test manifests the most biased estimates in these

scenarios.

Turning over to the scenarios with treatment e�ect and without overdispersion, only

the Log-linear Poisson model returns unbiased estimates of the treatment-policy esti-

mand, if %TDA
− %TDPL

= 0%. In general, the χ2-test again shows the strongest bias

of all methods. But for each method of evaluation, the absolute value of the bias is

larger, if %TDA
−%TDPL

= +20% compared to %TDA
−%TDPL

= −20%. Furthermore,

the direction of the bias is reversed between both di�erences of percentages of treat-

ment discontinuation. The bias of the scenarios with φ = 2 are quite similar to the

corresponding scenarios without study dropout. The Gamma frailty model heavily over-

estimates the true treatment e�ect again. This is also valid for the χ2-test, if φ = 2 and

%TDA
−%TDPL

= +20%.
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Table 19: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 50% of patients,
with MCAR, φ = 1, and %TDPL

= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.044 0.00 6083 0.045 0.00 6418 0.167 -0.01 6756
[0.039;0.049] [0.04;0.05] [0.158;0.176]

GLM Poisson 0.048 0.00 10000 0.050 0.00 10000 0.132 0.00 10000
[0.044;0.052] [0.046;0.054] [0.125;0.139]

Log rank test 0.056 - 10000 0.052 - 10000 0.084 - 10000
[0.051;0.061] [0.048;0.056] [0.079;0.089]

Cox model 0.055 0.01 10000 0.051 0.00 10000 0.083 -0.02 10000
[0.051;0.059] [0.047;0.055] [0.078;0.088]

LR test 0.056 0.01 10000 0.052 0.00 10000 0.084 -0.02 10000
[0.051;0.061] [0.048;0.056] [0.079;0.089]

GF model 0.052 0.01 10000 0.048 0.00 10000 0.081 -0.02 9997
[0.048;0.056] [0.044;0.052] [0.076;0.086]

SGF model 0.044 0.00 9983 0.048 0.00 9996 0.06 -0.01 9987
[0.04;0.048] [0.044;0.052] [0.055;0.065]

χ2-test 0.071 0.12 10000 0.039 0.00 10000 0.242 -0.11 10000
[0.066;0.076] [0.035;0.043] [0.234;0.25]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.997 0.00 6377 0.987 0.00 6718 0.811 0.03 6841
GLM Poisson 0.998 0.00 10000 0.989 0.00 10000 0.839 0.00 10000
Log rank test 0.961 - 10000 0.945 - 10000 0.877 - 10000
Cox model 0.960 0.01 10000 0.945 -0.02 10000 0.876 -0.04 10000
LR test 0.961 0.00 10000 0.945 -0.02 10000 0.884 -0.04 10000
GF model 0.959 -0.01 9990 0.943 -0.04 9989 0.881 -0.05 9982
SGF model 0.996 0.00 10000 0.990 -0.02 10000 0.871 -0.01 10000
χ2-test 0.870 0.02 10000 0.901 -0.09 10000 0.898 -0.21 10000
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Table 20: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 50% of patients,
with MCAR, φ = 1, and %TDPL

= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.129 -0.01 7146 0.046 0.00 7612 0.259 0.00 7837
[0.121;0.137] [0.041;0.051] [0.249;0.269]

GLM Poisson 0.112 0.00 10000 0.055 0.00 10000 0.211 0.00 10000
[0.106;0.118] [0.051;0.059] [0.203;0.219]

Log rank test 0.073 - 10000 0.055 - 10000 0.089 - 10000
[0.068;0.078] [0.051;0.059] [0.083;0.095]

Cox model 0.072 0.00 10000 0.053 0.00 10000 0.088 -0.02 10000
[0.067;0.077] [0.049;0.057] [0.082;0.094]

LR test 0.075 0.00 10000 0.058 0.00 10000 0.089 -0.02 10000
[0.07;0.08] [0.053;0.063] [0.083;0.095]

GF model 0.07 0.00 9998 0.053 0.00 9999 0.085 -0.03 10000
[0.065;0.075] [0.049;0.057] [0.08;0.09]

SGF model 0.053 -0.01 9998 0.05 0.00 10000 0.058 0.00 9999
[0.049;0.057] [0.046;0.054] [0.053;0.063]

χ2-test 0.307 0.15 10000 0.037 0.00 10000 0.411 -0.12 10000
[0.298;0.316] [0.033;0.041] [0.401;0.421]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.863 0.02 7421 0.922 0.00 8064 0.679 0.04 7917
GLM Poisson 0.883 0.00 10000 0.938 0.00 10000 0.699 0.00 10000
Log rank test 0.860 - 10000 0.870 - 10000 0.743 - 10000
Cox model 0.859 0.00 10000 0.868 -0.03 10000 0.741 -0.02 10000
LR test 0.863 0.00 10000 0.871 -0.03 10000 0.750 -0.02 10000
GF model 0.859 -0.02 9989 0.865 -0.05 9995 0.745 -0.04 9992
SGF model 0.896 0.00 10000 0.947 -0.01 10000 0.714 0.03 10000
χ2-test 0.636 0.05 10000 0.746 -0.06 10000 0.746 -0.22 10000
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Table 21: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 50% of patients,
with MCAR, φ = 2, and %TDPL

= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.071 0.00 10000 0.055 0.00 10000 0.213 -0.01 10000
[0.066;0.076] [0.051;0.059] [0.205;0.221]

GLM Poisson 0.184 0.01 10000 0.159 0.00 10000 0.314 -0.02 10000
[0.176;0.192] [0.152;0.166] [0.305;0.323]

Log rank test 0.059 - 10000 0.053 - 10000 0.187 - 10000
[0.054;0.064] [0.049;0.057] [0.179;0.195]

Cox model 0.058 0.03 10000 0.052 -0.01 10000 0.186 -0.02 10000
[0.053;0.063] [0.048;0.056] [0.178;0.194]

LR test 0.072 -0.01 10000 0.065 -0.01 10000 0.189 0.01 10000
[0.067;0.077] [0.06;0.07] [0.181;0.197]

GF model 0.059 -0.01 10000 0.053 -0.01 9999 0.163 0.00 9999
[0.054;0.064] [0.049;0.057] [0.156;0.17]

SGF model 0.061 0.01 10000 0.054 -0.01 10000 0.189 -0.04 10000
[0.056;0.066] [0.05;0.058] [0.181;0.197]

χ2-test 0.064 0.06 10000 0.039 0.00 10000 0.206 -0.08 10000
[0.059;0.069] [0.035;0.043] [0.198;0.214]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.920 0.00 10000 0.874 -0.01 10000 0.850 -0.02 10000
GLM Poisson 0.972 0.01 10000 0.958 -0.01 10000 0.901 -0.03 10000
Log rank test 0.915 - 10000 0.892 - 10000 0.830 - 10000
Cox model 0.912 0.03 10000 0.890 0.00 10000 0.828 -0.03 10000
LR test 0.930 -0.03 10000 0.906 -0.04 10000 0.838 -0.05 10000
GF model 0.907 -0.15 10000 0.884 -0.15 9999 0.826 -0.16 9999
SGF model 0.899 0.01 10000 0.888 -0.02 10000 0.834 -0.07 10000
χ2-test 0.833 0.06 10000 0.848 -0.02 10000 0.782 -0.12 10000
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Table 22: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 50% of patients,
with MCAR, φ = 2, and %TDPL

= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.239 0.00 9998 0.055 0.00 10000 0.33 -0.01 9997
[0.231;0.247] [0.051;0.059] [0.321;0.339]

GLM Poisson 0.348 0.02 10000 0.141 0.00 10000 0.417 -0.03 10000
[0.339;0.357] [0.134;0.148] [0.407;0.427]

Log rank test 0.192 - 10000 0.048 - 10000 0.282 - 10000
[0.184;0.2] [0.044;0.052] [0.273;0.291]

Cox model 0.19 0.03 10000 0.047 0.00 10000 0.28 -0.04 10000
[0.182;0.198] [0.043;0.051] [0.271;0.289]

LR test 0.197 -0.03 10000 0.059 0.00 10000 0.277 -0.03 9999
[0.189;0.205] [0.054;0.064] [0.268;0.286]

GF model 0.166 -0.02 9999 0.05 0.00 10000 0.236 -0.05 9998
[0.159;0.173] [0.046;0.054] [0.228;0.244]

SGF model 0.185 -0.02 10000 0.051 0.00 10000 0.274 -0.09 9999
[0.177;0.193] [0.047;0.055] [0.265;0.283]

χ2-test 0.260 0.06 10000 0.038 0.00 10000 0.339 -0.12 10000
[0.251;0.269] [0.034;0.042] [0.33;0.348]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.812 -0.01 9995 0.782 -0.02 10000 0.735 -0.02 9994
GLM Poisson 0.879 0.01 10000 0.899 -0.02 10000 0.797 -0.05 10000
Log rank test 0.781 - 10000 0.789 - 10000 0.709 - 10000
Cox model 0.779 0.04 10000 0.786 0.02 10000 0.707 -0.02 10000
LR test 0.807 -0.06 10000 0.807 -0.05 10000 0.715 -0.07 9997
GF model 0.782 -0.16 9998 0.786 -0.15 9999 0.699 -0.18 10000
SGF model 0.764 -0.03 10000 0.801 -0.03 10000 0.709 -0.11 10000
χ2-test 0.601 0.03 10000 0.686 -0.03 10000 0.617 -0.19 10000
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7.3.1.3 Results for the treatment-policy estimand with study dropout of

100% with treatment discontinuation under MCAR

The results for this section are based on MCAR and on a study dropout of 100% of

patients with treatment discontinuation. They are provided in table 23 on page 96, if

φ = 1 and %TDPL
= 20%. If φ = 1 and %TDPL

= 50%, table 24 on page 97 contains the

relevant results. Furthermore, for the scenarios φ = 2 and %TDPL
= 20%, the results

are provided in table 25 on page 98. The results for the scenarios with φ = 2 and

%TDPL
= 50% are collected in table 26 on page 99.

The type I error rate and power of methods, which are used for the evaluation of scenarios

with study dropout of 100%, are equal to the results of the scenarios of the hypothetical

estimand under MCAR. Just bias calculations di�er. These are presented in �gure 12

which reveals, that the bias increases the more patients drop out of the study in the

scenarios with %TDA
− %TDPL

= −20% or %TDA
− %TDPL

= +20%. Additionally, in

the scenarios with a study dropout of 100% of patients with treatment discontinuation,

the absolute value of the bias is larger, if %TDA
−%TDPL

= +20% compared to %TDA
−

%TDPL
= −20%.

The bias of the scenarios without treatment e�ect and without di�erence between the

percentage of patients with treatment discontinuation in both trial groups is equivalent

to those of the corresponding scenarios without treatment e�ect, %TDA
−%TDPL

= 0%

and study dropout of 50% of the patients with treatment discontinuation. In the case of

study dropout of 100% of patients with treatment discontinuation, the Shared gamma

frailty model manifests the smallest bias, whereas the χ2-test provides the most biased

estimates.

Concerning the scenarios with treatment e�ect, only the Likelihood ratio test and the

Gamma frailty model provide a unbiased treatment e�ect estimate under %TDA
−%TDPL

=

0%. If φ = 2, %TDPL
= 20% and %TDA

−%TDPL
= +20%, just the Gamma frailty model

returns a correct estimation of the treatment-policy estimand. In the remaining scenar-

ios, calculated treatment e�ects are always biased. Hereby, the estimates of the χ2-test

are heavily overestimated, if %TDA
−%TDPL

= +20%.
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Table 23: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 100% of patients,
with MCAR, φ = 1, and %TDPL

= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.039 0.09 5783 0.045 0.00 5800 0.046 -0.11 5846
[0.034;0.044] [0.04;0.05] [0.041;0.051]

GLM Poisson 0.049 0.09 10000 0.051 0.00 10000 0.051 -0.11 10000
[0.045;0.053] [0.047;0.055] [0.047;0.055]

Log rank test 0.066 - 10000 0.051 - 10000 0.314 - 10000
[0.061;0.071] [0.047;0.055] [0.305;0.323]

Cox model 0.065 -0.05 10000 0.051 0.00 10000 0.313 0.14 10000
[0.06;0.07] [0.047;0.055] [0.304;0.322]

LR test 0.064 -0.05 10000 0.047 0.00 10000 0.237 0.09 10000
[0.059;0.069] [0.043;0.051] [0.229;0.245]

GF model 0.06 -0.05 9999 0.044 0.00 10000 0.172 0.08 9778
[0.055;0.065] [0.04;0.048] [0.165;0.179]

SGF model 0.045 0.00 9982 0.047 0.00 10000 0.049 -0.01 9985
[0.041;0.049] [0.043;0.051] [0.045;0.053]

χ2-test 0.179 0.26 10000 0.039 0.00 10000 0.389 -0.32 10000
[0.171;0.187] [0.035;0.043] [0.379;0.399]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.996 0.09 5971 0.995 -0.06 5936 0.923 -0.23 5877
GLM Poisson 0.996 0.09 10000 0.995 -0.06 10000 0.920 -0.24 10000
Log rank test 0.988 - 10000 0.948 - 10000 0.837 - 10000
Cox model 0.988 -0.06 10000 0.948 -0.02 10000 0.837 0.16 10000
LR test 0.988 -0.05 10000 0.946 -0.01 10000 0.805 0.09 10000
GF model 0.986 -0.06 10000 0.942 -0.01 10000 0.807 0.04 9225
SGF model 0.996 -0.01 10000 0.994 -0.06 9999 0.920 -0.13 9999
χ2-test 0.697 0.16 10000 0.917 -0.10 10000 0.818 -0.52 10000
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Table 24: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 100% of patients,
with MCAR, φ = 1, and %TDPL

= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.044 0.11 5857 0.047 0.00 6008 0.042 -0.18 5865
[0.039;0.049] [0.042;0.052] [0.037;0.047]

GLM Poisson 0.048 0.12 10000 0.052 0.00 10000 0.044 -0.18 10000
[0.044;0.052] [0.048;0.056] [0.04;0.048]

Log rank test 0.303 - 10000 0.053 - 10000 0.519 - 10000
[0.294;0.312] [0.049;0.057] [0.509;0.529]

Cox model 0.302 -0.01 10000 0.052 0.00 10000 0.518 0.23 10000
[0.293;0.311] [0.048;0.056] [0.508;0.528]

LR test 0.224 -0.04 10000 0.042 -0.00 10000 0.359 0.13 10000
[0.216;0.232] [0.038;0.046] [0.35;0.368]

GF model 0.191 -0.05 9802 0.04 0.00 9998 0.286 0.12 9491
[0.183;0.199] [0.036;0.044] [0.277;0.295]

SGF model 0.045 -0.02 9993 0.048 0.00 9995 0.043 -0.03 9994
[0.041;0.049] [0.044;0.052] [0.039;0.047]

χ2-test 0.769 0.23 10000 0.043 0.00 10000 0.736 -0.47 10000
[0.761;0.777] [0.039;0.047] [0.727;0.745]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.933 0.03 5963 0.981 -0.15 6038 0.819 -0.41 5858
GLM Poisson 0.936 0.03 10000 0.984 -0.16 10000 0.822 -0.41 10000
Log rank test 0.863 - 10000 0.876 - 10000 0.713 - 10000
Cox model 0.863 0.01 10000 0.874 -0.02 10000 0.712 0.29 10000
LR test 0.858 -0.03 10000 0.858 0.00 10000 0.668 0.17 10000
GF model 0.880 -0.07 9449 0.847 0.00 9996 0.707 0.12 8544
SGF model 0.934 -0.10 9995 0.983 -0.13 10000 0.820 -0.24 9992
χ2-test 0.325 0.07 10000 0.837 -0.13 10000 0.642 -0.74 10000
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Table 25: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 100% of patients,
with MCAR, φ = 2, and %TDPL

