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Abstract

This study investigates sample size planning methods for nonparametric analyses of three-

arm non-inferiority trials using the retention-of-effect approach. Through extensive simu-

lation studies, a methodology for sample size estimation using the studentized permutation

test, as proposed by Mütze et al. (2017), is developed and considerations are provided for

the nonparametric approach using classical mid-ranks by Munzel (2009).

The proposed sample size planning method for analysing with the studentized per-

mutation test methodology incorporates the use of the parametric sample size formula by

Hasler et al. (2008), which effectively ensures the desired power level of the studentized

permutation test, even when data deviates from normality. This method offers a conve-

nient approach where only the expectation and variance parameters need to be specified

in advance.

To validate the assumptions on the nuisance parameters as specified in the planning

stage, a sample size re-estimation procedure based on data from an internal pilot study

is proposed. Two variance estimators, the unblinded group-variance estimator and the

blinded adjusted one-sample variance estimator, are suggested, with the former demon-

strating broader applicability. Additionally, an inflation factor is introduced to enhance

the reliability of achieving the target power level in scenarios with small pilot study sizes

and non-normal data. However, its effectiveness is limited as it may result in overesti-

mated sample sizes or fail to guarantee the desired power level, particularly in non-normal

data settings.

Regarding the nonparametric approach using classical mid-ranks by Munzel (2009),

this study provides insights into the type I error and empirical power of the test when

assuming parametric distributions for the data. However, due to the finding that assuming

parametric distributions does not directly translate into relative effects, this study presents

considerations for sample size planning when analysing with the Munzel test without

providing a definitive result.
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1 Introduction

In drug development, new treatments often present potential advantages such as reduced

toxicity, improved administration, or lower cost compared to standard treatments. In

such cases, the primary objective is often not to establish the superiority of the new drug

over the control but rather to demonstrate that the new treatment maintains the well-

established effectiveness of the active control. In other words, the goal is to establish

that the new treatment is not clinically worse than the active control by more than an

irrelevant amount. These types of clinical trials are commonly known as non-inferiority

trials. The efficacy of a new treatment is proven by demonstrating it as non-inferior to the

standard reference treatment which has been demonstrated to be efficacious in previous

trials.

While a two-arm trial consisting of the experimental and reference arm is typically

used for this purpose, it has two major drawbacks. Firstly, the choice of the non-inferiority

margin must be justified through previous studies. Secondly, two-arm non-inferiority tri-

als lack a direct comparison with placebo. As a result, assay sensitivity, which refers

to the “ability to distinguish an effective treatment from a less effective or ineffective

treatment” (International Council for Harmonisation of Technical Requirements for Phar-

maceuticals for Human Use, 2001, p. 11), may not be guaranteed since the effectiveness

of the active control cannot be directly demonstrated within the trial. Hence, including

a placebo arm in non-inferiority trials becomes recommendable whenever ethically justi-

fiable (European Medicines Agency, 2005). This design is referred to as ‘gold standard’

design and has gained popularity across various areas of clinical research (see for instance

Daniels et al., 2009; Pratley et al., 2019; Vanden Bossche and Vanderstraeten, 2015).

In a three-arm gold standard design, the non-inferiority hypothesis can be formulated

in two ways: either by defining the non-inferiority margin as an absolute margin or by

using the retention-of-effect approach, which considers the relative difference between the

reference and placebo group. Over the past two decades, the retention-of-effect approach

has been extensively studied in the analysis of three-arm non-inferiority trials for various

clinical endpoints. However, when assumptions about the underlying distributional prop-

erties of the clinical endpoint become untenable, it is reasonable to consider nonparametric

approaches for testing non-inferiority instead.

To our knowledge, Munzel (2009) introduced the first nonparametric approach for

three-arm non-inferiority trials. This approach is based on Kruskal-Wallis-type function-

als, commonly known as relative effects. These relative effects quantify the influence of

each treatment by measuring the deviation of its distribution relative to where probability

mass is concentrated in the experiment. This characteristic makes the test suitable for

analysing both continuous and ordinal data, without requiring any parametric assump-

tions about the endpoint. The estimation of these relative effects leads to mid-ranks,
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which is why the test is referred to as nonparametric test based on classical mid-ranks.

In 2017, Mütze et al. developed a second nonparametric test based on a studentized per-

mutation test using a Wald-type test statistic. This method proved particularly useful

for small sample sizes. Unlike the Munzel test, however, the studentized permutation test

compares expected values under the hypothesis rather than relative effects and remains

mean-based in its approach. Consequently, this test requires the data to be metric. How-

ever, since it derives the rejection area of the test through permutations, it does not rely

on parametric assumptions and is nonparametric in nature. Other nonparametric ap-

proaches have been proposed as well. S. Ghosh et al. (2017) introduced a testing strategy

that relies on transformations of the data, however, the method still requires the data to

be continuous. More recently, Li et al. (2023) investigated a nonparametric approach for

non-inferiority trials that accounts for non-ignorable missing data.

A critical aspect of designing a clinical trial involves the determination of the sample

size. The goal in planning the number of subjects is to ensure a population sufficiently

large to yield reliable answers to the research questions posed (International Council for

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, 1998, p.

16). Yet, it is equally important to avoid excessive sample sizes that might unnecessarily

subject participants to interventions and result in a waste of resources. Therefore, deter-

mining the sample size requires a sound justification, with the assumed treatment effect

being one key aspect of this determination (for more details refer to International Council

for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use, 1998,

p. 17). Failing to adequately specify parameters during sample size planning can poten-

tially result in underestimated or overestimated sample sizes. To validate the assumptions

made in the planning stage, trial designs may allow for the initially planned sample size

to be adjusted while the trial is in progress. This procedure is referred to as sample size

re-estimation.

Owing to the fact that nonparametric approaches, however, do not rely on parametric

assumptions of the data, defining the anticipated treatment effect for the purpose of

sample size estimation can pose an additional challenge. This thesis aims to investigate

possible strategies to estimate sample sizes when using a nonparametric procedure for the

retention-of-effect approach, with a primary focus on the studentized permutation test

by Mütze et al. (2017). Extensive simulation studies have led to the development of a

sample size planning method for this test. Additionally, considerations regarding the test

by Munzel (2009) have been explored.