= 20%

%TDPL
= 20%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.05 0.08 10000 0.051 0.00 10000 0.049 -0.12 10000
[0.046;0.054] [0.047;0.055] [0.045;0.053]

GLM Poisson 0.163 0.08 10000 0.16 0.00 10000 0.142 -0.12 10000
[0.156;0.17] [0.153;0.167] [0.135;0.149]

Log rank test 0.077 - 10000 0.052 - 10000 0.299 - 10000
[0.072;0.082] [0.048;0.056] [0.29;0.308]

Cox model 0.077 -0.07 10000 0.052 -0.01 10000 0.298 0.19 10000
[0.072;0.082] [0.048;0.056] [0.289;0.307]

LR test 0.093 -0.08 10000 0.061 -0.01 10000 0.286 0.15 10000
[0.087;0.099] [0.056;0.066] [0.277;0.295]

GF model 0.072 -0.07 10000 0.052 -0.01 10000 0.211 0.13 9649
[0.067;0.077] [0.048;0.056] [0.203;0.219]

SGF model 0.05 -0.01 10000 0.051 -0.01 10000 0.049 0.01 10000
[0.046;0.054] [0.047;0.055] [0.045;0.053]

χ2-test 0.11 0.17 10000 0.042 0.00 10000 0.322 -0.28 10000
[0.104;0.116] [0.038;0.046] [0.313;0.331]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.915 0.09 10000 0.903 -0.06 10000 0.836 -0.23 10000
GLM Poisson 0.971 0.09 10000 0.968 -0.06 10000 0.897 -0.23 10000
Log rank test 0.961 - 10000 0.890 - 10000 0.831 - 10000
Cox model 0.960 -0.07 10000 0.889 -0.01 10000 0.830 0.18 10000
LR test 0.970 -0.10 10000 0.898 -0.02 10000 0.815 0.11 10000
GF model 0.953 -0.19 10000 0.884 -0.10 10000 0.828 0.00 9472
SGF model 0.915 -0.01 10000 0.903 -0.05 10000 0.836 -0.13 10000
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Table 26: Comparison of methods estimating the treatment-policy estimand for scenarios with study dropout of 100% of patients,
with MCAR, φ = 2, and %TDPL

= 50%

%TDPL
= 50%

%TDA
−%TDPL

= −20% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +20%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.05 0.12 10000 0.05 0.00 10000 0.047 -0.18 10000
[0.046;0.054] [0.046;0.054] [0.043;0.051]

GLM Poisson 0.139 0.12 10000 0.15 0.00 10000 0.117 -0.18 10000
[0.132;0.146] [0.143;0.157] [0.111;0.123]

Log rank test 0.364 - 10000 0.049 - 10000 0.513 - 10000
[0.355;0.373] [0.045;0.053] [0.503;0.523]

Cox model 0.362 -0.02 10000 0.048 0.00 10000 0.511 0.27 9999
[0.353;0.371] [0.044;0.052] [0.501;0.521]

LR test 0.356 -0.07 10000 0.051 0.00 10000 0.455 0.19 9999
[0.347;0.365] [0.047;0.055] [0.445;0.465]

GF model 0.29 -0.07 9726 0.044 0.00 10000 0.362 0.16 9300
[0.281;0.299] [0.04;0.048] [0.352;0.372]

SGF model 0.05 -0.03 10000 0.049 0.00 10000 0.047 -0.03 10000
[0.046;0.054] [0.045;0.053] [0.043;0.051]

χ2-test 0.558 0.13 10000 0.038 0.00 10000 0.599 -0.42 10000
[0.548;0.568] [0.034;0.042] [0.589;0.609]

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.834 0.03 10000 0.854 -0.16 10000 0.723 -0.42 10000
GLM Poisson 0.906 0.03 10000 0.941 -0.16 10000 0.794 -0.42 10000
Log rank test 0.861 - 10000 0.794 - 10000 0.734 - 10000
Cox model 0.860 -0.01 10000 0.792 -0.01 10000 0.733 0.31 10000
LR test 0.862 -0.08 10000 0.794 -0.02 10000 0.697 0.18 9999
GF model 0.874 -0.15 9578 0.778 -0.05 9997 0.741 0.10 8871
SGF model 0.835 -0.11 10000 0.854 -0.13 10000 0.724 -0.25 10000
χ2-test 0.376 0.04 10000 0.783 -0.11 10000 0.661 -0.64 10000
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Figure 12: Bias of the Log-linear negative-binomial model (GLM NB), Log-linear Poisson model (GLM Poisson), Cox proportional
hazards model (Cox model), Likelihood ratio test (LR test), Gamma frailty model (GF model), Shared gamma frailty model (SGF
model) and χ2-test for treatment-policy estimand depending on the percentage of patients with treatment discontinuation in placebo
group (%TDPL

), the di�erence of patients with treatment discontinuation between both trial arms (%TDA
− %TDPL

) and φ under
MCAR
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Chapter 7 Results

7.3.2 Results for the treatment-policy estimand with treatment discontinu-

ation mechanism MNAR

7.3.2.1 Results for the treatment-policy estimand without study dropout

with treatment discontinuation mechanism MNAR

The results of the scenarios of the treatment-policy estimand without study dropout

under MNAR, φ = 1 and %TDPL
= 27% are listed in table 27 on page 103. For scenarios

with φ = 1 %TDPL
= 60%, table 28 on page 104 shows the results. Furthermore, the

results of the scenarios φ = 2 and %TDPL
= 28% are collected in table 29 on page 105.

Table 30 on page 106 contains the results for the scenarios with φ = 2 and %TDPL
= 60%.

In general, the results of the scenarios under MNAR are similar to those under MCAR

concerning the type I error rate. The χ2-test is a method which always provides an

acceptable type I error rate, if %TDA
−%TDPL

= 0%. Thus, the methods do not deliver

a wrong test decision in more than 5% of all test decisions only in scenarios without any

di�erence between the percentages of patients with treatment discontinuation in both

trial arms. If there is such a discrepancy between both trials arms, don't matter which

direction, no method respects the type I error rate. This is true for all scenarios of the

treatment-policy estimand under MNAR. Additionally, it can be observed for all these

scenarios that the type I error rate gets larger if more patients discontinue treatment,

dropout out of the study and show individual frailties. For the scenarios under MNAR

without study dropout, φ = 1, %TDPL
= 27% and %TDA

−%TDPL
= 0%, the Log-linear

Poisson model, the Log rank test, the Cox proportional hazards model, the Gamma

frailty model, the Shared gamma frailty model and the χ2-test return an acceptable type

I error rates. But not each method provides an unbiased estimate as it was the case

in scenarios under MCAR. The Log-linear Poisson model possesses the largest power

of 0.976 with zero bias. This is also valid under the scenario φ = 1, %TDPL
= 60%

and %TDA
−%TDPL

= 0%. But hereby, only the Log-linear Poisson-model, the Gamma

frailty model, the Shared gamma frailty model and the χ2-test return some acceptable

type I error rates, each with a bias of zero. The method with the largest power 0.769

and the smallest bias of 0.01 is again the Log-linear Poisson model. For the scenarios

with φ = 2, %TDPL
= 28% and %TDA

− %TDPL
= 0%, the Log rank test, the Cox

proportional hazards model, the Gamma frailty model and the χ2-test show a type I

error rate lower than 5%. They represent a value of 0.048 for Log rank test, a value of

0.048 for the Cox proportional hazards model, a value of 0.047 for the Gamma frailty

model and a value of 0.041 for the χ2-test. In analogy to the corresponding scenarios

without overdispersion, some methods don't deliver an unbiased estimate. The Log rank

test and the Cox proportional hazards model manifest the largest power of 0.850 or 0.848,
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respectively. Their estimates are unbiased. In the last scenario without study dropout

under MNAR, with φ = 2, %TDPL
= 60% and %TDA

−%TDPL
= 0%, the Log rank test,

the Cox proportional hazards model, the Gamma frailty model and the χ2-test hold the

type I error rate of lower than 5%. The type I error rate of the Log rank test, of the

Cox proportional hazards model and of the Gamma frailty model represents a value of

0.045 with zero bias. The type I error rate of the χ2-test has a value of 0.039 with a

bias of zero. Again, the Log rank test and the Cox proportional hazards model reveal

the maximal power of 0.657 or 0.653 without any bias. As the Log rank test and the

Cox proportional hazards model are actually the same procedure if only one covariate

is used. The di�erences between the results of these two methods are caused by the

implementations in the statistical software R.

In �gure 13 the bias of each method is visualized for each scenario without study dropout

under MNAR. These results do not di�er heavily from those already described in the

context of the bias description of the scenarios without study dropout under MCAR in

section 7.3.1.1. However, there are some di�erences. In the scenarios without overdis-

persion, the Log-linear Poisson model shows a large negative bias if there is a negative

di�erence between the percentages of patients with treatment discontinuation between

the treatment and the placebo group. Focusing on the scenarios with φ = 2, the Shared

gamma frailty model underestimates the true treatment e�ect if there is a negative dif-

ference between the percentage of patients with treatment discontinuation in treatment

and placebo arm. But in contrast to the MCAR, if this di�erence is positive, this model

no longer reveals such a heavy bias.
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Table 27: Comparison of methods estimating the tr.-policy for scenarios without study dropout, MNAR, φ = 1, %TDPL
= 27%

%TDPL
= 27%

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +23%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.15 -0.09 4953 0.042 0.00 4314 0.137 -0.05 5053
[0.14;0.16] [0.036;0.048] [0.128;0.146]

GLM Poisson 0.152 -0.09 10000 0.045 0.00 10000 0.144 -0.05 10000
[0.145;0.159] [0.041;0.049] [0.137;0.151]

Log rank test 0.07 - 10000 0.05 - 10000 0.092 - 10000
[0.065;0.075] [0.046;0.054] [0.086;0.098]

Cox model 0.068 0.02 10000 0.05 0.01 10000 0.091 -0.03 10000
[0.063;0.073] [0.046;0.054] [0.085;0.097]

LR test 0.071 0.02 10000 0.052 0.01 10000 0.096 -0.03 10000
[0.066;0.076] [0.048;0.056] [0.09;0.102]

GF model 0.066 0.02 10000 0.048 0.01 10000 0.086 -0.03 10000
[0.061;0.071] [0.044;0.052] [0.081;0.091]

SGF model 0.147 0.06 9949 0.044 0.01 9999 0.139 0.00 9975
[0.14;0.154] [0.04;0.048] [0.132;0.146]

χ2-test 0.056 0.04 10000 0.041 0.00 10000 0.079 -0.06 10000
[0.051;0.061] [0.037;0.045] [0.074;0.084]

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +18%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.973 -0.09 4966 0.975 0.00 4746 0.843 -0.04 5015
GLM Poisson 0.974 -0.09 10000 0.976 0.00 10000 0.850 -0.04 10000
Log rank test 0.928 - 10000 0.917 - 10000 0.819 - 10000
Cox model 0.927 0.01 10000 0.916 0.01 10000 0.817 -0.03 10000
LR test 0.930 0.01 10000 0.918 0.00 10000 0.818 -0.03 10000
GF model 0.923 -0.02 10000 0.912 -0.02 10000 0.808 -0.04 10000
SGF model 0.972 0.05 10000 0.975 0.03 9999 0.847 0.02 10000
χ2-test 0.887 -0.07 10000 0.868 -0.08 10000 0.736 -0.13 10000103
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Table 28: Comparison of methods estimating the tr.-policy for scenarios without study dropout, MNAR, φ = 1, %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.353 -0.13 4819 0.044 0.00 3816 0.195 -0.08 4904
[0.34;0.366] [0.037;0.051] [0.184;0.206]

GLM Poisson 0.362 -0.13 10000 0.043 0.00 10000 0.202 -0.08 10000
[0.353;0.371] [0.039;0.047] [0.194;0.21]

Log rank test 0.136 - 10000 0.052 - 10000 0.109 - 10000
[0.129;0.143] [0.048;0.056] [0.103;0.115]

Cox model 0.134 -0.01 10000 0.051 0.00 10000 0.107 -0.04 10000
[0.127;0.141] [0.047;0.055] [0.101;0.113]

LR test 0.14 -0.01 10000 0.054 0.00 10000 0.112 -0.04 10000
[0.133;0.147] [0.05;0.058] [0.106;0.118]

GF model 0.13 -0.01 10000 0.05 0.00 10000 0.104 -0.04 10000
[0.123;0.137] [0.046;0.054] [0.098;0.11]

SGF model 0.356 0.05 9977 0.042 0.00 9997 0.198 0.01 9993
[0.347;0.365] [0.038;0.046] [0.19;0.206]

χ2-test 0.116 0.01 10000 0.041 0.00 10000 0.088 -0.06 10000
[0.11;0.122] [0.037;0.045] [0.082;0.094]

%TDA
−%TDPL

= −26% %TDA
−%TDPL

= −6% %TDA
−%TDPL

= +14%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.667 -0.12 4380 0.760 0.01 4110 0.456 -0.07 4437
GLM Poisson 0.672 -0.12 10000 0.769 0.01 10000 0.449 -0.07 10000
Log rank test 0.705 - 10000 0.736 - 10000 0.541 - 10000
Cox model 0.703 -0.01 10000 0.734 0.01 10000 0.539 -0.03 10000
LR test 0.708 -0.01 10000 0.739 0.01 10000 0.541 -0.03 10000
GF model 0.693 -0.03 10000 0.724 -0.01 10000 0.525 -0.05 10000
SGF model 0.668 0.07 9994 0.767 0.06 9995 0.446 0.05 9995
χ2-test 0.608 -0.07 10000 0.618 -0.05 10000 0.421 -0.11 10000104
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Table 29: Comparison of methods estimating the tr.-policy for scenarios without study dropout, MNAR, φ = 2, %TDPL
= 28%

%TDPL
= 28%

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +22%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.298 0.00 10000 0.053 0.00 10000 0.367 0.00 9940
[0.289;0.307] [0.049;0.057] [0.358;0.376]

GLM Poisson 0.46 0.00 10000 0.114 0.00 10000 0.486 0.00 10000
[0.45;0.47] [0.108;0.12] [0.476;0.496]

Log rank test 0.106 - 10000 0.048 - 10000 0.259 - 10000
[0.1;0.112] [0.044;0.052] [0.25;0.268]

Cox model 0.104 0.01 10000 0.048 0.01 10000 0.257 -0.02 10000
[0.098;0.11] [0.044;0.052] [0.248;0.266]

LR test 0.128 0.01 10000 0.059 0.01 10000 0.274 -0.02 9999
[0.121;0.135] [0.054;0.064] [0.265;0.283]

GF model 0.097 0.02 10000 0.047 0.01 10000 0.222 -0.02 9997
[0.091;0.103] [0.043;0.051] [0.214;0.23]

SGF model 0.298 0.15 10000 0.053 0.01 10000 0.362 -0.01 9980
[0.289;0.307] [0.049;0.057] [0.353;0.371]

χ2-test 0.1 0.00 10000 0.041 0.00 10000 0.273 0.03 10000
[0.094;0.106] [0.037;0.045] [0.264;0.282]

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +17%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.614 0.00 10000 0.844 0.00 10000 0.622 -0.01 9936
GLM Poisson 0.756 0.00 10000 0.921 0.00 10000 0.730 0.00 10000
Log rank test 0.833 - 10000 0.850 - 10000 0.755 - 10000
Cox model 0.832 0.00 10000 0.848 0.00 10000 0.753 -0.03 10000
LR test 0.850 -0.02 10000 0.863 -0.02 10000 0.766 -0.05 10000
GF model 0.829 -0.14 10000 0.843 -0.13 10000 0.745 -0.16 9986
SGF model 0.614 0.13 10000 0.844 0.02 10000 0.622 0.00 9986
χ2-test 0.792 -0.01 10000 0.805 -0.01 10000 0.724 0.00 10000105
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Table 30: Comparison of methods estimating the tr.-policy for scenarios without study dropout, MNAR, φ = 2, %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.600 0.00 9772 0.052 0.00 9852 0.489 -0.01 9482
[0.59;0.61] [0.048;0.056] [0.479;0.499]

GLM Poisson 0.653 0.00 10000 0.079 0.00 10000 0.562 0.00 10000
[0.644;0.662] [0.074;0.084] [0.552;0.572]

Log rank test 0.363 - 10000 0.046 - 10000 0.398 - 10000
[0.354;0.372] [0.042;0.05] [0.388;0.408]

Cox model 0.361 -0.01 10000 0.045 0.00 10000 0.395 -0.03 10000
[0.352;0.37] [0.041;0.049] [0.385;0.405]

LR test 0.385 0.00 9999 0.054 0.00 10000 0.416 -0.04 9999
[0.375;0.395] [0.05;0.058] [0.406;0.426]

GF model 0.315 0.02 10000 0.045 0.00 10000 0.345 -0.03 9999
[0.306;0.324] [0.041;0.049] [0.336;0.354]

SGF model 0.582 0.17 9952 0.052 0.00 9998 0.492 0.02 9898
[0.572;0.592] [0.048;0.056] [0.482;0.502]

χ2-test 0.374 0.02 10000 0.039 0.00 10000 0.407 0.04 10000
[0.365;0.383] [0.035;0.043] [0.397;0.417]

%TDA
−%TDPL

= −25% %TDA
−%TDPL

= −5% %TDA
−%TDPL

= +15%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.364 -0.01 9764 0.618 0.00 9897 0.382 -0.03 9439
GLM Poisson 0.445 0.00 10000 0.695 0.00 10000 0.441 0.00 10000
Log rank test 0.579 - 10000 0.657 - 10000 0.548 - 10000
Cox model 0.576 -0.02 10000 0.653 0.00 10000 0.546 -0.04 10000
LR test 0.589 -0.03 10000 0.675 -0.01 10000 0.552 -0.06 10000
GF model 0.576 -0.13 9997 0.654 -0.12 10000 0.529 -0.16 9994
SGF model 0.366 0.17 9972 0.622 0.04 10000 0.386 0.04 9922
χ2-test 0.546 -0.01 10000 0.564 -0.02 10000 0.520 0.00 10000106
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7.3.2.2 Results for the treatment-policy estimand study dropout of 50% of

patients with treatment discontinuation with MNAR

The table 31 on page 109 shows the results for the scenarios under MNAR, with study

dropout of 50% of the patients with treatment discontinuation, φ = 1 and %TDPL
= 27%.

The results for the corresponding scenarios with φ = 1 and %TDPL
= 60% are listed in

table 32 on page 110. In table 33 on page 111, the results of the scenarios with φ = 2

and %TDPL
= 28% are collected. The results of φ = 2 and %TDPL

= 60% are provided

in table 34 on page 112.

If φ = 1, %TDPL
= 27% and %TDA

− %TDPL
= 0%, the type I error rate of each

interpretable method denotes a value smaller than 5%. But only the Log-linear Poisson

model and the χ2−test provide a bias of zero. The Log-linear Poisson model and the

Shared gamma frailty model possess the largest power with a value of 0.980 for the Log-

linear Poisson Model and a value of 0.981 for the Gamma frailty model. Both methods

estimate the treatment e�ect without any bias. In the scenario with φ = 1, %TDPL
= 60%

and %TDA
−%TDPL

= 0%, the type I error rate of the Cox proportional hazards model,

the Gamma frailty model, the Shared gamma frailty model and of the χ2−test are smaller
than 5%. Each of these methods reveals a bias of zero. The Shared gamma frailty model

returns the largest power. If φ = 2, %TDPL
= 28% and %TDA

−%TDPL
= 0%, the Log

rank test, the Cox proportional hazards model, the Gamma frailty model and the χ2-

test reveal an acceptable type I error rate. The Log rank test and the Cox proportional

hazards model manifest the largest power with a value of 0.862 and 0.860 respectively.

Both methods show the same bias with a value of -0.02. The last scenario under MNAR

and with a study dropout of 50%, where an acceptable type I error rate is found, has the

conditions of φ = 2, %TDPL
= 60% and %TDA

−%TDPL
= 0%. In this context, the Log

rank test, the Cox proportional hazards model, the Gamma frailty model, the Shared

gamma frailty model and the χ2-test hold the requirement of a type I error rate lower

than 5%. These have a value of 0.045 for the Log rank test, and a value of 0.044 with

a bias of 0.01 for the Cox proportional hazards model and the Gamma frailty model.

The type I error rate of the Shared gamma frailty model is 0.05 with a bias of 0.01.

The χ2-test delivers a type I error rate of 0.035 without bias. Hereby the Log rank

test possesses the maximal power of these methods with a value of 0.696. Actually, the

Cox proportional hazards model should obtain the same power, but because of di�erent

implementations in the statistical software a little di�erent value of 0.693 with a bias of

-0.04 results.

The results for the bias of the methods are similar to those in the MCAR case. The

results under MNAR are plotted in �gure 13. In analogy to the scenarios without study
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dropout, the Log-linear Poisson model clearly overestimates the true treatment e�ect in

scenarios without overdispersion and a negative di�erence between the di�erence of pa-

tients with treatment discontinuation in both trial groups. One further parallelism to the

scenarios without study dropout exists in the way that the Shared gamma frailty model

underestimates the treatment-policy estimand if this di�erence is negative. Otherwise,

if it is positive, this model reveals a positive bias.
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Table 31: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 50%, MNAR, φ = 1, %TDPL
= 27%

%TDPL
= 27%

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +23%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.057 -0.09 5656 0.049 0.00 5578 0.259 -0.05 6586
[0.051;0.063] [0.043;0.055] [0.248;0.27]

GLM Poisson 0.066 -0.09 10000 0.049 0.00 10000 0.206 -0.05 10000
[0.061;0.071] [0.045;0.053] [0.198;0.214]

Log rank test 0.063 - 10000 0.049 - 10000 0.079 - 10000
[0.058;0.068] [0.045;0.053] [0.074;0.084]

Cox model 0.062 0.01 10000 0.049 0.01 10000 0.078 -0.03 10000
[0.057;0.067] [0.045;0.053] [0.073;0.083]

LR test 0.064 0.01 10000 0.05 0.01 10000 0.079 -0.03 10000
[0.059;0.069] [0.046;0.054] [0.074;0.084]

GF model 0.059 0.01 10000 0.047 0.01 9999 0.074 -0.03 9999
[0.054;0.064] [0.043;0.051] [0.069;0.079]

SGF model 0.097 0.03 9996 0.046 0.01 9997 0.081 0.02 9999
[0.091;0.103] [0.042;0.05] [0.076;0.086]

χ2-test 0.115 0.14 10000 0.037 0.00 10000 0.298 -0.16 10000
[0.109;0.121] [0.033;0.041] [0.289;0.307]

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +18%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.994 -0.09 5808 0.977 0.01 6056 0.775 -0.01 6428
GLM Poisson 0.993 -0.09 10000 0.980 0.00 10000 0.800 -0.04 10000
Log rank test 0.933 - 10000 0.930 - 10000 0.823 - 10000
Cox model 0.932 0.00 10000 0.929 -0.02 10000 0.821 -0.04 10000
LR test 0.934 0.00 10000 0.931 -0.02 10000 0.831 -0.05 10000
GF model 0.930 -0.02 9989 0.926 -0.04 9990 0.825 -0.06 9990
SGF model 0.983 0.02 10000 0.981 0.00 9999 0.789 0.02 9998
χ2-test 0.780 0.04 10000 0.865 -0.07 10000 0.824 -0.22 10000109
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Table 32: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 50%, MNAR, φ = 1, %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.193 -0.14 7017 0.047 0.00 7035 0.416 -0.08 7973
[0.184;0.202] [0.042;0.052] [0.405;0.427]

GLM Poisson 0.17 -0.13 10000 0.051 0.00 10000 0.371 -0.08 10000
[0.163;0.177] [0.047;0.055] [0.362;0.38]

Log rank test 0.11 - 10000 0.052 - 10000 0.094 - 10000
[0.104;0.116] [0.048;0.056] [0.088;0.1]

Cox model 0.109 -0.02 10000 0.05 0.00 10000 0.093 -0.04 10000
[0.103;0.115] [0.046;0.054] [0.087;0.099]

LR test 0.114 -0.02 10000 0.054 0.00 10000 0.096 -0.04 10000
[0.108;0.12] [0.05;0.058] [0.09;0.102]

GF model 0.109 -0.01 9998 0.048 0.00 9994 0.09 -0.04 9999
[0.103;0.115] [0.044;0.052] [0.084;0.096]

SGF model 0.211 0.03 9996 0.048 0.00 9998 0.157 0.04 9997
[0.203;0.219] [0.044;0.052] [0.15;0.164]

χ2-test 0.487 0.13 10000 0.038 0.00 10000 0.48 -0.19 10000
[0.477;0.497] [0.034;0.042] [0.47;0.49]

%TDA
−%TDPL

= −26% %TDA
−%TDPL

= −6% %TDA
−%TDPL

= +14%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.819 -0.12 7147 0.815 0.00 7672 0.647 -0.04 7872
GLM Poisson 0.835 -0.12 10000 0.834 0.01 10000 0.652 -0.07 10000
Log rank test 0.716 - 10000 0.776 - 10000 0.556 - 10000
Cox model 0.714 -0.03 10000 0.774 -0.03 10000 0.555 -0.06 10000
LR test 0.721 -0.03 10000 0.779 -0.03 10000 0.566 -0.06 10000
GF model 0.712 -0.05 9995 0.772 -0.05 9996 0.559 -0.08 9993
SGF model 0.726 0.02 10000 0.827 0.01 10000 0.456 0.04 10000
χ2-test 0.393 0.06 10000 0.580 -0.02 10000 0.587 -0.24 10000110
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Table 33: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 50%, MNAR, φ = 2, %TDPL
= 28%

%TDPL
= 28%

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +22%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.17 -0.02 10000 0.054 0.00 10000 0.296 0.00 9998
[0.163;0.177] [0.05;0.058] [0.287;0.305]

GLM Poisson 0.333 0.00 10000 0.118 0.00 10000 0.421 0.00 10000
[0.324;0.342] [0.112;0.124] [0.411;0.431]

Log rank test 0.082 - 10000 0.047 - 10000 0.226 - 10000
[0.077;0.087] [0.043;0.051] [0.218;0.234]

Cox model 0.081 0.00 10000 0.046 0.00 10000 0.224 0.03 10000
[0.076;0.086] [0.042;0.05] [0.216;0.232]

LR test 0.093 -0.01 10000 0.057 0.00 10000 0.229 0.04 9999
[0.087;0.099] [0.052;0.062] [0.221;0.237]

GF model 0.077 0.01 9998 0.046 0.00 10000 0.199 0.03 10000
[0.072;0.082] [0.042;0.05] [0.191;0.207]

SGF model 0.204 0.10 10000 0.051 -0.00 10000 0.279 0.06 10000
[0.196;0.212] [0.047;0.055] [0.27;0.288]

χ2-test 0.112 0.08 10000 0.042 0.00 10000 0.265 -0.11 10000
[0.106;0.118] [0.038;0.046] [0.256;0.274]

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +17%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.761 -0.03 10000 0.848 0.00 10000 0.708 0.00 9994
GLM Poisson 0.843 0.00 10000 0.929 0.00 10000 0.786 0.00 10000
Log rank test 0.853 - 10000 0.862 - 10000 0.758 - 10000
Cox model 0.852 -0.01 10000 0.860 -0.02 10000 0.756 0.01 10000
LR test 0.875 -0.04 10000 0.878 -0.04 10000 0.770 0.00 10000
GF model 0.845 -0.15 10000 0.856 -0.16 10000 0.752 -0.11 10000
SGF model 0.698 0.08 10000 0.856 -0.01 10000 0.659 0.05 10000
χ2-test 0.720 0.07 10000 0.805 -0.01 10000 0.692 -0.12 10000111
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Table 34: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 50%, MNAR, φ = 2, %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.431 -0.03 9989 0.056 0.00 9994 0.471 0.00 9983
[0.421;0.441] [0.051;0.061] [0.461;0.481]

GLM Poisson 0.551 0.00 10000 0.087 0.00 10000 0.559 0.00 10000
[0.541;0.561] [0.081;0.093] [0.549;0.569]

Log rank test 0.282 - 10000 0.045 - 10000 0.349 - 10000
[0.273;0.291] [0.041;0.049] [0.34;0.358]

Cox model 0.279 0.03 10000 0.044 0.01 10000 0.347 0.03 10000
[0.27;0.288] [0.04;0.048] [0.338;0.356]

LR test 0.278 0.03 9999 0.053 0.01 10000 0.344 0.04 9999
[0.269;0.287] [0.049;0.057] [0.335;0.353]

GF model 0.245 0.05 10000 0.044 0.01 10000 0.307 0.04 10000
[0.237;0.253] [0.04;0.048] [0.298;0.316]

SGF model 0.485 0.16 10000 0.05 0.01 10000 0.44 0.11 10000
[0.475;0.495] [0.046;0.054] [0.43;0.45]

χ2-test 0.408 0.07 10000 0.035 0.00 10000 0.409 -0.15 10000
[0.398;0.418] [0.031;0.039] [0.399;0.419]

%TDA
−%TDPL

= −25% %TDA
−%TDPL

= −5% %TDA
−%TDPL

= +15%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.540 -0.04 9983 0.663 -0.01 9992 0.525 0.00 9957
GLM Poisson 0.573 0.00 10000 0.752 0.00 10000 0.563 0.00 10000
Log rank test 0.598 - 10000 0.696 - 10000 0.552 - 10000
Cox model 0.596 0.01 10000 0.693 -0.04 10000 0.550 -0.01 10000
LR test 0.630 -0.01 10000 0.720 -0.05 10000 0.562 -0.02 10000
GF model 0.597 -0.10 9999 0.692 -0.16 9998 0.541 -0.12 9999
SGF model 0.396 0.15 10000 0.678 -0.02 10000 0.400 0.08 10000
χ2-test 0.400 0.06 10000 0.544 -0.01 10000 0.455 -0.18 10000112
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7.3.2.3 Results for the treatment-policy estimand with a study dropout of

100% of patients with treatment discontinuation with MNAR

Table 35 on page 114 contains the results of the scenarios with a study dropout of 100%

of the patients with treatment discontinuation and MNAR, φ = 1 and %TDPL
= 27%.

The results for the according scenario with %TDPL
= 60% are provided in table 36 on

page 115. If φ = 2 and %TDPL
= 28%, the table 37 on page 116 shows the relevant

results. The results of the scenario with φ = 2 and %TDPL
= 60% are listed in table 38

on page 117.

In analogy to the scenarios with a study dropout of 100% under MCAR, the calculated

type I error rates and power are the same as those of the hypothetical estimand under

MNAR. But the results of the bias calculations are di�erent.

Finally, the results of the bias calculations of each method in the scenarios with a study

dropout of 100% of the patients with treatment discontinuation are plotted in �gure 13.