The first part of this thesis provides a brief overview of the existing literature on

the analysis of three-arm clinical trials. The subsequent thesis is structured around the

two testing procedures. Chapter 3 focuses on the studentized permutation test, covering

the statistical model and hypothesis test. The operating characteristics of the test under

both the null and alternative hypothesis are explored and the results are then utilised

2



to propose a sample size planning method. Chapter 4 examines the nonparametric test

proposed by Munzel (2009), introducing the statistical model and hypothesis and investi-

gating the test’s operating characteristics under both the null and alternative hypothesis.

Considerations for sample size planning methods are provided. The findings for each test-

ing procedure are summarised and discussed in the corresponding section of the chapter.

Finally, the thesis concludes with a review of the results and an outlook on how further

research can build upon these findings.
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2 Review of three-arm gold standard design analyses in ex-

isting literature

Two-arm non-inferiority trials are widely used to demonstrate the non-inferiority of an ex-

perimental treatment versus a reference treatment. D’Agostino et al. (2003) and Röhmel

(1998) provide a detailed discussion on the design of such trials. Despite this, research

over the past two decades has increasingly focused on three-arm trials. This period wit-

nessed ongoing analysis of three-arm non-inferiority trials across various clinical endpoints.

Pigeot et al. (2003) proposed the first approach for normally distributed endpoints, as-

suming a common variance in the three treatment groups. The method was then extended

to normally distributed endpoints with heterogeneous variances by Hasler et al. (2008),

and a novel approach based on the Fieller-Hinkley distribution for normal endpoints was

presented by Koti (2007). The first approach to testing non-inferiority for binary data

was introduced by Kieser and Friede (2007). Since then, a variety of additional meth-

ods for binary data have been presented (M.-L. Tang and Tang, 2004; N.-S. Tang et al.,

2014; Chowdhury et al., 2019b; N. Tang and Yu, 2020; and Paul et al., 2021). Two

non-inferiority tests for survival data have been proposed; Mielke et al. (2008) proposed

one assuming exponentially distributed endpoints and Kombrink et al. (2013) another

assuming Weibull distributed endpoints. A testing strategy for count data following a

Poisson distribution was established by Mielke and Munk (2009). S. Ghosh et al. (2022)

introduced a novel approach for Poisson-count data. Mütze et al. (2016) suggested the

non-inferiority testing approach for count data following a negative binomial distribution.

The analysis of ordinal data has been discussed in the context of two-arm non-inferiority

trials (see Lui and Chang, 2013). When it comes to three-arm designs, to the best of

our knowledge, the nonparametric test proposed by Munzel (2009) is the only available

method for testing non-inferiority with ordinal data.

In addition to the previously mentioned frequentist approaches, several testing strate-

gies rooted in Bayesian analysis have been developed for non-inferiority trials. Simon

(1999) introduced the first Bayesian approach for two-arm non-inferiority trials, and a

Bayesian approach in the three-arm design was later proposed by P. Ghosh et al. (2011).

Several studies, including P. Ghosh et al. (2011) and S. Ghosh et al. (2016), have discussed

the advantages of Bayesian methods in analysing non-inferiority trials. These benefits en-

compass the incorporation of prior information through specific prior distributions and

the grounding of inference in the posterior distribution, eliminating the need for reliance

on asymptotics – a feature especially valuable for sparse data. Another advantage of

Bayesian approaches is their inherent flexibility, which enables the accommodation of a

wider range of models and diverse types of data. The Bayesian method has seen spe-

cific refinements for certain endpoints, particularly for binary data (see Chowdhury et al.,

2019a; S. Ghosh et al., 2018) and normally distributed data (Gamalo et al., 2016).
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Another approach that offers greater flexibility in testing non-inferiority is to avoid

making assumptions about the underlying distributional properties of the clinical endpoint

by using nonparametric methods. As mentioned in the introduction (Section 1), several

nonparametric tests for non-inferiority trials have been introduced, including those by

Munzel (2009), Mütze et al. (2017), S. Ghosh et al. (2017), and Li et al. (2023). This thesis

will investigate methods for sample size planning in three-arm non-inferiority trials using

the proposed studentized permutation test by Mütze et al. (2017) and the nonparametric

test based on classical mid-ranks by Munzel (2009).

5



3 The studentized permutation test

3.1 Statistical model and hypothesis testing

Non-inferiority hypothesis Denote Xik with k = 1, ..., ni and i = EXP,REF,PLA the

outcomes of independent real-valued random variables under the experimental treatment

(EXP), reference treatment (REF) and placebo (PLA) of a three-arm clinical trial. It

is assumed that the respective random variable Xik follows a distribution Fi with finite

mean E[Xik] = µi, finite positive variance V ar[Xik] = σ2
i > 0 and finite fourth moment

E[X4
ik].

Let µEXP, µREF and µPLA denote the parameters of interest for the experimental,

reference and placebo group respectively where higher values are associated with a higher

treatment effect. To demonstrate non-inferiority of the experimental treatment compared

to the existing reference treatment, it is necessary to show that the difference between the

experimental and reference treatment exceeds a pre-specified, clinically irrelevant amount,

that is the margin δ with δ < 0. The statistical testing problem of non-inferiority can be

formulated as

H0 : µEXP − µREF ≤ δ vs. H1 : µEXP − µREF > δ. (1)

Simultaneously, the trial needs to ensure assay sensitivity, which refers to its ability to

distinguish an effective treatment from an ineffective one (International Council for Har-

monisation of Technical Requirements for Pharmaceuticals for Human Use, 2001). This

is typically done by showing that the reference treatment is superior to placebo. In three-

arm non-inferiority trials, this is achieved by using the information from the placebo arm

to define the margin δ as a fraction f of the difference between the reference treatment

and placebo, that is

δ = f(µREF − µPLA) (2)

with f ∈ (−1, 0). The fraction f thereby quantifies by how much the reference treatment

is superior to placebo. By plugging f into (1) one obtains

H0 : µEXP − µREF ≤ f(µREF − µPLA) vs. H1 : µEXP − µREF > f(µREF − µPLA). (3)

Assuming that µREF−µPLA > 0, the definition of ∆ becomes ∆ = 1+f . The above testing

problem can then be rewritten in terms of the ratio of the differences in the group-specific

expectation parameters µi, that is

H0 :
µEXP − µPLA

µREF − µPLA

≤ ∆ vs. H1 :
µEXP − µPLA

µREF − µPLA

> ∆. (4)

6



This way of rearranging the hypotheses allows a straightforward interpretation of the

effect under the alternative hypothesis. It implies that, under the alternative hypothesis,

the experimental treatment achieves more than (∆ · 100)% of the efficacy of the reference

treatment where the experimental and reference treatment are each compared to placebo.