Hereby, it can be noti�ed that these results are similar to those of the according scenarios

with a study dropout of 100% under MCAR. Furthermore, it attracts the attention that

the bias of the Log-linear negative-binomial model and the one of the Log-linear Poisson

model is not identical any more, if φ = 2.
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Table 35: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 100%, MNAR, φ = 1, %TDPL
= 27%

%TDPL
= 27%

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +23%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.089 0.04 5035 0.037 0.00 4349 0.08 -0.17 5000
[0.081;0.097] [0.031;0.043] [0.072;0.088]

GLM Poisson 0.098 0.04 10000 0.044 0.00 10000 0.085 -0.18 10000
[0.092;0.104] [0.04;0.048] [0.08;0.09]

Log rank test 0.055 - 10000 0.049 - 10000 0.391 - 10000
[0.051;0.059] [0.045;0.053] [0.381;0.401]

Cox model 0.054 -0.07 10000 0.048 0.01 10000 0.391 0.18 10000
[0.05;0.058] [0.044;0.052] [0.381;0.401]

LR test 0.051 -0.07 10000 0.046 0.01 10000 0.3 0.11 10000
[0.047;0.055] [0.042;0.05] [0.291;0.309]

GF model 0.048 -0.07 10000 0.043 0.01 10000 0.212 0.10 9642
[0.044;0.052] [0.039;0.047] [0.204;0.22]

SGF model 0.093 0.03 9995 0.043 0.01 9999 0.081 0.02 9996
[0.087;0.099] [0.039;0.047] [0.076;0.086]

χ2-test 0.329 0.31 10000 0.039 0.00 10000 0.507 -0.45 10000
[0.32;0.338] [0.035;0.043] [0.497;0.517]

%TDA
−%TDPL

= −27% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +18%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.983 0.04 5015 0.987 -0.04 4446 0.869 -0.25 4995
GLM Poisson 0.980 0.04 10000 0.988 -0.04 10000 0.867 -0.27 10000
Log rank test 0.982 - 10000 0.940 - 10000 0.815 - 10000
Cox model 0.982 -0.08 10000 0.939 -0.02 10000 0.814 0.17 10000
LR test 0.981 -0.08 10000 0.937 -0.01 10000 0.780 0.09 10000
GF model 0.980 -0.09 9999 0.932 -0.01 9999 0.785 0.03 9048
SGF model 0.980 0.02 9999 0.988 -0.04 10000 0.867 -0.11 9997
χ2-test 0.529 0.21 10000 0.864 -0.06 10000 0.718 -0.55 10000114
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Table 36: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 100%, MNAR, φ = 1, %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.247 0.12 4467 0.037 0.00 3465 0.193 -0.19 4318
[0.234;0.26] [0.031;0.043] [0.181;0.205]

GLM Poisson 0.252 0.09 10000 0.041 0.00 10000 0.204 -0.24 10000
[0.243;0.261] [0.037;0.045] [0.196;0.212]

Log rank test 0.327 - 10000 0.053 - 10000 0.622 - 10000
[0.318;0.336] [0.049;0.057] [0.612;0.632]

Cox model 0.325 -0.02 10000 0.053 0.00 10000 0.621 0.26 10000
[0.316;0.334] [0.049;0.057] [0.611;0.631]

LR test 0.227 -0.07 10000 0.041 0.00 10000 0.451 0.14 10000
[0.219;0.235] [0.037;0.045] [0.441;0.461]

GF model 0.191 -0.08 9693 0.038 0.00 10000 0.379 0.13 9244
[0.183;0.199] [0.034;0.042] [0.369;0.389]

SGF model 0.244 0.05 9991 0.041 0.00 9997 0.199 0.05 9983
[0.236;0.252] [0.037;0.045] [0.191;0.207]

χ2-test 0.858 0.20 10000 0.043 0.00 10000 0.782 -0.63 10000
[0.851;0.865] [0.039;0.047] [0.774;0.79]

%TDA
−%TDPL

= −26% %TDA
−%TDPL

= −6% %TDA
−%TDPL

= +14%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.737 0.04 4138 0.925 -0.11 3292 0.576 -0.39 4066
GLM Poisson 0.721 0.02 10000 0.921 -0.10 10000 0.558 -0.41 10000
Log rank test 0.854 - 10000 0.839 - 10000 0.724 - 10000
Cox model 0.853 -0.04 10000 0.837 -0.04 10000 0.723 0.26 10000
LR test 0.836 -0.09 10000 0.811 -0.02 10000 0.641 0.13 10000
GF model 0.874 -0.13 9283 0.801 -0.02 9992 0.718 0.07 8303
SGF model 0.719 -0.04 9991 0.921 -0.12 9997 0.557 -0.19 9988
χ2-test 0.282 0.11 10000 0.630 -0.06 10000 0.615 -0.78 10000115
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Table 37: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 100%, MNAR, φ = 2, %TDPL
= 28%

%TDPL
= 28%

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +22%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.122 0.10 10000 0.055 0.00 10000 0.113 -0.14 9999
[0.116;0.128] [0.051;0.059] [0.107;0.119]

GLM Poisson 0.315 0.13 10000 0.121 0.00 10000 0.265 -0.11 10000
[0.306;0.324] [0.115;0.127] [0.256;0.274]

Log rank test 0.073 - 10000 0.045 - 10000 0.375 - 10000
[0.068;0.078] [0.041;0.049] [0.366;0.384]

Cox model 0.072 -0.08 10000 0.045 0.00 10000 0.374 0.29 9999
[0.067;0.077] [0.041;0.049] [0.365;0.383]

LR test 0.086 -0.09 10000 0.054 0.00 10000 0.362 0.23 9999
[0.081;0.091] [0.05;0.058] [0.353;0.371]

GF model 0.067 -0.08 10000 0.045 0.00 10000 0.271 0.21 9517
[0.062;0.072] [0.041;0.049] [0.262;0.28]

SGF model 0.12 0.07 10000 0.052 0.00 10000 0.11 0.11 10000
[0.114;0.126] [0.048;0.056] [0.104;0.116]

χ2-test 0.229 0.22 10000 0.042 0.00 10000 0.434 -0.39 10000
[0.221;0.237] [0.038;0.046] [0.424;0.444]

%TDA
−%TDPL

= −28% %TDA
−%TDPL

= −4% %TDA
−%TDPL

= +17%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.751 0.09 10000 0.886 -0.06 10000 0.658 -0.23 10000
GLM Poisson 0.840 0.12 10000 0.946 -0.04 10000 0.720 -0.19 10000
Log rank test 0.940 - 10000 0.871 - 10000 0.799 - 10000
Cox model 0.939 -0.10 10000 0.869 -0.02 10000 0.798 0.27 10000
LR test 0.951 -0.12 10000 0.882 -0.04 10000 0.776 0.18 10000
GF model 0.931 -0.21 10000 0.865 -0.11 10000 0.792 0.07 9399
SGF model 0.748 0.05 10000 0.883 -0.07 10000 0.655 -0.04 10000
χ2-test 0.514 0.21 10000 0.810 -0.02 10000 0.702 -0.43 10000116
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Table 38: Comparison of methods estimating the tr.-policy for scenarios with study dropout of 100%, MNAR, φ = 2, %TDPL
= 60%

%TDPL
= 60%

%TDA
−%TDPL

= −21% %TDA
−%TDPL

= 0% %TDA
−%TDPL

= +18%

type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv type I error rate [CI] bias Nconv

no tr. e�ect

GLM NB 0.35 0.18 9966 0.058 0.00 9970 0.3 -0.13 9914
[0.341;0.359] [0.053;0.063] [0.291;0.309]

GLM Poisson 0.604 0.23 10000 0.086 0.00 10000 0.491 -0.09 10000
[0.594;0.614] [0.081;0.091] [0.481;0.501]

Log rank test 0.396 - 10000 0.049 - 10000 0.618 - 10000
[0.386;0.406] [0.045;0.053] [0.608;0.628]

Cox model 0.394 0.06 9999 0.048 0.01 10000 0.617 0.41 9999
[0.384;0.404] [0.044;0.052] [0.607;0.627]

LR test 0.361 0.00 9999 0.048 0.01 10000 0.553 0.30 9999
[0.352;0.37] [0.044;0.052] [0.543;0.563]

GF model 0.308 -0.00 9600 0.043 0.01 9999 0.475 0.29 9238
[0.299;0.317] [0.039;0.047] [0.465;0.485]

SGF model 0.34 0.18 10000 0.054 0.01 10000 0.294 0.20 10000
[0.331;0.349] [0.05;0.058] [0.285;0.303]

χ2-test 0.768 0.12 10000 0.038 0.00 10000 0.696 -0.54 10000
[0.76;0.776] [0.034;0.042] [0.687;0.705]

%TDA
−%TDPL

= −25% %TDA
−%TDPL

= −5% %TDA
−%TDPL

= +15%

power bias Nconv power bias Nconv power bias Nconv

with tr. e�ect

GLM NB 0.353 0.11 9977 0.792 -0.15 9971 0.286 -0.32 9934
GLM Poisson 0.365 0.17 10000 0.842 -0.13 10000 0.284 -0.26 10000
Log rank test 0.811 - 10000 0.741 - 10000 0.706 - 10000
Cox model 0.809 0.02 10000 0.738 -0.04 10000 0.704 0.38 10000
LR test 0.804 -0.06 10000 0.738 -0.04 10000 0.654 0.24 10000
GF model 0.819 -0.12 9537 0.719 -0.07 9999 0.707 0.18 8894
SGF model 0.343 0.06 10000 0.782 -0.15 10000 0.278 -0.07 9999
χ2-test 0.260 0.09 10000 0.623 -0.09 10000 0.573 -0.65 10000117
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Figure 13: Bias of the Log-linear negative-binomial model (GLM NB), Log-linear Poisson model (GLM Poisson), Cox proportional
hazards model (Cox model), Likelihood ratio test (LR test), Gamma frailty model (GF model), Shared gamma frailty model (SGF
model) and χ2-test for treatment-policy estimand depending on the percentage of patients with treatment discontinuation in placebo
group (%TDPL

), the di�erence of patients with treatment discontinuation between both trial arms (%TDA
− %TDPL

) and φ under
MNAR
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8 Discussion
The discussion of the results previously presented is structured in two parts. In the �rst

part, the impact of the overdispersion, the di�erent percentages of treatment discon-

tinuation, study dropout and the two mechanisms of treatment discontinuation on the

performance of the methods can be generalized from the results presented in section 7.

In the second part, advice will be given for the correct evaluation of con�rmatory clinical

trials in asthma under these di�erent conditions.

In the following �rst part of the discussion, the impact of the di�erent conditions which

is examined in this thesis can be generalized for both hypothetical and treatment-policy

estimand. In scenarios with overdispersion, the type I error rate is greatly increased

for both the hypothetical and the treatment-policy estimand. Especially, this can be

observed in the context of the Log-linear Poisson model, the Log rank test, the Cox

proportional hazards model and the Likelihood ratio test. These are the methods which

do not consider individual frailties for their evaluation. The type I error rate of the

remaining models also rises with the presence of the overdispersion, but the increase is

not as high compared to these previous methods. Interestingly, the χ2-test is not as

much in�uenced as those other methods which do not take into account overdispersion.

The power of all methods will shrink, if overdispersion occurs. Whereas the bias is not

much changed. To create the link to real con�rmatory clinical trials, individual frailties

and therefore di�erent severities of the disease are present. Thus, scenarios based on

overdispersion capture reality best.

The percentage of patients with treatment discontinuation has the strongest impact on

the type I error rate, power and bias, if there is a di�erence between both trial arms. The

type I error rate and bias increase most, if this di�erence between both groups is positive.

Hence, the percentage of treatment discontinuation is larger in treatment group than in

placebo group. The count data models, the Shared gamma frailty model and the χ2-

test overestimate the true treatment e�ect in most of these scenarios. Whereas, the Cox

proportional hazards model, the Likelihood ratio test and the Gamma frailty model tend

to provide a positive bias. If the di�erence between both trial arms is smaller than zero,

usually the direction of the bias of the methods is reversed. The e�ect of the di�erence

between the treatment discontinuation in both trail arms on the growing type I error rate

and bias is intensi�ed with a larger percentage of patients with treatment discontinuation

in the placebo group. The power will decrease the more patients discontinue treatment

even if they are followed up afterwards like in the case of treatment-policy estimand. To

yield reliable estimates in a real con�rmatory clinical trial, the goal should be to keep

the percentages of patients with treatment discontinuation as similar as possible in both
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trial arms. Of course, the fewer patients stop their treatment the fewer problems will

arise during the statistical evaluation.

Study dropout a�ects the bias. The more patients stop their participation in a clinical

trial, the more biased the estimated treatment e�ects will be. The type I error rate of the

time-to-�rst-event-methods will decrease, if 50% of the patients drop out of the study.

For the remaining methods, the type I error rate grows. But if 100% of the patients with

treatment discontinuation �nish the participation in the study, the type I error rate of

all methods except the count data methods increases greatly. In these scenarios with a

study dropout of 100% of the patients with treatment discontinuation, the type I error

rate is higher than the type I error rate in the scenarios without study dropout. These

larger type I error rates are especially visible for the methods evaluating only the time to

the �rst event and the χ2-test in the scenarios with %TDA
−%TDPL

= +20%. The type I

error rates of the count data methods in scenarios with a study dropout of 100% of the

patients with study treatment discontinuation are even smaller than those in scenarios

without study dropout. The type I error rates of scenarios without a di�erence between

the percentages of patients with treatment discontinuation in both groups hardly change

if the percentage of study dropout varies.

The last in�uencing factor which was examined in this thesis is the mechanism of treat-

ment discontinuation. It has an impact on the type I error rate, power and bias. Under

MNAR, the type I error rate increases and the power shrinks the most, if the count

data models, the Shared gamma frailty model and the χ2-test are used. These meth-

ods except the χ2-test evaluate the total time of the study and encounter the MNAR

mechanism the most. The remaining methods just need the information until the �rst

event. If this happens before the potential treatment discontinuation, these models are

not contacted to this mechanism. The rise of the type I error rates is reinforced the

higher the percentage of patients with treatment discontinuation in the placebo group

is. This e�ect is even strengthened in the context of the estimation of the hypothetical

estimand. Furthermore, the MNAR mechanism increases the bias and sometimes turns

the direction of the bias of the count data models and the Shared gamma frailty model

in scenarios with φ = 2.

In the following second part of the discussion, advice is given for the correct evaluation

of a con�rmatory clinical trial in asthma. This second part structured in estimation of

the hypothetical estimand and in the estimation of the treatment-policy estimand. In

general, it must be recognized that the more realistic the scenarios are, the fewer methods

are at our disposal. Neither for the hypothetical nor for the treatment-policy estimand,

there is no method respecting the type I error rate of lower than 5%, if scenarios are
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simulated with overdispersion and with a di�erence between the percentages of patients

with treatment discontinuation in both trial arms under MNAR.

In the context of the scenarios without overdispersion, the results of the Log-linear

negative-binomial model must be treated with caution. These limitations must be re-

spected for the evaluation of both the hypothetical estimand and the treatment-policy

estimand. In these scenarios the number of converged models is too small to draw valid

conclusions. Therefore, this method does not play a role in the proposed strategies

of evaluation of scenarios without overdispersion. However, the Log-linear negative-

binomial model returns the type I error rates, power and bias, which are similar to

those of the Log-linear Poisson model. Although the number of converged models of the

Log-linear negative-binomial model is quite small.

Firstly, the results of the hypothetical estimand will be classi�ed. This can be divided ac-

cording to the scenarios without or with overdispersion and according to the mechanism

of treatment discontinuation. If the scenarios are simulated with %TDA
−%TDPL

= 0%,

the χ2-test always returns an acceptable type I error rate. But unfortunately, its power is

lower and its bias is higher compared to the other models respecting the type I error rate.

Thus, the χ2-test does not possess a good capability to recognize new e�ective asthma

drugs, but rather classi�es them as ine�ective. In general, if no overdispersion occurs, the

Shared gamma frailty model is the method of choice. Its advantage consists in a smaller

bias. Consequently, for the analysis of more or less unrealistic scenarios with φ = 1, the

Shared gamma frailty model is superior to the Log-linear Poisson model. The methods

considering the time until the �rst event deliver a smaller power than the Log-linear

Poisson model and the Shared gamma frailty model. Therefore, it is not recommended

to use these methods, if the Shared gamma frailty model or the Log-linear Poisson model

return a type I error rate of lower than 5%. The Shared gamma frailty model and the

Log-linear Poisson model recognize an ine�ective drug even if there is a di�erence be-

tween the percentages of patients with treatment discontinuation in both trials arms

under MCAR. Especially in this context, the bias of the Shared gamma frailty model is

still smaller than the one of the Log-linear Poisson model. As the Shared gamma frailty

model considers the time between all succeeding events, it detects ine�ective drugs with

a smaller bias despite a di�erent proportion of patients in treatment and placebo group.

However, if there is a di�erence between the proportion of treatment discontinuation

in both trial arms under MNAR in scenarios without overdispersion, even the Shared

gamma frailty model and the Log-linear Poisson model manifest problems to provide an

acceptable type I error rate. In the scenario with φ = 1, %TDPL
= 27% and %TDA

−
%TDPL

= −27% under MNAR, the Gamma frailty model is the unique method to respect
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the type I error rate of lower or equal to 5%. In all other scenarios under MNAR with a

di�erence of treatment discontinuation between both trial arms, no method is appropriate

for the evaluation. Especially, if more patients discontinue treatment in the active group

than in the placebo group, the methods seem to detect a treatment e�ect where actually

none exists. This can be reasoned by the fact that less information about the e�ect of

the new drug is available and the information which is collected is overrated.

A problem of evaluation rises if overdispersion plays a role. But this is a more realistic

condition than a trial with equal frailties amongst all patients. Under MCAR, it is

recommended to use the Shared gamma frailty model or the Log-linear negative-binomial

model for the evaluation of scenarios without a di�erence between the proportions of

patients with treatment discontinuation between both trial arms. These two methods

reveal the largest power and unbiased estimates by respecting the type I error rate.

Although the Shared gamma frailty model and the Log-linear negative-binomial model

provide an type I error rate larger than 5% in the scenario with φ = 2, %TDPL
= 20%

and %TDA
− %TDPL

= 0%, an evaluation with the help of these methods is advised.

The 95%-con�dence interval includes an acceptable type I error rate as its lower bound.

Furthermore, both methods return unbiased estimates. This represents a great advantage

compared to the χ2-test which is the single method respecting the type I error rate. The

Shared gamma frailty model provides a smaller bias compared to the one of the Log-

linear negative-binomial model, if there is a large di�erence between the percentages of

patients with treatment discontinuation in both trial arms. Consequently, an evaluation

with the help of the Shared gamma frailty model in scenarios with a discrepancy in the

proportion of treatment discontinuation is proposed.

In the scenarios with φ = 2 with MNAR, no appropriate method was found to analyze

scenarios with a di�erence between the percentages of treatment discontinuation between

both trials arms. In this context no method respects the type I error rate. But for

scenarios with %TDA
− %TDPL

= 0%, advice can be given. The Log rank test, the

Cox proportional hazards model or the Gamma frailty model are recommended. The

Log rank test and the Cox proportional hazards model deliver a higher power than the

Gamma frailty model by revealing a similar absolute value of the bias. Especially if

%TDPL
increases up to 60%, the Log rank test and the Cox proportional hazards model

manifest a larger power. Hence, these two methods can even be preferred to the Gamma

frailty model.

Secondly, the results of the treatment-policy estimand are discussed. In principal, those

methods which can be proposed for the evaluation of the hypothetical estimand are also

optimal for the analysis of the treatment-policy estimand. In analogy to the hypothet-

122



Chapter 8 Discussion

ical estimand, the suggestions for the evaluation of the treatment-policy estimand are

structured according to the scenarios with or without overdispersion and according to

the treatment discontinuation mechanism.

A piece of advice for the estimation of the treatment-policy estimand mainly can be

given if there is no di�erence of treatment discontinuation between both trial arms. The

χ2-test always respects the type I error rate if %TDA
− %TDPL

= 0%. But its power is

lower than that of the other methods by providing a higher bias. This was already the

case in the context of the hypothetical estimand. In the scenarios without overdispersion

under MCAR, the Shared gamma frailty model and the Log-linear Poisson model again

reveal their superiority over the remaining methods. The perfect but rather unreal

situation represents a clinical trial without study dropout. In such a scenario with φ = 1,

%TDA
−%TDPL

= 0%, the Shared gamma frailty method always manifests an acceptable

type I error rate by providing a larger power without any bias in the estimation of the

treatment e�ect. If %TDPL
rises, the Log-linear Poisson model can respect the type I

error rate. This reveals the Shared gamma frailty model as the optimal method in this

rather unrealistic scenario without any overdispersion. If φ = 1, %TDPL
= 20% and

%TDA
− %TDPL

= −20%, the χ2-test can be used for the analysis. Now, one problem

in the context of the evaluation of the treatment-policy estimand comes to the fore.

The actual idea of the treatment-policy estimand is only captured by methods which

respect the whole period of time until the end of the study. In this way, the e�ect of the

combination of several medications can be analyzed. The time-to-�rst-event methods

and the χ2-test wouldn't respect the e�ect of the rescue medication, if it was taken after

the �rst event. This aspect is picked up later. If study dropout rises, the Shared gamma

frailty model is superior to the χ2-test in scenarios with a negative di�erence between

the percentage of patients with treatment discontinuation in both trial arms.

Under MNAR, φ = 1, %TDPL
= 27% and %TDA

− %TDPL
= 0% or %TDPL

= 60%

and %TDA
− %TDPL

= 0%, the performance of the Log-linear Poisson model and the

Shared gamma frailty model can be compared as both deliver a type I error rate lower

than 5% with similar power and bias. In scenarios without any study dropout, the

Log-linear Poisson model might be considered superior to the Shared gamma frailty

model as it provides a little larger power and a smaller bias. If the study dropout rises,

both models are equivalent. No method respects the type I error rate in scenarios with a

large di�erence between the proportion of patients with treatment discontinuation under

MNAR. Therefore, no optimal method of evaluation is found in these scenarios.

The scenarios with overdispersion under MCAR, reveal the same problem that already

appeared in the context of the hypothetical estimand. If %TDPL
= 27% and %TDA

−
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%TDPL
= 0%, only the χ2-test respects the type I error rate. This fact doesn't change

with higher study dropout. With a higher %TDPL
, the Log rank test and the Cox propor-

tional hazards model additionally respect the type I error rate by providing the largest

power and the smallest bias. But these methods aren't the optimal choice to capture the

treatment-policy estimand. Referring to the 95%-con�dence intervals of the estimated

type I error rates, the Log-linear negative-binomial model and the Shared gamma frailty

model represent an alternative. The lower bounds of their intervals include an accept-

able type I error rate in most scenarios without a di�erence between the percentages

of patients with treatment discontinuation in both trial arms. Hence, if the Log-linear

negative-binomial model and the Shared gamma frailty model respected the type I error

rate, they would be the optimal methods of evaluation. The Cox proportional hazards

model and the Log rank test deliver reliably a type I error rate lower than 5% with the

largest power and smallest bias. This fact justi�es the examination of these methods in

the context of the treatment-policy estimand, although they don't represent the perfect

methods to evaluate the treatment-policy estimand.

The evaluation of the scenarios under MNAR with overdispersion reveals the same prob-

lems as under MCAR. Valid statements about the recommendation of a method of

analysis can only be issued, if the di�erence of patients with treatment discontinuation

between both trials arms is as small as possible. The Shared gamma frailty model and

the Log-linear negative-binomial model as the optimal methods are recommended, if

their lower bounds of the 95%-con�dence intervals cover an acceptable type I error rate.

In contrast to the scenarios under MCAR, the Shared gamma frailty model is superior

to the Log-linear negative-binomial model, if the percentage of patients who drop out

of the study rises. The power of the Log-linear negative-binomial model is smaller than

that of the Shared gamma frailty model, in scenarios with higher study dropout. If 100%

of the patients with treatment discontinuation stop their participation in the study, the

estimation of the treatment-policy estimand is not possible. The combined e�ects of the

examined drug with the rescue medication is not captured. In this case, the hypothetical

estimand should be preferred.

It can be inferred that if extremely high study dropout rates occur, the clinical outcome

should be measured in form of the average hazard ratio. The estimation of the treatment

e�ect under the treatment-policy estimand with a study dropout of 100% of those with

treatment discontinuation in form of the average hazard ratio by the Shared gamma

frailty model is less biased than the ratio of the number of events in both trial groups in

the context of the �rst endpoint. This is also true for the hypothetical estimand where

each treatment discontinuation equals a study dropout. Hence, the estimation of the
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hypothetical estimand always yields a high percentage of study dropout if treatment

dropout occurs. In general, those methods which consider the whole period of the study

for their analysis are those models which implement the idea of the treatment-policy

estimand. Therefore, both count data models and the Shared gamma frailty model are

able to include the number of events or the time between the events after a change of

medication respectively. If they respect the type I error rate, these are the methods

which are the chosen methods for the evaluation of both estimands in most situations.

The remaining time-to-�rst-events methods basically just imply the estimation of the

hypothetical estimand as they only consider the time to the �rst asthma exacerbation,

no matter if the conditions of medication change after the �rst event. Surely, if the �rst

event does not occur before treatment discontinuation, they are capable of involving the

new event rates into their analysis.
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9 Conclusions
This thesis performs a simulation study to examine several analysis methods for recurrent

event data in a con�rmatory clinical trial in asthma. The comparison of the models is

investigated for the hypothetical and treatment-policy estimand. The goal of this thesis

is to compare the chosen methods with respect to their type I error rate, power and bias.

With these parameters, advice was given for a correct evaluation of recurrent event data

under di�erent conditions. The 'ICH E9 addendum on estimands and sensitivity analysis

in clinical trials to the guideline on statistical principles in clinical trials' (2017, p. 5)

proposes to address which estimand will be measured in the context of a con�rmatory

clinical trial. Hence, this thesis covers a �eld of research that is of interest for both the

pharmaceutical companies and the regulatory agencies.

The record of recurrent event data leads to three di�erent endpoints in this thesis. The

�rst endpoint considers the total number of events until the end of the study or the

study dropout respectively. The summary statistics which include the treatment e�ect

of the �rst endpoint is the rate ratio. The second endpoint examines the time until

the �rst asthma exacerbation or the time between all succeeding events. The treatment

e�ect is measured with the average hazard ratio. The occurrence of at least one event

is accounted for with the third endpoint. Its treatment e�ect is the odds ratio. For

each of these endpoints, di�erent methods are used. The Log-linear Poisson model and

the Log-linear negative-binomial model evaluate the information of the �rst endpoint.

For the analysis of the second endpoint, the Log rank test, the Cox proportional hazards

model, the Likelihood ratio test, the Gamma frailty model and the Shared gamma frailty

model are used. The χ2-test serves for the analysis of the third endpoint.

The in�uence of four di�erent factors is examined with the help of the simulations.

Hereby, the results of the hypothetical and treatment-policy estimand reveal the same

problems. Firstly, overdispersion can either occur or not. If it occurs, the type I error

rate of each method will increase and the power will shrink. However, the bias of the

methods doesn't change a lot. The results of the Log-linear negative-binomial model

must be treated with caution in scenarios without overdispersion. In these scenarios,

at least 40% of the Log-linear negative-binomial models don't converge. Secondly, the

in�uence of the percentage of patients with treatment discontinuation is revealed. In

the context of the hypothetical estimand, a treatment discontinuation leads to missing

data. Whereas for the treatment-policy estimand, patients can be followed up. In this

simulation study, treatment discontinuation is performed in the placebo group either with

a lower or higher percentage. The proportion of patients with treatment discontinuation

in the treatment group can either be smaller, equal or larger than in the placebo group.
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Treatment discontinuation will have the strongest impact if the percentage of patients in

the treatment group is larger than in the placebo group. The type I error rate and bias

increase, the power shrinks. Valid statements about the recommendation of an optimal

analysis of clinical trials can only be made if the treatment discontinuation is equal in

both groups. Hence, a balance of treatment discontinuation in both trial arms must be

the goal for real clinical trials. The third factor of in�uence is the study dropout which

plays a role in the context of the analysis of the treatment-policy estimand. Hereby,

patients stop their participation in the clinical trial after treatment discontinuation if

they are followed up. With higher study dropout, the estimates are more biased and the

power decreases. The type I error rates of scenarios without a di�erence in the percentage

of patients with treatment discontinuation are hardly a�ected by the study dropout. In

scenarios with a di�erence between the proportions of treatment discontinuation, there is

a change of the type I error rates. If 50% of the patients with treatment discontinuation

stop their participation in the trial, the type I error rates of the time-to-�rst-event

methods decrease. Those of the remaining methods rise. If 100% of the patients with

treatment discontinuation drop out of the study, the type I error rates increase greatly.

This is especially visible for the methods evaluating only the time to the �rst event

and the χ2-test. Fourthly, the in�uence of the mechanism of treatment discontinuation

is examined, which can either appear missing completely at random or missing not at

random. Under MNAR, the type I error rate and the bias increase and the power shrinks

the most for the count data models, the Shared gamma frailty model and the χ2-test.

The more real the simulated scenarios are, the fewer methods provide an acceptable

type I error rate. Furthermore, if there is a larger di�erence between the proportions

of patients with treatment discontinuation in both trials arms, very high type I error

rates are returned. If more patients in treatment group change to rescue medication

than in the placebo group, this e�ect is even stronger. In general, the Shared gamma

frailty model or one of the count data models is the method of choice. In scenarios with

overdispersion, the Log rank test and the Cox proportional hazards model often are the

only methods which return an acceptable type I error rate. However, for the evaluation

of the treatment-policy estimand, the Shared gamma frailty model is recommended as

providing the smallest bias in scenarios with a high study dropout. This model is pro-

posed, although its estimated type I error rate is not lower or equal to 5%. But the lower

bounds of their 95%-con�dence intervals of the estimated type I error rates cover an ac-

ceptable value. To capture the idea of the treatment-policy estimand of analyzing the

combination of new drug and rescue medication, the adequate method has to evaluate

the whole period of time. This emphasizes the use of the Shared gamma frailty model

in the context of scenarios with overdispersion for the treatment-policy estimand.
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Further research could deal with a simulation study that includes the rescue medication

with the same treatment e�ect as the new drug, but with stronger side e�ects. To

recognize these side e�ects in the analysis, an endpoint must be de�ned which considers

the occurrence of side e�ects. This endpoint can be based the record of the number of

events or the time between all succeeding events. This thesis just covers the disease of

asthma. The analysis of further diseases with recurrent events, e. g. multiple sclerosis

or epilepsy, is more di�cult. Their events often appear temporally close to each other.