∆ therefore represents the minimum fraction of the reference treatment effect relative to

placebo that the experimental treatment effect relative to placebo needs to preserve in

order to demonstrate non-inferiority. The margin ∆ is typically referred to as the non-

inferiority margin. This kind of hypothesis where the non-inferiority margin is defined

by a fraction f is also known as retention-of-effect hypothesis and was first described by

Koch and Tangen (1999). A separate approach in defining the hypotheses was proposed

by Hida and Tango in 2011. The absolute margin approach defines the non-inferiority

margin ∆ by a pre-specified constant. The following work, however, will focus on the

retention-of-effect approach.

The studentized permutation test This paragraph introduces the studentized permuta-

tion test published by Mütze et al. (2017), which evaluates the non-inferiority hypothesis

for the retention-of-effect approach. A permutation approach for testing the absolute

margin hypothesis in the three-arm design is outlined in Appendix A.

Rather than relying on parametric assumptions, the studentized permutation test

approximates the distribution of the test statistic under the null hypothesis by permu-

tation of the data and therefore represents a nonparametric approach for testing the

non-inferiority hypothesis. The construction of the Wald-type test statistic involves rear-

ranging (4) as follows:

H0 : µEXP −∆µREF + (∆− 1)µPLA ≤ 0 vs. H1 : µEXP −∆µREF + (∆− 1)µPLA > 0. (5)

Let Xn denote the random vector that contains all observations of the trial, that is

Xn = (XEXP,1, . . . , XEXP,nEXP
, XREF,1, . . . , XREF,nREF

, XPLA,1, . . . , XPLA,nPLA
)

with P denoting its probability measure. Denote n as the total sample size and ni the

respective group sample size. Further, suppose that none of the three treatment groups

vanishes asymptotically wi = limni,n→∞
ni

n
∈ (0, 1) with wi =

ni

n
. The Wald-type statistic

Tn can then be derived by replacing the µi’s in (5) by the group-specific sample means

X̄i· and dividing the term by an estimate of its standard deviation, that is

Tn = Tn(Xn) =
√
n
X̄EXP· −∆X̄REF· + (∆− 1)X̄PLA·

σ̂
(6)

7



where the variance estimator σ̂2 is defined as

σ̂2 =
σ̂2
EXP

wEXP

+∆2 σ̂
2
REF

wREF

+ (1−∆)2
σ̂2
PLA

wPLA

(7)

with the group-specific sample variances

σ̂2
i =

1

ni − 1

ni∑
k=1

(Xik − X̄i·)
2.

In a first step, the test statistic Tn is calculated based on the observed data Xn. How-

ever, rather than using parametric assumptions on the distribution of the test statis-

tic, the data is permutated to approximate the distribution under the null hypothesis.

Let (τ(i))i≤n denote a random variable that is uniformly distributed on the group of

all permutations of the first n natural numbers with probability measure P̃ and denote

τn(Xn) = (Xn,τ(1), . . . , Xn,τ(n)) as a randomly permutated vector of Xn. The test statis-

tic is then again calculated based on the permutated data. For a given vector Xn, the

test statistic calculated with the permutated vector τn(Xn) is referred to as permutation

statistic. Hence, the permutation statistic is a result of the mapping

(τ(i))i≤n → Tn

(
Xn,τ(1), . . . , Xn,τ(n)

)
|Xn.

For a given significance level α ∈ (0, 1), the function ϕPerm
n then refers to the studentized

permutation test with

ϕPerm
n (Xn) =

1 Tn(Xn) > cn(α)

0 Tn(Xn) ≤ cn(α)

where cn(α) denotes the α-quantile of the permutation distribution, that is the distribution

of the test statistic based on the permutated data, which is the largest number such that

P̃
(
Tn(τn(xn)) > cn(α)

)
≤ α

holds. It can be shown that the expected value of the test function ϕPerm
n converges to α

with respect to the probability measure P at the boundary of the null hypothesis, that is

lim
n→∞

EP
[
ϕPerm
n (Xn)

]
= α.

Refer to Mütze et al. (2017) for a detailed derivation of the asymptotic behaviour of the

studentized permutation test.

In practice, the procedure to derive the p-value for the non-inferiority hypothesis based

on the studentized permutation test can be broken down into the following steps:

8



1. Computation of the test statistic Tn(Xn) for observed data Xn

2. Permutation of the data τn(Xn)

3. Computation of the test statistic based on permutated data Tn(τn(Xn))

4. Repetition of steps 2 and 3 for J times, e.g. 10,000 times (number of permutation

replications)

5. Computation of the p-value as the number of times that the permutated test statistic

Tn(τn(Xn)) is as or more extreme than the test statistic on the observed data

Tn(Xn) divided by J , that is

1

J

J∑
j=1

I(Tn(Xn) ≤ Tn(τn(Xn))

where I denotes the indicator function.

3.2 Operating characteristics of the studentized permutation test

To develop a sample size planning method, the first step involves examining the operating

characteristics of the studentized permutation test by means of simulation studies. As

a primary step, the operating characteristics of the studentized permutation test are

assessed under the null hypothesis. This step is undertaken to verify that the studentized

permutation test maintains the nominal significance level across the simulation scenarios

being investigated. The subsequent step involves investigating the empirical power of the

test under the alternative hypothesis. The findings from the power simulation then serve

as a basis to derive an approach for sample size planning.

Table 1 displays the scenarios used in the simulation study. The parameters are

categorised based on the situation under the hypothesis, that is under the null hypothesis

(column 2) for the investigation of the type I error rate and the alternative hypothesis

(column 3) for the investigation of the power of the test. Parameters that remain the

same under both scenarios are represented by merged cells.

9



Table 1: Scenarios for the simulation study investigating the operating characteristics
of the studentized permutation test under the null and alternative hypothesis.