Therefore, it is di�cult to recognize and record the single events.
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Appendix

A Percentages for scenarios

A.1 Percentages for scenarios of hypothetical estimand

Table 39: Percentages for scenarios of hypothetical estimand

No. N %TDA
%TDPL

%E1A
%E1PL

TD mechanism φ

1 330 0.00 0.20 0.50 0.64 MCAR 1

2 330 0.20 0.20 0.45 0.64 MCAR 1

3 330 0.40 0.20 0.40 0.64 MCAR 1

4 330 0.30 0.50 0.43 0.54 MCAR 1

5 330 0.50 0.50 0.37 0.54 MCAR 1

6 330 0.70 0.50 0.31 0.54 MCAR 1

7 330 0.00 0.20 0.70 0.64 MCAR 1

8 330 0.20 0.20 0.64 0.64 MCAR 1

9 330 0.40 0.20 0.57 0.64 MCAR 1

10 330 0.30 0.50 0.61 0.54 MCAR 1

11 330 0.50 0.50 0.54 0.54 MCAR 1

12 330 0.70 0.50 0.45 0.54 MCAR 1

13 330 0.00 0.27 0.50 0.62 MNAR 1

14 330 0.23 0.27 0.44 0.62 MNAR 1

15 330 0.45 0.27 0.39 0.62 MNAR 1

16 330 0.34 0.60 0.42 0.48 MNAR 1

17 330 0.54 0.60 0.35 0.48 MNAR 1

18 330 0.74 0.60 0.29 0.48 MNAR 1

19 330 0.00 0.27 0.70 0.62 MNAR 1

20 330 0.27 0.27 0.62 0.61 MNAR 1

21 330 0.50 0.27 0.54 0.61 MNAR 1

22 330 0.39 0.60 0.58 0.48 MNAR 1

23 330 0.60 0.60 0.48 0.48 MNAR 1

24 330 0.78 0.60 0.40 0.48 MNAR 1

25 330 0.00 0.20 0.38 0.52 MCAR 2

26 330 0.20 0.20 0.35 0.52 MCAR 2

27 330 0.40 0.20 0.31 0.52 MCAR 2

28 330 0.30 0.50 0.33 0.44 MCAR 2

29 330 0.50 0.50 0.29 0.44 MCAR 2

30 330 0.70 0.50 0.25 0.44 MCAR 2

31 330 0.00 0.20 0.57 0.52 MCAR 2
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Table 39: Percentages for scenarios of hypothetical estimand

No. N %TDA
%TDPL

%E1A
%E1PL

TD mechanism φ

32 330 0.20 0.20 0.52 0.52 MCAR 2

33 330 0.40 0.20 0.47 0.52 MCAR 2

34 330 0.30 0.50 0.49 0.44 MCAR 2

35 330 0.50 0.50 0.44 0.44 MCAR 2

36 330 0.70 0.50 0.38 0.44 MCAR 2

37 330 0.00 0.28 0.38 0.49 MNAR 2

38 330 0.24 0.28 0.34 0.49 MNAR 2

39 330 0.45 0.28 0.30 0.49 MNAR 2

40 330 0.35 0.60 0.32 0.38 MNAR 2

41 330 0.55 0.60 0.26 0.39 MNAR 2

42 330 0.75 0.60 0.23 0.38 MNAR 2

43 330 0.00 0.28 0.57 0.49 MNAR 2

44 330 0.28 0.28 0.49 0.49 MNAR 2

45 330 0.50 0.28 0.44 0.49 MNAR 2

46 330 0.39 0.60 0.47 0.38 MNAR 2

47 330 0.60 0.60 0.39 0.39 MNAR 2

48 330 0.78 0.60 0.33 0.38 MNAR 2
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A.2 Percentages for scenarios of treatment-policy estimand

Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

1 330 0.00 0.20 0.00 0.00 0.50 0.64 0.00 0.07 0.50 0.69 MCAR 1

2 330 0.20 0.20 0.00 0.00 0.45 0.64 0.07 0.07 0.51 0.69 MCAR 1

3 330 0.40 0.20 0.00 0.00 0.40 0.64 0.15 0.07 0.52 0.69 MCAR 1

4 330 0.30 0.50 0.00 0.00 0.43 0.54 0.11 0.19 0.52 0.67 MCAR 1

5 330 0.50 0.50 0.00 0.00 0.37 0.54 0.19 0.19 0.53 0.67 MCAR 1

6 330 0.70 0.50 0.00 0.00 0.31 0.54 0.28 0.19 0.54 0.67 MCAR 1

7 330 0.00 0.20 0.00 0.00 0.70 0.64 0.00 0.07 0.70 0.69 MCAR 1

8 330 0.20 0.20 0.00 0.00 0.64 0.64 0.07 0.07 0.69 0.69 MCAR 1

9 330 0.40 0.20 0.00 0.00 0.57 0.64 0.15 0.07 0.68 0.69 MCAR 1

10 330 0.30 0.50 0.00 0.00 0.61 0.54 0.11 0.19 0.68 0.67 MCAR 1

11 330 0.50 0.50 0.00 0.00 0.54 0.54 0.19 0.19 0.67 0.67 MCAR 1

12 330 0.70 0.50 0.00 0.00 0.45 0.54 0.28 0.19 0.66 0.67 MCAR 1

13 330 0.00 0.20 0.00 0.10 0.50 0.64 0.00 0.07 0.50 0.69 MCAR 1

14 330 0.20 0.20 0.10 0.10 0.45 0.64 0.07 0.07 0.51 0.69 MCAR 1

15 330 0.40 0.20 0.21 0.10 0.40 0.64 0.15 0.07 0.52 0.69 MCAR 1

16 330 0.30 0.50 0.16 0.27 0.43 0.54 0.11 0.19 0.52 0.67 MCAR 1

17 330 0.50 0.50 0.26 0.27 0.37 0.54 0.19 0.19 0.53 0.67 MCAR 1

18 330 0.70 0.50 0.40 0.27 0.31 0.54 0.28 0.19 0.54 0.67 MCAR 1

19 330 0.00 0.20 0.00 0.10 0.70 0.64 0.00 0.07 0.70 0.69 MCAR 1

20 330 0.20 0.20 0.10 0.10 0.64 0.64 0.07 0.07 0.69 0.69 MCAR 1
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Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

21 330 0.40 0.20 0.21 0.10 0.57 0.64 0.15 0.07 0.68 0.69 MCAR 1

22 330 0.30 0.50 0.15 0.27 0.61 0.54 0.11 0.19 0.68 0.67 MCAR 1

23 330 0.50 0.50 0.27 0.26 0.54 0.54 0.19 0.19 0.67 0.67 MCAR 1

24 330 0.70 0.50 0.39 0.26 0.45 0.54 0.28 0.19 0.66 0.67 MCAR 1

25 330 0.00 0.20 1.00 1.00 0.50 0.64 0.00 0.07 0.50 0.69 MCAR 1

26 330 0.20 0.20 1.00 1.00 0.45 0.64 0.07 0.07 0.51 0.69 MCAR 1

27 330 0.40 0.20 1.00 1.00 0.40 0.64 0.15 0.07 0.52 0.69 MCAR 1

28 330 0.30 0.50 1.00 1.00 0.43 0.54 0.11 0.19 0.52 0.67 MCAR 1

29 330 0.50 0.50 1.00 1.00 0.37 0.54 0.19 0.19 0.53 0.67 MCAR 1

30 330 0.70 0.50 1.00 1.00 0.31 0.54 0.28 0.19 0.54 0.67 MCAR 1

31 330 0.00 0.20 1.00 1.00 0.70 0.64 0.00 0.07 0.70 0.69 MCAR 1

32 330 0.20 0.20 1.00 1.00 0.64 0.64 0.07 0.07 0.69 0.69 MCAR 1

33 330 0.40 0.20 1.00 1.00 0.57 0.64 0.15 0.07 0.68 0.69 MCAR 1

34 330 0.30 0.50 1.00 1.00 0.61 0.54 0.11 0.19 0.68 0.67 MCAR 1

35 330 0.50 0.50 1.00 1.00 0.54 0.54 0.19 0.19 0.67 0.67 MCAR 1

36 330 0.70 0.50 1.00 1.00 0.45 0.54 0.28 0.19 0.66 0.67 MCAR 1

37 330 0.00 0.27 0.00 0.00 0.50 0.62 0.00 0.10 0.50 0.68 MNAR 1

38 330 0.23 0.27 0.00 0.00 0.44 0.62 0.08 0.10 0.51 0.68 MNAR 1

39 330 0.45 0.27 0.00 0.00 0.39 0.62 0.17 0.10 0.53 0.68 MNAR 1

40 330 0.34 0.60 0.00 0.00 0.42 0.48 0.13 0.24 0.52 0.65 MNAR 1

41 330 0.54 0.60 0.00 0.00 0.35 0.48 0.21 0.24 0.52 0.65 MNAR 1139
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Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

42 330 0.74 0.60 0.00 0.00 0.29 0.48 0.31 0.24 0.55 0.65 MNAR 1

43 330 0.00 0.27 0.00 0.00 0.70 0.62 0.00 0.10 0.70 0.68 MNAR 1

44 330 0.27 0.27 0.00 0.00 0.62 0.61 0.10 0.10 0.68 0.68 MNAR 1

45 330 0.50 0.27 0.00 0.00 0.54 0.61 0.19 0.10 0.67 0.68 MNAR 1

46 330 0.39 0.60 0.00 0.00 0.58 0.48 0.15 0.24 0.68 0.65 MNAR 1

47 330 0.60 0.60 0.00 0.00 0.48 0.48 0.24 0.24 0.65 0.65 MNAR 1

48 330 0.78 0.60 0.00 0.00 0.40 0.48 0.33 0.24 0.65 0.65 MNAR 1

49 330 0.00 0.27 0.00 0.14 0.50 0.62 0.00 0.10 0.50 0.68 MNAR 1

50 330 0.23 0.27 0.12 0.14 0.44 0.62 0.08 0.10 0.51 0.68 MNAR 1

51 330 0.45 0.27 0.24 0.14 0.39 0.62 0.17 0.10 0.53 0.68 MNAR 1

52 330 0.34 0.60 0.18 0.34 0.42 0.48 0.13 0.24 0.52 0.65 MNAR 1

53 330 0.54 0.60 0.29 0.34 0.35 0.48 0.21 0.24 0.52 0.65 MNAR 1

54 330 0.74 0.60 0.43 0.34 0.29 0.48 0.31 0.24 0.55 0.65 MNAR 1

55 330 0.00 0.27 0.00 0.14 0.70 0.62 0.00 0.10 0.70 0.68 MNAR 1

56 330 0.27 0.27 0.14 0.14 0.62 0.61 0.10 0.10 0.68 0.68 MNAR 1

57 330 0.50 0.27 0.26 0.14 0.54 0.61 0.19 0.10 0.67 0.68 MNAR 1

58 330 0.39 0.60 0.20 0.34 0.58 0.48 0.15 0.24 0.68 0.65 MNAR 1

59 330 0.60 0.60 0.34 0.33 0.48 0.48 0.24 0.24 0.65 0.65 MNAR 1

60 330 0.78 0.60 0.45 0.33 0.40 0.48 0.33 0.24 0.65 0.65 MNAR 1

61 330 0.00 0.27 1.00 1.00 0.50 0.62 0.00 0.10 0.50 0.68 MNAR 1

62 330 0.23 0.27 1.00 1.00 0.44 0.62 0.08 0.10 0.51 0.68 MNAR 1140
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Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

63 330 0.45 0.27 1.00 1.00 0.39 0.62 0.17 0.10 0.53 0.68 MNAR 1

64 330 0.34 0.60 1.00 1.00 0.42 0.48 0.13 0.24 0.52 0.65 MNAR 1

65 330 0.54 0.60 1.00 1.00 0.35 0.48 0.21 0.24 0.52 0.65 MNAR 1

66 330 0.74 0.60 1.00 1.00 0.29 0.48 0.31 0.24 0.55 0.65 MNAR 1

67 330 0.00 0.27 1.00 1.00 0.70 0.62 0.00 0.10 0.70 0.68 MNAR 1

68 330 0.27 0.27 1.00 1.00 0.62 0.61 0.10 0.10 0.68 0.68 MNAR 1

69 330 0.50 0.27 1.00 1.00 0.54 0.61 0.19 0.10 0.67 0.68 MNAR 1

70 330 0.39 0.60 1.00 1.00 0.58 0.48 0.15 0.24 0.68 0.65 MNAR 1

71 330 0.60 0.60 1.00 1.00 0.48 0.48 0.24 0.24 0.65 0.65 MNAR 1

72 330 0.78 0.60 1.00 1.00 0.40 0.48 0.33 0.24 0.65 0.65 MNAR 1

73 330 0.00 0.20 0.00 0.00 0.38 0.52 0.00 0.06 0.38 0.56 MCAR 2

74 330 0.20 0.20 0.00 0.00 0.35 0.52 0.06 0.06 0.40 0.56 MCAR 2

75 330 0.40 0.20 0.00 0.00 0.31 0.52 0.12 0.06 0.42 0.56 MCAR 2

76 330 0.30 0.50 0.00 0.00 0.33 0.44 0.09 0.15 0.41 0.56 MCAR 2

77 330 0.50 0.50 0.00 0.00 0.29 0.44 0.16 0.16 0.42 0.56 MCAR 2

78 330 0.70 0.50 0.00 0.00 0.25 0.44 0.23 0.16 0.44 0.56 MCAR 2

79 330 0.00 0.20 0.00 0.00 0.57 0.52 0.00 0.06 0.57 0.56 MCAR 2

80 330 0.20 0.20 0.00 0.00 0.52 0.52 0.06 0.06 0.56 0.56 MCAR 2

81 330 0.40 0.20 0.00 0.00 0.47 0.52 0.12 0.06 0.56 0.56 MCAR 2

82 330 0.30 0.50 0.00 0.00 0.49 0.44 0.09 0.16 0.56 0.56 MCAR 2

83 330 0.50 0.50 0.00 0.00 0.44 0.44 0.16 0.16 0.56 0.56 MCAR 2141
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Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