Parameter Values under H0 Values under H1

Distributions Normal, t, Lognormal, Chi-squared

Non-inferiority margin ∆ 0.8

Ratio in the mean differences
(µEXP − µPLA)/(µREF − µPLA) 0.8 0.9, 1, 1.1, 1.2

Group standard deviations
(σEXP;σREF;σPLA) (1;1;1); (1;2;3); (3;2;1) (1; 1; 1); (3; 2; 1)

Sample size allocations
(nEXP : nREF : nPLA)

(1 : 1 : 1); (2 : 2 : 1); (3 : 2 : 1);
(3 : 3 : 1); (1:∆:1-∆)

Total sample size n 30, 60, 120, 210, 300 420

One-sided
nominal level α 0.025

Permutation replications 10,000

Simulation replications 5,000

The simulation includes continuous data generated from various distributions, includ-

ing normal, t, lognormal, and chi-squared distributions. This broad range of distributions

is considered to capture scenarios where the data deviates from normality, exhibiting char-

acteristics such as asymmetry, skewness, and heavier tails. Hereby, data is generated from

a lognormal distribution with location parameter µ = 0 and scale parameter σ = 1, from

a t-distribution with 4 degrees of freedom and a chi-square-distribution with 2 degrees

of freedom, denoted as χ2. In the following, the observation Xik will be referred to as

t, lognormal or χ2-distributed when it is calculated from a standardized t, lognormal or

χ2-distributed random variable, that is

Xik =

(
Xik − E[Xik]√

Var[Xik]

)
· σi + µi i = EXP,REF,PLA and k = 1, ..., ni. (8)

This notation was adapted from Mütze et al. (2017). It guarantees that the data conforms

to the appropriate expectations and standard deviations, regardless of their underlying

distribution.

In the simulation, the non-inferiority margin ∆ is fixed at 0.8. The choice of the

non-inferiority margin is motivated following the assumption of Pigeot et al. (2003) that a

difference of 20% between the population means of the experimental and reference treat-
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ment is considered as clinically unimportant, that is f(µREF − µPLA) = −1/5. Expressed

in the ratio of the group means (5) this means that in order to be accepted as non-inferior,

the experimental treatment must demonstrate an effect size of more than 80% of the mean

effect size of the reference treatment, each in comparison to placebo. The effect under

the hypothesis (µEXP−µPLA)/(µREF−µPLA) is then varied accordingly to the hypothesis.

For both scenarios, µREF and µPLA are fixed with µREF = 1 and µPLA = 0. Under the

null hypothesis, µEXP is fixed at 0.8 while µEXP is varied under the alternative hypothesis

to generate the different ratios (µEXP − µPLA)/(µREF − µPLA). It is expected that greater

ratios result in more evidence for the alternative hypothesis, rendering higher power levels

obtained with the studentized permutation test.

Homogeneous as well as heterogeneous standard deviation scenarios across the three

treatment groups are investigated. The homogeneous scenario is defined as (σEXP;σREF;σPLA) =

(1; 1; 1). In case of heterogeneity, the standard deviations are chosen as (σEXP;σREF;σPLA) =

(1; 2; 3) and (3; 2; 1). In part, these scenarios represent very extreme scenarios of varia-

tion. This is done to show possible limitations of the applied methods. For a depiction

and brief description of the generated data within the simulation study for the consid-

ered expectation and standard deviation parameters under both the null and alternative

hypothesis, refer to Appendix A.

Typical sample size allocations for three-arm clinical trials (nEXP : nREF : nPLA),

namely (1:1:1), (2:2:1), (3:2:1), (3:3:1) and (1:∆:1 − ∆) (here: 1:0.8:0.2), are included.

Specifically, the latter is supposed to be the optimal allocation for any parametric family

in the sense that a maximum power is achieved while minimising the total required sample

size n (refer to Mielke and Munk, 2009). Under the null hypothesis, the total sample size

n is varied from 30 to 300 to investigate whether the one-sided nominal level can be

ensured for increasing n. Under the alternative hypothesis, the total sample size n is

fixed at n = 420 to demonstrate the impact of an increasing effect size on the power of

the test instead. A one-sided significance level of α = 0.025 is assumed. To ensure that

the one-sided significance level can be attained asymptotically, the rejection area of the

studentized permutation test is obtained from 10,000 permutations replications. Each

scenario is then replicated 5,000 times.

For comparison, the parametric equivalent Wald-type test derived by Hasler et al.

(2008) is also conducted for the presented scenarios and its results are included in the

following analysis. The test by Hasler et al. (2008), referred to as Hasler test in the

following, assumes that the endpoints follow a normal distribution with means µEXP, µREF

and µPLA and allows for heterogeneous variances across the three groups. The Hasler test

is based on the same test statistic as the studentized permutation test, that is Tn as in

(6). Based on a Welch approximation, the distribution of Tn under the null hypothesis

is thereby approximated by a t-distribution with νhet degrees of freedom, which are given
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by

νhet =

(
1

nEXP

σ2
EXP +

∆2

nREF

σ2
REF +

(1−∆)2

nPLA

σ2
PLA

)2

1

n2
EXP(nEXP − 1)

σ4
EXP +

∆4

n2
REF(nREF − 1)

σ4
REF +

(1−∆)4

n2
PLA(nPLA − 1)

σ4
PLA

where the unknown parameters σ2
EXP, σ

2
REF and σ2

PLA can be estimated by the sample

variances S2
EXP, S

2
REF and S2

PLA. This yields the estimated degrees of freedom ν̂het. The

hypothesis of inferiority is then rejected if the test statistic is greater than the (1 − α)-

quantile of the central t-distribution with ν̂het degrees of freedom. This test can be

expressed as the function

ϕHasler
n (Xn) =

1 Tn(Xn) > t1−α(ν̂
het)

0 Tn(Xn) ≤ t1−α(ν̂
het).

The simulation was conducted using the program R (R Core Team, 2022). Both tests

were carried out using the functionality of the R-package ThreeArmedTrials which is

available on CRAN (Mütze, 2023). In the process of this thesis, a minor coding error was

discovered in the functionality of the studentized permutation test, leading to erroneous

calculations specifically for unbalanced group designs (refer to Appendix A for detailed

information). The error was reported to the maintainer of the package, who promptly ad-

dressed and resolved the issue (see the commit of April 18, 2023). As a result, a corrected

version of the studentized permutation test is now implemented in the ThreeArmedTrials

package. The scripts for conducting the simulation study are provided in Appendix A.

3.2.1 Type I error rate

The simulation under the null hypothesis investigates whether the studentized permuta-

tion test holds the nominal level of α = 0.025 under the various simulation scenarios.

For this purpose, the effect under the hypothesis (µEXP − µPLA)/(µREF − µPLA), that is

µEXP −∆µREF + (∆− 1)µPLA is set to ∆ = 0.8. The results of the simulation under the

null hypothesis are shown in Figure 1. The Figure is divided into columns and rows. The

columns represent the distributions that generated the data, namely the normal, t, log-

normal and χ2-distribution. The rows represent the different standard deviation scenarios

for the three groups, namely the homogeneous scenario of (σEXP;σREF;σPLA) = (1; 1; 1)

in row 1 and the two heterogeneous scenarios of (1; 2; 3) and (3; 2; 1) in rows 2 and 3.

The different sample size allocation schemes are represented by different line types. The

type I error rate on the y-axis is then displayed by the varying total sample size n on the

x-axis. The two grey lines indicate the area of the nominal level α = 0.025 ± two times

the Monte Carlo error. The Monte Carlo error for a nominal level α = 0.025 by 5,000
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replications is given by √
1

5,000
· (0.025 · (1− 0.025)) ≈ 0.002.

Figure 1: Actual significance level α̂ of the studentized permutation test against the
total sample size n. The dashed grey lines depict the area of α = 0.025 ± two times
the Monte Carlo error.

Figure 1 shows that the studentized permutation test holds the one-sided nominal

level for the scenario of homogeneous variances for all four data-generating mechanisms

(first row). For normal and t-distributed data (first and second column), the significance

level is also controlled under almost all remaining scenarios of group standard deviations

(rows 2 and 3). An exception is the case of (σEXP;σREF;σPLA) = (3; 2; 1) for small sample

sizes under a balanced group design or design of (3 : 2 : 1) where the test tends to be

liberal. For data following a lognormal and χ2-distribution (third and fourth column),

however, the test becomes too liberal in case of (σEXP;σREF;σPLA) = (1; 2; 3) and too

conservative in case of (σEXP;σREF;σPLA) = (3; 2; 1). The former is especially the case for

lognormal data. When a test is too liberal, i.e. exceeds the nominal significance level, it

implies that it has a higher tendency to reject the null hypothesis although it is true. This

behaviour is more concerning than a conservative behaviour where the test is less likely

to produce false positive results. In Figure 1, higher sample sizes reduce the elevated type
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I error rate in that scenario but cannot control it to the desired level with the considered

sample sizes. The lines indicating the different allocation schemes suggest that there is

variation in the observed type I error rate depending on the chosen allocation ratio of the

groups. However, no pattern is visible across all scenarios.

Additionally, it is also possible to compare the operating characteristics of the Hasler

test with those of the studentized permutation test under the null hypothesis. Figure 2

shows the type I error rate for the studentized permutation test as well as the Hasler test.

Note that the different colours in the figure now indicate the considered test statistic,

that is the studentized permutation test and the test by Hasler et al. (2008). Figure 2

specifically illustrates the type I error rate solely for the unbalanced (1 : ∆ : 1−∆) design.

This choice is due to the Hasler test demonstrating comparable behaviour across different

allocation schemes. Moreover, this focus enhances clarity in the visual representation.

Figure 2: Actual significance level α̂ of the studentized permutation test and the Hasler
test against the total sample size n in the group design (1 : ∆ : 1 −∆). The dashed
grey lines depict the area of α = 0.025 ± two times the Monte Carlo error.

Overall, Figure 2 shows that both tests behave very similarly in terms of the type

I error rate. The nominal significance level is maintained by both tests for almost all

scenarios under normal and t-distributed data. In case of skewed data with group standard

deviations of (σEXP;σREF;σPLA) = (1; 2; 3) the Hasler test also shows a liberal behaviour

as well as a conservative behaviour under (σEXP;σREF;σPLA) = (3; 2; 1). However, it even
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seems that the studentized permutation test reports a greater type I error rate than the

Hasler test in both of these scenarios.

Also, it should be noted that both tests report slight differences in the type I error

rate according to the chosen allocation scheme. However, there does not seem to be a

pattern across all group standard deviation scenarios and/or data-generating mechanisms,

explaining the variation by allocation scheme.

The liberal behaviour observed in both the studentized permutation test and the

Hasler test can be attributed to the variability in the variance estimation of data that

follows lognormal and χ2-distributions, particularly for smaller sample sizes. For a detailed

explanation of the liberal behaviour of these tests in the scenario where (σEXP;σREF;σPLA) =

(1; 2; 3), please refer to Appendix A.

The type I error rate of the studentized permutation test was also investigated by

Mütze et al. (2017). In their study, the operating characteristics of the test were ex-

amined under the variance scenario of (σ2
EXP;σ

2
REF;σ

2
PLA) = (1; 2; 3). They observed a

conservative behaviour of the test for skewed data in that case, which contrasts with the

liberal behaviour observed in the previous results for increasing standard deviation sce-

narios. The difference in findings can be attributed to the fact that Mütze et al. (2017)

focused on the reversed effect under the hypotheses, where smaller values of the outcome

are associated with a higher treatment effect. As evidenced in the Appendix A, it can be

demonstrated that the results presented here align with those reported by Mütze et al.

(2017).

In summary, the simulation study conducted under the null hypothesis demonstrates

that the studentized permutation test effectively maintains the nominal significance level

in various cases. Particularly for normal and t-distributed data, the test exhibits excellent

performance. However, for skewed data, the test tends to be too liberal when the standard

deviations increase, as observed in the scenario (σEXP;σREF;σPLA) = (1; 2; 3). Conversely,

it becomes too conservative when the standard deviations decrease, as seen in the scenario

of (σEXP;σREF;σPLA) = (3; 2; 1). It is important to note that this characteristic is also

observed in the parametric equivalent Hasler test. Therefore, caution should be exercised

when handling scenarios with increasing group standard deviations, particularly when

the data is skewed. The type I error rate of the studentized permutation test exhibits

minor variations among the different allocation schemes but does not display a consistent

pattern across all scenarios. Moreover, its behaviour closely resembles that of the Hasler

test in terms of the type I error rate.