84 330 0.70 0.50 0.00 0.00 0.38 0.44 0.23 0.15 0.55 0.56 MCAR 2

85 330 0.00 0.20 0.00 0.10 0.38 0.52 0.00 0.06 0.38 0.56 MCAR 2

86 330 0.20 0.20 0.10 0.10 0.35 0.52 0.06 0.06 0.40 0.56 MCAR 2

87 330 0.40 0.20 0.21 0.10 0.31 0.52 0.12 0.06 0.42 0.56 MCAR 2

88 330 0.30 0.50 0.16 0.27 0.33 0.44 0.09 0.15 0.41 0.56 MCAR 2

89 330 0.50 0.50 0.26 0.27 0.29 0.44 0.16 0.16 0.42 0.56 MCAR 2

90 330 0.70 0.50 0.40 0.27 0.25 0.44 0.23 0.16 0.44 0.56 MCAR 2

91 330 0.00 0.20 0.00 0.10 0.57 0.52 0.00 0.06 0.57 0.56 MCAR 2

92 330 0.20 0.20 0.10 0.10 0.52 0.52 0.06 0.06 0.56 0.56 MCAR 2

93 330 0.40 0.20 0.21 0.10 0.47 0.52 0.12 0.06 0.56 0.56 MCAR 2

94 330 0.30 0.50 0.15 0.27 0.49 0.44 0.09 0.16 0.56 0.56 MCAR 2

95 330 0.50 0.50 0.27 0.26 0.44 0.44 0.16 0.16 0.56 0.56 MCAR 2

96 330 0.70 0.50 0.39 0.26 0.38 0.44 0.23 0.15 0.55 0.56 MCAR 2

97 330 0.00 0.20 1.00 1.00 0.38 0.52 0.00 0.06 0.38 0.56 MCAR 2

98 330 0.20 0.20 1.00 1.00 0.35 0.52 0.06 0.06 0.40 0.56 MCAR 2

99 330 0.40 0.20 1.00 1.00 0.31 0.52 0.12 0.06 0.42 0.56 MCAR 2

100 330 0.30 0.50 1.00 1.00 0.33 0.44 0.09 0.15 0.41 0.56 MCAR 2

101 330 0.50 0.50 1.00 1.00 0.29 0.44 0.16 0.16 0.42 0.56 MCAR 2

102 330 0.70 0.50 1.00 1.00 0.25 0.44 0.23 0.16 0.44 0.56 MCAR 2

103 330 0.00 0.20 1.00 1.00 0.57 0.52 0.00 0.06 0.57 0.56 MCAR 2

104 330 0.20 0.20 1.00 1.00 0.52 0.52 0.06 0.06 0.56 0.56 MCAR 2142



A
pp

endix

Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

105 330 0.40 0.20 1.00 1.00 0.47 0.52 0.12 0.06 0.56 0.56 MCAR 2

106 330 0.30 0.50 1.00 1.00 0.49 0.44 0.09 0.16 0.56 0.56 MCAR 2

107 330 0.50 0.50 1.00 1.00 0.44 0.44 0.16 0.16 0.56 0.56 MCAR 2

108 330 0.70 0.50 1.00 1.00 0.38 0.44 0.23 0.15 0.55 0.56 MCAR 2

109 330 0.00 0.28 0.00 0.00 0.38 0.49 0.00 0.09 0.38 0.55 MNAR 2

110 330 0.24 0.28 0.00 0.00 0.34 0.49 0.07 0.09 0.39 0.55 MNAR 2

111 330 0.45 0.28 0.00 0.00 0.30 0.49 0.14 0.09 0.42 0.55 MNAR 2

112 330 0.35 0.60 0.00 0.00 0.32 0.38 0.11 0.20 0.41 0.53 MNAR 2

113 330 0.55 0.60 0.00 0.00 0.26 0.39 0.18 0.20 0.41 0.53 MNAR 2

114 330 0.75 0.60 0.00 0.00 0.23 0.38 0.25 0.20 0.45 0.52 MNAR 2

115 330 0.00 0.28 0.00 0.00 0.57 0.49 0.00 0.09 0.57 0.55 MNAR 2

116 330 0.28 0.28 0.00 0.00 0.49 0.49 0.09 0.09 0.55 0.55 MNAR 2

117 330 0.50 0.28 0.00 0.00 0.44 0.49 0.16 0.09 0.56 0.55 MNAR 2

118 330 0.39 0.60 0.00 0.00 0.47 0.38 0.13 0.20 0.56 0.53 MNAR 2

119 330 0.60 0.60 0.00 0.00 0.39 0.39 0.20 0.20 0.53 0.53 MNAR 2

120 330 0.78 0.60 0.00 0.00 0.33 0.38 0.27 0.20 0.55 0.53 MNAR 2

121 330 0.00 0.28 0.00 0.15 0.38 0.49 0.00 0.09 0.38 0.55 MNAR 2

122 330 0.24 0.28 0.13 0.15 0.34 0.49 0.07 0.09 0.39 0.55 MNAR 2

123 330 0.45 0.28 0.24 0.15 0.30 0.49 0.14 0.09 0.42 0.55 MNAR 2

124 330 0.35 0.60 0.18 0.34 0.32 0.38 0.11 0.20 0.41 0.53 MNAR 2

125 330 0.55 0.60 0.30 0.34 0.26 0.39 0.18 0.20 0.41 0.53 MNAR 2143



A
pp

endix

Table 40: Percentages for scenarios of treatment-policy estimand

No. N %TDA
%TDPL

%SDA
%SDPL

%E1A
%E1PL

%E2A
%E2PL

%EtotalA
%EtotalPL

TD mechanism φ

126 330 0.75 0.60 0.44 0.34 0.23 0.38 0.25 0.20 0.45 0.52 MNAR 2

127 330 0.00 0.28 0.00 0.15 0.57 0.49 0.00 0.09 0.57 0.55 MNAR 2

128 330 0.28 0.28 0.15 0.15 0.49 0.49 0.09 0.09 0.55 0.55 MNAR 2

129 330 0.50 0.28 0.27 0.15 0.44 0.49 0.16 0.09 0.56 0.55 MNAR 2

130 330 0.39 0.60 0.20 0.34 0.47 0.38 0.13 0.20 0.56 0.53 MNAR 2

131 330 0.60 0.60 0.34 0.33 0.39 0.39 0.20 0.20 0.53 0.53 MNAR 2

132 330 0.78 0.60 0.46 0.33 0.33 0.38 0.27 0.20 0.55 0.53 MNAR 2

133 330 0.00 0.28 1.00 1.00 0.38 0.49 0.00 0.09 0.38 0.55 MNAR 2

134 330 0.24 0.28 1.00 1.00 0.34 0.49 0.07 0.09 0.39 0.55 MNAR 2

135 330 0.45 0.28 1.00 1.00 0.30 0.49 0.14 0.09 0.42 0.55 MNAR 2

136 330 0.35 0.60 1.00 1.00 0.32 0.38 0.11 0.20 0.41 0.53 MNAR 2

137 330 0.55 0.60 1.00 1.00 0.26 0.39 0.18 0.20 0.41 0.53 MNAR 2

138 330 0.75 0.60 1.00 1.00 0.23 0.38 0.25 0.20 0.45 0.52 MNAR 2

139 330 0.00 0.28 1.00 1.00 0.57 0.49 0.00 0.09 0.57 0.55 MNAR 2

140 330 0.28 0.28 1.00 1.00 0.49 0.49 0.09 0.09 0.55 0.55 MNAR 2

141 330 0.50 0.28 1.00 1.00 0.44 0.49 0.16 0.09 0.56 0.55 MNAR 2

142 330 0.39 0.60 1.00 1.00 0.47 0.38 0.13 0.20 0.56 0.53 MNAR 2

143 330 0.60 0.60 1.00 1.00 0.39 0.39 0.20 0.20 0.53 0.53 MNAR 2

144 330 0.78 0.60 1.00 1.00 0.33 0.38 0.27 0.20 0.55 0.53 MNAR 2

144



Appendix

B R-code

B.1 Functions for the simulation of scenarios under MCAR

1 make . a s thmat r i a l . l o n g i t ud i n a l .MCAR <− f unc t i on (N, dropout . t r = NULL,

2 dropout . p l = NULL,

3 event1 . t r = NULL,

4 event1 . p l = NULL,

5 event2 = NULL,

6 ov e rd i s p e r s i on = NULL) {

7

8 # Generate N Cases

9 id <− 1 :N

10

11 # 1. Grouping Var iab le

12 group <− c ( rep (1 , f l o o r (N/2) ) , rep (0 , c e i l i n g (N/2) ) )

13 group <− sample ( group )

14

15 n . t r <− sum( group == 1)

16 n . p l <− sum( group == 0)

17

18

19 # 2. Time to treatment−d i s c on t i nua t i on
20

21 # Two Szenar i o s f o r Time to treatment−d i s c on t i nua t i on :

22 # 2 . 1 . Time to treatment−d i s c on t i nua t i on * d i f f e r e n t * f o r both groups

23

24 i f ( dropout . t r != dropout . p l ) {

25

26 dolambda . t r = (−1)* l og (1 − dropout . t r ) # c a l c u l a t e lambda

27 dolambda . p l = (−1)* l og (1 − dropout . p l )

28

29 time . dropout <− rep (NA, N)

30 time . dropout [ group == 1 ] <− i f e l s e ( dolambda . t r != 0 ,

31 rexp (n . tr , r a t e = dolambda . t r ) , 999)

32 time . dropout [ group == 0 ] <− rexp (n . pl , r a t e = dolambda . p l )

33

34

35 # 2 . 2 . Time to treatment−d i s c on t i nua t i on * equal * f o r both groups

36 } e l s e {

37

38 dolambda <− (−1)* l og (1 − dropout . p l )

39 time . dropout <− rexp (N, ra t e = dolambda )

40 }

41

42
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43

44 # 999 = no treatment−d i s c on t i nua t i on
45 time . dropout [ time . dropout > 1 ] = 999

46 time . observed <− i f e l s e ( time . dropout == 999 , 1 , time . dropout )

47

48

49 # 3. Time between events u n t i l treatment−d i s c on t i nua t i on
50 # Lambda *with* treatment e f f e c t

51 i f ( event1 . t r != event1 . p l ) {

52

53 evlambda1 . t r <− (−1)* l og (1 − event1 . t r )

54 evlambda1 . p l <− (−1)* l og (1 − event1 . p l )

55

56 evlambda1 . a l l . p a t i e n t s <− rep (0 , N)

57 evlambda1 . a l l . p a t i e n t s [ group == 1 ] <− evlambda1 . t r

58 evlambda1 . a l l . p a t i e n t s [ group == 0 ] <− evlambda1 . p l

59

60

61 } e l s e {

62 # Lambda *without * treatment e f f e c t

63 evlambda1 <− l og (1 − event1 . p l ) *(−1)
64 evlambda1 . a l l . p a t i e n t s <− rep ( evlambda1 , N)

65 }

66

67 # 3 . 1 . Event ra t e i nd i v i dua l f o r every person

68 i f ( o v e rd i s p e r s i on != 1) {

69 # gamma−d i s t r i b u t e d event r a t e s

70 # 3 . 1 . 1 . *with* treatment e f f e c t

71 i f ( event1 . t r != event1 . p l ) {

72

73 evlambda1 . id <− rep (0 , N)

74 beta1 <− 1/( ov e rd i s p e r s i on − 1)

75 alpha1 . t r <− evlambda1 . t r * beta1

76 alpha1 . p l <− evlambda1 . p l * beta1

77 evlambda1 . id [ group == 1 ]

78 <− rgamma(n . tr , shape = alpha1 . tr , s c a l e=1/beta1 )

79 evlambda1 . id [ group == 0 ]

80 <− rgamma(n . pl , shape = alpha1 . pl , s c a l e = 1/ beta1 )

81 } e l s e {

82

83 # 3 . 2 . 2 . *without * treatment e f f e c t

84 beta1 <− 1/( ov e rd i s p e r s i on − 1)

85 alpha1 <− evlambda1 * beta1

86 evlambda1 . id <− rgamma(N, shape = alpha1 , s c a l e = 1/ beta1 )

87 }
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88

89 # Time between events f o r 3 . 1 .

90 time . between . events <− vec to r (" l i s t " , N)

91 number . event <− c ( )

92

93 f o r ( i in 1 :N) {

94 events <− c ( )

95 time . t o t a l <− 0

96

97 whi le ( time . t o t a l <= time . observed [ i ] ) {

98 events <− c ( events , rexp (1 , r a t e = evlambda1 . id [ i ] ) )

99 time . t o t a l <− sum( events )

100 }

101

102 time . between . events [ [ i ] ] <− events

103 number . event<−c (number . event , l ength ( time . between . events [ [ i ] ] ) −1)
104 }

105

106

107 } e l s e {

108 # 3 . 2 . Event ra t e * s im i l a r * f o r each i nd i v i dua l

109 # Time to f i r s t events and fu r th e r events f o r s c ena r i o *with*

treatment e f f e c t and s c ena r i o *without * treatment e f f e c t

110

111 time . between . events <− vec to r (" l i s t " , N)

112 number . event <− c ( )

113

114 f o r ( i in 1 :N) {

115 events <− c ( )

116 time . t o t a l <− 0

117

118 whi le ( time . t o t a l <= time . observed [ i ] ) {

119 events <− c ( events , rexp (1 , r a t e = evlambda1 . a l l . p a t i e n t s [ i ] ) )

120 time . t o t a l <− sum( events )

121 }

122

123 time . between . events [ [ i ] ] <− events

124 number . event<−c (number . event , l ength ( time . between . events [ [ i ] ] ) −1)
125 }

126

127 }

128

129

130

131
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132 ########################################################

133 # Simulat ion o f events a f t e r treatment−d i s c on t i nua t i on #

134 ########################################################

135

136 # 4. Time between events a f t e r treatment−d i s c on t i nua t i on
137

138 evlambda2 <− l og (1 − event2 ) *(−1)
139 evlambda2 . a l l . p a t i e n t s <− rep ( evlambda2 , N)

140

141

142

143 # 4 . 1 . Event ra t e i nd i v i dua l f o r every person

144 i f ( o v e rd i s p e r s i on != 1) {

145 # gamma−d i s t r i b u t e d event r a t e s

146

147 beta2 <− 1/( ov e rd i s p e r s i on − 1)

148 alpha2 <− evlambda2 * beta2

149 evlambda2 . id <− rgamma(N, shape = alpha2 , s c a l e = 1/ beta2 )

150

151

152 # Time between events f o r 4 . 1 .

153 number . event . t o t a l <− rep (NA, N)

154 time . between . events . t o t a l <− time . between . events

155

156 f o r ( i in 1 :N) {

157 # only f o r those whose treatment−d i s c on t i nua t i on i s be f o r e t r i a l

end

158 i f ( time . observed [ i ] < 1) {

159

160 # time to f i r s t event a f t e r treatment−d i s c on t i nua t i on = time

from dropout to f i r s t event + time from l a s t event to

treatment−d i s c on t i nua t i on
161 events <− c ( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ,
162 rexp (1 , evlambda2 . id )

163 + ( time . observed [ i ]

164 − sum( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ) ) )
165 time . t o t a l <− sum( events )

166

167 whi le ( time . t o t a l <= 1) {

168 events <− c ( events , rexp (1 , r a t e = evlambda2 . id [ i ] ) )

169 time . t o t a l <− sum( events )

170 }

171

172 time . between . events . t o t a l [ [ i ] ] <− events

173 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1

148



Appendix

174 }

175

176 e l s e {

177 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
178 }

179 }

180 } e l s e {

181

182 # 4 . 2 . Event ra t e * s im i l a r * f o r each i nd i v i dua l

183 # Time to f i r s t events and fu r th e r events f o r s c ena r i o *with*

treatment e f f e c t and s c ena r i o *without * treatment e f f e c t

184

185 number . event . t o t a l <− rep (NA, N)

186 time . between . events . t o t a l <− time . between . events

187

188 f o r ( i in 1 :N) {

189 # only f o r those whose treatment−d i s c on t i nua t i on i s be f o r e t r i a l

end

190 i f ( time . observed [ i ] < 1) {

191

192 # time to f i r s t event a f t e r treatment−d i s c on t i nua t i on = time

from dropout to f i r s t event + time from l a s t event to

treatment−d i s c on t i nua t i on
193 events <− c ( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ,
194 rexp (1 , evlambda2 . a l l . p a t i e n t s )

195 + ( time . observed [ i ]

196 − sum( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ) ) )
197 time . t o t a l <− sum( events )

198

199 whi le ( time . t o t a l <= 1) {

200 events <− c ( events , rexp (1 , r a t e =evlambda2 . a l l . p a t i e n t s [ i ] ) )

201 time . t o t a l <− sum( events )

202 }

203

204 time . between . events . t o t a l [ [ i ] ] <− events

205 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
206 }

207 e l s e {

208 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
209 }

210 }

211 }

212

213

214
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215 # 5. Build f i n a l datase t

216 id . f i n a l <− c ( )

217 group . f i n a l <− c ( )

218 time . dropout . f i n a l <− c ( )

219 time . between . events . f i n a l <− c ( )

220 time . between . events . t o t a l . f i n a l <− c ( )

221 occurrence . event . f i n a l <− c ( )

222 number . event . f i n a l <− c ( )

223 number . event . t o t a l . f i n a l <− c ( )

224

225 f o r ( i in 1 :N) {

226 id . f i n a l <− c ( id . f i n a l ,

227 rep ( id [ i ] , l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

228 group . f i n a l <− c ( group . f i n a l ,

229 rep ( group [ i ] , l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

230 time . dropout . f i n a l <− c ( time . dropout . f i n a l ,

231 rep ( time . observed [ i ] , l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

232 number . event . f i n a l <− c (number . event . f i n a l ,

233 rep (number . event [ i ] ,

234 l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

235 number . event . t o t a l . f i n a l <− c (number . event . t o t a l . f i n a l ,