3.2.2 Power

The simulation under the alternative hypothesis aims at investigating the power behaviour

of the studentized permutation test to ultimately derive possible strategies to plan sample

sizes. The effect under the alternative hypothesis (µEXP − µPLA)/(µREF − µPLA) is now

15



varied from 0.9 to 1.2 by steps of 0.1 to demonstrate the impact of an increasing effect

on the power of the test. The total sample size is fixed with n = 420. In light of the

detected liberal behaviour of the studentized permutation test and the Hasler test under

the null hypothesis for skewed data under (σEXP;σREF;σPLA) = (1; 2; 3), this scenario is

excluded from the power simulation. Refer to column 3 of Table 1 for the parameters of the

simulation. The results for the studentized permutation test are shown in Figure 3 where

the empirical power curve is displayed on the y-axis against the varying ratio under the

hypothesis on the x-axis. The Figure is divided into columns and rows where the columns

represent the four data-generating mechanisms and the rows represent the two group

standard deviation scenarios. The different sample size allocations (nEXP : nREF : nPLA)

are distinguished by different line types.

Figure 3: Observed power of the studentized permutation test against (µEXP −
µPLA)/(µREF − µPLA) for a total sample size n = 420.

As expected, the power of the test increases for an increasing ratio in the mean

differences. That is because an increasing ratio means more evidence for the alternative

of non-inferiority. If one aims at a power level of 80%, it is reached for a ratio (µEXP −
µPLA)/(µREF − µPLA) of approximately 1.1 for all four underlying distributions in case

of (σEXP;σREF;σPLA) = (1; 1; 1) for a total sample size of n = 420. For the scenario

of (σEXP;σREF;σPLA) = (1; 1; 1), the power curve is considerably higher compared to

the scenario of (σEXP;σREF;σPLA) = (3; 2; 1). In the heterogeneous scenario, a power
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level of 80% is not reached. Not surprisingly, a higher total sample size n is needed for

heterogeneous standard deviations to obtain an adequate power level.

The power of the studentized permutation test also varies by the chosen allocation

scheme. Table 2 displays the mean power of the studentized permutation test by sample

size allocation and underlying distribution of the data. The last column shows the overall

mean power of the respective allocation scheme and the last row shows the mean power

by the respective underlying distribution of the data.

Table 2: Mean observed power of the studentized permutation test in percentage by
group design and underlying distribution of the data for a total sample size n = 420
across all (µEXP − µPLA)/(µREF − µPLA).

(nEXP : nREF : nPLA) normal t(4) lognormal χ2(2) Mean power

(1 : 1 : 1) 36.81 37.66 39.27 36.95 37.67

(2 : 2 : 1) 40.03 40.67 42.18 40.33 40.80

(3 : 3 : 1) 41.05 41.61 42.76 41.27 41.67

(3 : 2 : 1) 40.89 41.66 41.66 40.64 41.21

(1 : ∆ : 1−∆) 41.63 42.14 42.84 41.41 42.01

Mean power 40.08 40.75 41.74 40.12

Table 2 demonstrates that the studentized permutation test is able to obtain a slightly

greater power level under lognormality of the data with a mean power of about 41.74%

across all scenarios. For the other three underlying distributions, the mean power is

constant by about 40%. The highest mean power levels are reached under the allocation

schemes of (1 : ∆ : 1 − ∆) and (3 : 3 : 1). The lowest mean power is reported for

the balanced design with about 38%. Hence, unbalanced designs are able to achieve the

desired power level more rapidly and therefore require fewer participants. Therefore, they

should be preferred over balanced group designs. In particular, assuming normal data,

it was demonstrated by Pigeot et al. (2003) that the allocation of (1 : ∆ : 1 − ∆) is

optimal in the sense that it maximises power while minimising the total required sample

size n. This holds even true for any parametric family when variances are estimated

unrestrictedly, as shown by Mielke and Munk (2009). The simulation results mentioned

above are consistent with this finding, even in the nonparametric scenario when using the

studentized permutation test.

For comparison, the power of the parametric test by Hasler et al. (2008) can be com-

pared to the power of the studentized permutation test. In Figure 4 the power behaviour

of the Hasler test is shown additionally to the power of the studentized permutation test.

Since the power curves show an analogous behaviour with respect to the chosen allocation

scheme, the results for the allocation scheme (1 : ∆ : 1−∆) are shown solely. Note that
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the colours now distinguish the two tests, namely the studentized permutation test and

the Hasler test.

Figure 4: Observed power of the studentized permutation test and the Hasler test
against (µEXP − µPLA)/(µREF − µPLA) for a total sample size n = 420 in the group
design (1 : ∆ : 1−∆).

Figure 4 shows that, overall, the studentized permutation test behaves very similarly

to the Hasler test with respect to the empirical power. The power curves seem to overlap

for most of the considered scenarios. For lognormal data, the studentized permutation

test is able to obtain a slightly higher power level than the Hasler test, especially for

the heterogeneous standard deviation scenario. This also seems to be the case for data

following a χ2-distribution whereby the difference is not so strong as for lognormal data.

In Table 3, the mean power differences between the studentized permutation test and the

Hasler test are displayed by the standard deviation scenario and underlying distribution

of the data. The last column and the last row show the respective overall mean power

difference. The difference is computed by substracting the power of the Hasler test from

that of the studentized permutation test.
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Table 3: Mean difference between the observed power of the studentized permutation
test and the observed power of the Hasler test in percentage points by standard devi-
ation scenario and underlying distribution of the data for a total sample size n = 420
across all (µEXP − µPLA)/(µREF − µPLA) and group designs.

(σEXP;σREF;σPLA) normal t(4) lognormal χ2(2)
Mean
Difference

1; 1; 1 -0.02 0.11 1.28 0.55 0.48

3; 2; 1 0.19 0.36 2.13 0.91 0.90

Mean Difference 0.09 0.23 1.70 0.73 0.007

Except for the case of homogeneous variances under normality, the studentized per-

mutation test performs better than the Hasler test in terms of power across all scenarios.

On average, the power of the studentized permutation test is greater by 0.007 percentage

points, indicating, however, that this difference is rather marginal. The highest power

difference is obtained under lognormality where the studentized permutation test reports

1.70 percentage points greater power than the Hasler test. This is followed by 0.73 per-

centage points greater power for data following a χ2-distribution. The smallest positive

difference occurs for normal data with a mean power difference of 0.09. Hence, the simu-

lation could show a greater power of the test compared to the Hasler test for non-normal

data.

Also, the studentized permutation test performs especially well under heterogeneous

standard deviations compared to the homogeneous case across all data-generating mecha-

nisms. On average, the studentized permutation test reports 0.9 percentage points greater

power than the Hasler test under the heterogeneous setting. Overall, however, the mag-

nitude of the difference is relatively small.

The simulation demonstrated that the power curve of the studentized permutation

test closely resembles the power curve of the Hasler test. This suggests that the power of

the studentized permutation test can be approximated by the power of the Hasler test.

However, it is also noteworthy that the studentized permutation test can be the better

choice in terms of power. This is especially the case for skewed data and scenarios of

heterogeneous standard deviations.

3.3 Using the Hasler sample size formula for sample size planning for

the studentized permutation test

The simulation results under the alternative hypothesis for continuous data showed that

the power of the studentized permutation test behaves very similarly to the power of the

Hasler test in three-arm non-inferiority designs. Differences in the power between those

two tests occur mostly due to the underlying data-generating mechanism and the group
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standard deviations. That is, for skewed data and heterogeneous standard deviations

the studentized permutation test performs slightly better. However, these differences

were found to be rather small. The observation that the power curve of the studentized

permutation test resembles the curve of the Hasler test consequently suggests the use of

the Hasler formula for sample size planning when using the studentized permutation test

for analysis.

The upcoming paragraph will introduce the sample size estimation approach as derived

by Hasler et al. (2008), and examine the potential challenges that arise during the process

of estimating sample sizes. To obtain a power of at least 1−β for the Hasler test, it must

hold that

P

{
Tn > t1−α(ν

het)

∣∣∣∣µEXP − µPLA

µREF − µPLA

> ∆, σ2
EXP, σ

2
REF, σ

2
PLA

}
≥ 1− β

where νhet denote the degrees of freedom of the central t-distribution which is given by

(
1

nEXP

σ2
EXP +

∆2

cREFnEXP

σ2
REF +

(1−∆)2

cPLAnEXP

σ2
PLA

)2

σ4
EXP

n2
EXP(nEXP − 1)

+
∆4σ4

REF

(cREFnEXP)2(cREFnEXP − 1)
+

(1−∆)4σ4
PLA

(cPLAnEXP)2(cPLAnEXP − 1)

(9)

Therein, the sample sizes of reference and placebo group are denoted as proportions cREF

and cPLA of the experimental groups sample size, that is (nEXP : nREF : nPLA) = 1 : cREF :

cPLA. Then, the sample size for the experimental group nEXP for an unbalanced design

with fixed cREF and cPLA is given by the smallest nEXP for which

nEXP ≥
(
t1−α(ν

het)− tβ(ν
het)

)2 σ2
EXP +

∆2

cREF

σ2
REF +

(1−∆)2

cPLA
σ2
PLA(

µEXP −∆µREF − (1−∆)µPLA

)2 (10)

holds. The solution is derived iteratively. Refer to Hasler et al. (2008) for a detailed

derivation of the sample size formula.

The sample size formula (10) requires the specification of the expected values µi and

variance parameters σ2
i for all three groups i = EXP, REF, PLA.

The specification of the expected treatment effects is based on determining the clin-

ically relevant effect between the experimental and reference treatments, each compared

to placebo, in order for the experimental treatment to be considered non-inferior to the

reference treatment. Thereby, it is common to plan the trial under the assumption that

the experimental treatment and the reference treatment have the same treatment effect,

that is µEXP = µREF. The treatment effect of the reference treatment compared to placebo

is often determined based on information from previous studies and/or pre-clinical data.

Consequently, specifying the expected treatment effects usually does not pose a challenge
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during the planning stage.

In contrast, the specification of variances for the three groups is often subject to

greater uncertainty. The magnitudes and interrelationships of the variances depend more

on the specific characteristics and circumstances of the trial. Ideas about the variances

in the reference and placebo groups, as well as their relationship to each other, may be

informed by findings from previous studies. Determining the variance of the experimental

group and its relationship to the variances of the reference and placebo groups, however,

is typically more challenging and uncertain.

Failing to adequately specify nuisance parameters during sample size planning could

potentially result in underpowered or overpowered trials. Underpowering occurs when the

estimated sample size is insufficient to achieve the desired power level, resulting in a higher

probability of failing to detect non-inferiority when it truly exists. On the other hand,

overpowering occurs when the power level exceeds the desired one. In such cases, the

estimated sample size is larger than necessary, raising concerns about exposing too many

individuals to treatment and the potential wastage of resources. The subsequent analysis

will therefore explore scenarios wherein the nuisance parameters, specifically the variance

parameters for the three treatment groups, are either correctly specified or misspecified

during the planning of a trial using the Hasler sample size formula.

3.4 Sample size re-estimation based on nuisance parameter estimates

To account for potential misspecifications of nuisance parameters when planning a trial,

trial designs might allow that the initially planned sample size is adjusted while the trial

is in progress. In order to estimate the nuisance parameter, one might use the data of an

internal pilot study and adjust the final sample size according to the nuisance parameter

estimates. This procedure is referred to as sample size re-estimation based on nuisance

parameter estimates and distinguishes itself from re-estimation procedures that rely on

treatment effect estimates.

The idea of re-estimating sample sizes based on data from internal pilot studies in

the setting of clinical trials was introduced by Wittes and Brittain (1990). Nuisance

parameters are estimated based on the internal pilot study data whereby the internal pilot

study data is also used for the final statistical analysis. Various sample size re-estimating

strategies were studied for the two-arm design for normally distributed endpoints (see

Gould and Shih, 1992; Kieser and Friede, 2003; Friede and Kieser, 2013; Friede and

Kieser, 2011a; Xing and Ganju, 2005; Glimm and Läuter, 2013).