236 rep (number . event . t o t a l [ i ] ,

237 l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

238 occurrence . event . f i n a l <− c ( occur rence . event . f i n a l ,

239 rep (1 , l ength ( time . between . events . t o t a l [ [ i ] ] ) − 1) , 0)

240 time . between . events . t o t a l [ [ i ] ]

241 [ [ l ength ( time . between . events . t o t a l [ [ i ] ] ) ] ]

242 <− 1 − sum( head ( u n l i s t ( time . between . events . t o t a l [ [ i ] ] ) , −1) )
243 time . between . events . t o t a l . f i n a l

244 <− c ( time . between . events . t o t a l . f i n a l ,

245 un l i s t ( time . between . events . t o t a l [ [ i ] ] ) )

246 }

247

248 as thmat r i a l <− data . frame ( id . f i n a l , group . f i n a l ,

249 time . between . events . t o t a l . f i n a l ,

250 occurrence . event . f i n a l , time . dropout . f i n a l ,

251 number . event . f i n a l , number . event . t o t a l . f i n a l )

252 colnames ( a s thmat r i a l ) <− c (" id " , "group " , " time . between . events " ,

253 " occurrence . event " , " time . dropout " ,

254 "number . event " , "number . event . t o t a l ")

255

256 re turn ( a s thmat r i a l )

257 }
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B.2 Functions for the simulation of scenarios under MNAR

1 make . a s thmat r i a l . l o n g i t ud i n a l .MNAR <− f unc t i on (N, dropout . t r = NULL,

2 dropout . p l = NULL,

3 event1 . t r = NULL,

4 event1 . p l = NULL,

5 event2 = NULL,

6 ov e rd i s p e r s i on = 1) {

7

8 # Generate N Cases

9 id <− 1 :N

10

11 # 1. Grouping Var iab le

12 group <− c ( rep (1 , f l o o r (N/2) ) , rep (0 , c e i l i n g (N/2) ) )

13 group <− sample ( group )

14

15 n . t r <− sum( group == 1)

16 n . p l <− sum( group == 0)

17

18

19 # 2. Simulat ion o f t o t a l number o f events to c a l c u l a t e time f o r

treatment−d i s c on t i nua t i on in dependence o f number o f events

20

21 # Lambda *with* treatment e f f e c t

22 i f ( event1 . p l != event1 . t r ) {

23

24 evlambda1 . t r <− (−1)* l og (1 − event1 . t r )

25 evlambda1 . p l <− (−1)* l og (1 − event1 . p l )

26

27 evlambda1 . a l l . p a t i e n t s <− rep (0 , N)

28 evlambda1 . a l l . p a t i e n t s [ group == 1 ] <− evlambda1 . t r

29 evlambda1 . a l l . p a t i e n t s [ group == 0 ] <− evlambda1 . p l

30

31

32 } e l s e {

33 # Lambda *without * treatment e f f e c t

34 evlambda1 <− l og (1 − event1 . p l ) *(−1)
35 evlambda1 . a l l . p a t i e n t s <− rep ( evlambda1 , N)

36 }

37

38

39 # 2 . 1 . Event ra t e i nd i v i dua l f o r every person

40 i f ( o v e rd i s p e r s i on != 1) {

41 # gamma−d i s t r i b u t e d event r a t e s

42 # 2 . 1 . 1 . *with* treatment e f f e c t

43
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44 i f ( event1 . t r != event1 . p l ) {

45

46 evlambda1 . id <− rep (0 , N)

47 beta1 <− 1/( ov e rd i s p e r s i on − 1)

48 alpha1 . t r <− evlambda1 . t r * beta1

49 alpha1 . p l <− evlambda1 . p l * beta1

50 evlambda1 . id [ group == 1 ] <− rgamma(n . tr , shape = alpha1 . tr ,

51 s c a l e = 1/ beta1 )

52 evlambda1 . id [ group == 0 ] <− rgamma(n . pl , shape = alpha1 . pl ,

53 s c a l e = 1/ beta1 )

54

55 } e l s e {

56 # 2 . 1 . 2 . *without * treatment e f f e c t

57 beta1 <− 1/( ov e rd i s p e r s i on − 1)

58 alpha1 <− evlambda1 * beta1

59 evlambda1 . id <− rgamma(N, shape = alpha1 , s c a l e = 1/ beta1 )

60

61 }

62

63 # Time between events f o r 2 . 1 . 1 and 2 . 1 . 2

64 time . between . events <− vec to r (" l i s t " , N)

65 number . event <− c ( )

66

67 f o r ( i in 1 :N) {

68 events <− c ( )

69 time . t o t a l <− 0

70

71 whi le ( time . t o t a l <= 1) {

72 events <− c ( events , rexp (1 , r a t e = evlambda1 . id [ i ] ) )

73 time . t o t a l <− sum( events )

74 }

75

76 time . between . events [ [ i ] ] <− events

77 number . event <− c (number . event ,

78 l ength ( time . between . events [ [ i ] ] ) −1)
79 }

80

81

82 } e l s e {

83 # 2 . 2 . Event ra t e * s im i l a r * f o r each i nd i v i dua l

84 # Time to f i r s t events and fu r t h e r events f o r s c ena r i o *with*

treatment e f f e c t and s c ena r i o *without * treatment e f f e c t

85

86 time . between . events <− vec to r (" l i s t " , N)

87 number . event <− c ( )
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88

89 f o r ( i in 1 :N) {

90 events <− c ( )

91 time . t o t a l <− 0

92

93 whi le ( time . t o t a l <= 1) {

94 events <− c ( events , rexp (1 , r a t e = evlambda1 . a l l . p a t i e n t s [ i ] ) )

95 time . t o t a l <− sum( events )

96 }

97

98 time . between . events [ [ i ] ] <− events

99 number . event <− c (number . event ,

100 l ength ( time . between . events [ [ i ] ] ) − 1)

101 }

102

103 }

104

105 ##########################################

106 # simula t i on proce s s f o r MNAR s t a r t s now #

107 ##########################################

108

109 # 3. Time to treatment−d i s c on t i nua t i on depending on number o f events

110

111 # Two Szenar i o s f o r Time to treatment−d i s c on t i nua t i on :

112 # 3 . 1 . Time to treatment−d i s c on t i nua t i on * d i f f e r e n t * f o r both groups

113

114 i f ( dropout . t r != dropout . p l ) {

115

116 dolambda . t r = (−1)* l og (1 − dropout . t r ) # c a l c u l a t e lambda

117 dolambda . p l = (−1)* l og (1 − dropout . p l )

118

119 dolambda . a l l . p a t i e n t s . mnar <− rep (0 , N)

120 dolambda . a l l . p a t i e n t s . mnar [ group == 1 ]

121 <− i f e l s e ( number . event [ group == 1 ] != 0 ,

122 dolambda . t r * number . event [ group == 1 ] , dolambda . t r )

123 dolambda . a l l . p a t i e n t s . mnar [ group == 0 ]

124 <− i f e l s e ( number . event [ group == 0 ] != 0 ,

125 dolambda . p l * number . event [ group == 0 ] , dolambda . p l )

126

127 time . dropout <− rep (NA, N)

128 time . dropout [ group == 1 ] <− i f e l s e ( dolambda . t r != 0 ,

129 un l i s t ( l app ly ( dolambda . a l l . p a t i e n t s . mnar [ group == 1 ] , rexp , n =

1) ) ,

130 999)
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131 time . dropout [ group == 0 ] <− un l i s t ( l app ly ( dolambda . a l l . p a t i e n t s .

mnar [ group == 0 ] ,

132 rexp , n = 1) )

133

134 } e l s e {

135

136 # 3 . 2 . Time to treatment−d i s c on t i nua t i on * equal * f o r both groups

137 dolambda <− (−1)* l og (1 − dropout . p l )

138

139 dolambda . a l l . p a t i e n t s . mnar <− rep (0 , N)

140 dolambda . a l l . p a t i e n t s . mnar <− i f e l s e ( number . event != 0 ,

141 dolambda * number . event , dolambda

)

142

143 time . dropout <− un l i s t ( l app ly ( dolambda . a l l . p a t i e n t s . mnar , rexp , n =

1) )

144

145

146 }

147

148 # 999 = no dropout

149 time . dropout [ time . dropout > 1 ] = 999

150 time . observed <− i f e l s e ( time . dropout == 999 , 1 , time . dropout )

151

152

153 # 4. Number o f events u n t i l treatment−d i s c on t i nua t i on
154 number . event <− c ( )

155

156 f o r ( i in 1 :N) {

157 j <− 1

158 time . t o t a l <− 0

159 events <− c ( )

160

161 whi le ( time . t o t a l <= time . observed [ i ] ) {

162 time . t o t a l <− time . t o t a l + time . between . events [ [ i ] ] [ [ j ] ]

163 events <− c ( events , time . between . events [ [ i ] ] [ [ j ] ] )

164 j <− j + 1

165 }

166

167 time . between . events [ [ i ] ] <− events

168 number . event <− c (number . event , j − 2)

169

170 }

171

172
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173 ########################################################

174 # Simulat ion o f events a f t e r treatment−d i s c on t i nua t i on #

175 ########################################################

176

177 # 5. Time between events a f t e r treatment−d i s c on t i nua t i on
178 evlambda2 <− l og (1 − event2 ) *(−1)
179 evlambda2 . a l l . p a t i e n t s <− rep ( evlambda2 , N)

180

181

182 # 5 . 1 . Event ra t e i nd i v i dua l f o r every person

183 i f ( o v e rd i s p e r s i on != 1) {

184 # gamma−d i s t r i b u t e d event r a t e s

185

186 beta2 <− 1/( ov e rd i s p e r s i on − 1)

187 alpha2 <− evlambda2 * beta2

188 evlambda2 . id <− rgamma(N, shape = alpha2 , s c a l e = 1/ beta2 )

189

190

191 # Time between events f o r 5 . 1 .

192 number . event . t o t a l <− rep (NA, N)

193 time . between . events . t o t a l <− time . between . events

194

195 f o r ( i in 1 :N) {

196 # only f o r those whose treatment−d i s c on t i nua t i on i s be f o r e t r i a l

end

197 i f ( time . observed [ i ] < 1) {

198

199 # time to f i r s t event a f t e r treatment−d i s c on t i nua t i on = time

from dropout to f i r s t event + time from l a s t event to

treatment−d i s c on t i nua t i on
200 events <− c ( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ,
201 rexp (1 , evlambda2 . id ) + ( time . observed [ i ]

202 − sum( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ) ) )
203 time . t o t a l <− sum( events )

204

205 whi le ( time . t o t a l <= 1) {

206 events <− c ( events , rexp (1 , r a t e = evlambda2 . id [ i ] ) )

207 time . t o t a l <− sum( events )

208 }

209

210 time . between . events . t o t a l [ [ i ] ] <− events

211 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
212 }

213

214 e l s e {
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215 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
216 }

217 }

218 } e l s e {

219

220 # 5 . 2 . Event ra t e * s im i l a r * f o r each i nd i v i dua l

221 # Time to f i r s t events and fu r th e r events f o r s c ena r i o *with*

treatment e f f e c t and s c ena r i o *without * treatment e f f e c t

222

223 number . event . t o t a l <− rep (NA, N)

224 time . between . events . t o t a l <− time . between . events

225

226 f o r ( i in 1 :N) {

227 # only f o r those whose treatment−d i s c on t i nua t i on i s be f o r e t r i a l

end

228 i f ( time . observed [ i ] < 1) {

229

230 # time to f i r s t event a f t e r treatment−d i s c on t i nua t i on = time

from dropout to f i r s t event + time from l a s t event to

treatment−d i s c on t i nua t i on
231 events <− c ( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ,
232 rexp (1 , evlambda2 . a l l . p a t i e n t s ) + ( time . observed [ i ]

233 − sum( head ( u n l i s t ( time . between . events [ [ i ] ] ) , −1) ) ) )
234 time . t o t a l <− sum( events )

235

236 whi le ( time . t o t a l <= 1) {

237 events <− c ( events , rexp (1 , r a t e = evlambda2 . a l l . p a t i e n t s [ i ] )

)

238 time . t o t a l <− sum( events )

239 }

240

241 time . between . events . t o t a l [ [ i ] ] <− events

242 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
243 }

244

245 e l s e {

246 number . event . t o t a l [ i ]<− l ength ( time . between . events . t o t a l [ [ i ] ] )−1
247 }

248 }

249 }

250

251

252 # 6. Build f i n a l datase t

253 id . f i n a l <− c ( )

254 group . f i n a l <− c ( )
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255 time . dropout . f i n a l <− c ( )

256 time . between . events . f i n a l <− c ( )

257 time . between . events . t o t a l . f i n a l <− c ( )

258 occurrence . event . f i n a l <− c ( )

259 number . event . f i n a l <− c ( )

260 number . event . t o t a l . f i n a l <− c ( )

261

262 f o r ( i in 1 :N) {

263 id . f i n a l <− c ( id . f i n a l ,

264 rep ( id [ i ] , l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

265 group . f i n a l <− c ( group . f i n a l ,

266 rep ( group [ i ] , l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

267 time . dropout . f i n a l <− c ( time . dropout . f i n a l ,

268 rep ( time . observed [ i ] , l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

269 number . event . f i n a l <− c (number . event . f i n a l ,

270 rep (number . event [ i ] ,

271 l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

272 number . event . t o t a l . f i n a l <− c (number . event . t o t a l . f i n a l ,

273 rep (number . event . t o t a l [ i ] ,

274 l ength ( time . between . events . t o t a l [ [ i ] ] ) ) )

275 occurrence . event . f i n a l <− c ( occur rence . event . f i n a l ,

276 rep (1 , l ength ( time . between . events . t o t a l [ [ i ] ] ) − 1) , 0)

277 time . between . events . t o t a l [ [ i ] ]

278 [ [ l ength ( time . between . events . t o t a l [ [ i ] ] ) ] ]

279 <− 1 − sum( head ( u n l i s t ( time . between . events . t o t a l [ [ i ] ] ) , −1) )
280 time . between . events . t o t a l . f i n a l

281 <− c ( time . between . events . t o t a l . f i n a l ,

282 un l i s t ( time . between . events . t o t a l [ [ i ] ] ) )

283 }

284

285 as thmat r i a l <− data . frame ( id . f i n a l , group . f i n a l ,

286 time . between . events . t o t a l . f i n a l , occur rence . event . f i n a l , time .

dropout . f i n a l ,

287 number . event . f i n a l , number . event . t o t a l . f i n a l )

288 colnames ( a s thmat r i a l ) <− c (" id " , "group " , " time . between . events " ,

289 " occurrence . event " , " time . dropout " ,

290 "number . event " , "number . event . t o t a l ")

291

292 re turn ( a s thmat r i a l )

293 }
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B.3 Order of execution of the R-code

The R-�les provided on the accompanying CD should be executed in the following order:

1. Simulation of scenarios

2. Evaluation of the hypothetical estimand with the Shared gamma frailty model

3. Evluation of the hypothetical estimand with the remaining methods

4. Evaluation of the treatment-policy estimand with the Shared gamma frailty model

5. Evaluation of the treatment-policy estimand with the remaining methods

6. Simulation and evaluation of the scenarios with study dropout of 50% for treatment-

policy estimand

7. Calculation of the true treatment e�ects

8. Bias of hypothetical estimand

9. Bias of treatment-policy estimand without study dropout

10. Bias of the treatment-policy estimand with study dropout of 50%

11. Bias of the treatment-policy estimand with study dropout of 100%

For the reproduction of the graphic, please keep in mind the following order:

1. Preparation of the samples of the hypothetical estimand

2. Preparation of the samples of the treatment-policy estimand

3. Now, all �les containing the code of the graphics and tables can be executed.
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