Building upon these ideas, Mütze and Friede (2017) extended the methodology to

three-arm trials and investigated the performance of the proposed methods for normally

distributed data. However, their focus was primarily on methods under the absolute

margin hypothesis for non-inferiority trials. Furthermore, their analysis predominantly
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involved variance estimators that preserved the blinding of the pilot study data, limiting

the examination to scenarios with homogeneous variances across the three groups. In this

study, one of the methods proposed by Mütze and Friede (2017), specifically the blinded

adjusted one-sample variance estimator, will be applied to the retention-of-effect hypoth-

esis. Additionally, an unblinded estimator capable of considering heterogeneous variances

across the three groups will be compared. These two procedures will be introduced and

subsequently their performance will be assessed in simulation studies by means of power

and type I error rate. The main questions to address in the following are:

1. Does the studentized permutation test reach the desired power level through plan-

ning with the Hasler formula in a fixed sample size design when nuisance parameters

are correctly specified? How does this compare to the case when nuisance parame-

ters are misspecified?

2. Is re-estimation better than a fixed sample size design in terms of attaining the

desired power when nuisance parameters are either correctly specified or misspecified

during the planning phase?

3. Among the considered variance estimators, which one is more effective in re-estimating

sample sizes and achieving the desired power level? What explains their differing

behaviour? How can the scenarios, where re-estimation fails to reach the desired

power level, be explained?

4. In situations where the desired power level cannot be achieved, can the power per-

formance of the re-estimation procedure be improved by inflating the re-estimated

sample size using an inflation factor?

5. Do the sample size re-estimation procedures maintain the pre-specified type I error

rate, which is a prerequisite from a regulatory point of view?

To our knowledge, a sample size re-estimation procedure for the retention-of-effect

hypothesis based on the Hasler sample size formula has not yet been investigated. The

ultimate goal of this work is to find a possible sample size re-estimating strategy when

analysing with the studentized permutation test. The presented method, however, also

represents a valid approach when analysing with the Hasler test.

Estimating the nuisance parameters Two variance estimators are considered for the

estimation of the nuisance parameters based on internal pilot study data: the unblinded

group-variance estimator and the blinded adjusted one-sample variance estimator. Denote

n1 as the size of the internal pilot study.
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1. Unblinded group-variance estimator: The within-group variances σ2
n1,i

can be

estimated unbiased by the group-specific sample variances of the internal pilot data, that

is

σ̂2
n1,i,UGi

=
1

n1,i − 1

n1,i∑
ki=1

(Yiki − Ȳi)
2 i = EXP, REF, PLA (11)

where n1,i are the respective sample sizes of the three groups i = EXP,REF,PLA in

the internal pilot study and Yiki the unblinded oberservations of the internal pilot study.

The group estimates σ̂2
n1,i,UGi

are then plugged in the Hasler sample size formula and

the sample size is re-adjusted accordingly. The re-estimation procedure based on the

unblinded group-variance estimates σ̂2
1,i,UGi

is abbreviated with UG in the following.

2. Blinded adjusted one-sample variance estimator: The blinded one-sample vari-

ance estimator (OS) by Kieser and Friede (2003) estimates a single nuisance parameter

for all three groups by the sample variance of the blinded observations Y1, . . . , Yn1 of the

internal pilot study, that is

σ̂2
n1,OS =

1

n1 − 1

n1∑
k=1

(Yk − Ȳ )2 k = 1, . . . , n1. (12)

By ignoring the fact that the observations come from three groups, this estimator yields

an estimate of the overall variance, that is the sum of the between-group variance and

the within-group variances. If the group means differ from each other, this estimator,

however, is biased. Mütze and Friede (2017) derived the bias of the one-sample variance

estimator σ̂2
n1,OS for three-arm designs under the absolute margin hypothesis. Denote µi

as the group-specific means with i = EXP, REF, PLA and µ̄ the weighted mean of the

group means, that is, µ̄ = w1,EXP ·µEXP+w1,REF ·µREF+w1,PLA ·µPLA with w1,i = n1,i/n1.

The bias is then given by

Bias(σ̂2
n1,OS, σ

2) =
n1

n1 − 1

∑
i

w1,i(µi − µ̄)2. (13)

Refer to the Appendix of Mütze and Friede (2017) for a derivation of the bias. The bias

remains the same under the retention-of-effect hypothesis as the considered models are

equivalent. Gould and Shih (1992) then showed that an unbiased version of the one-

sample variance estimator, denoted as σ̂2
n1,OSU, can be derived when one substracts the

respective bias Bias(σ̂2
n1,OS, σ

2) from the one-sample variance estimator σ̂2
n1,OS, that is

σ̂2
n1,OSU = σ̂2

n1,OS − Bias(σ̂2
n1,OS, σ

2).

In the following simulation, the adjusted version of the one-sample variance estima-
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tor σ̂2
n1,OSU is employed and will be abbreviated by OSU. For this, the OS estimator is

calculated based on the blinded observations in a first step. The bias is subsequently

calculated based on the group-specific parameters µ∗
i that were assumed in the planning

stage. The sample size is then re-estimated by plugging the estimate σ̂2
n1,OSU in the Hasler

formula (10) for each of the three groups. However, when subtracting the bias from the

one-sample variance estimator σ̂2
n1,OS, it is possible that the resulting adjusted estimator

becomes negative. In such instances, sample size re-estimation is not feasible. Instead, the

one-sample variance estimator is employed without the adjustment. It is worth noting,

however, that in the upcoming simulation study, this situation occurred in only 0.001% of

all cases. It should also be noted that the adjusted version is only unbiased, if and only

if, the assumptions on the group means µ∗
i are correct.

In two-arm trials, the blinded one-sample variance estimator proved to be the best

nuisance parameter estimator for sample size re-estimation in meeting the target power

(Friede and Kieser, 2013) while generally overpowering a trial in a three-arm trial design

(Mütze and Friede, 2017).

It is important to note that the OSU estimator is limited to estimating a single

nuisance parameter only in order to preserve the blinding of the internal pilot data. As a

result, it is expected to perform well in scenarios with homogeneous variances and may be

able to accommodate minor deviations from the homogeneity assumption. In contrast, the

UG estimator provides variance estimates for each of the three treatment groups, making

it a suitable choice for both homogeneous and heterogeneous variance settings. However,

unblinding the data possibly introduces a bias to the study (Schulz and Grimes, 2002) and

is generally not recommended by regulators (Committee for medicinal products for human

use, 2007). Methods that maintain the blinding of the study should generally be preferred.

For comparison, both methods will be applied to homogeneous and heterogeneous variance

scenarios.

Sample size re-estimation procedure In the simulation, sample sizes are estimated ac-

cording to the Hasler formula (10) for a desired power level of 80%. The re-estimation

procedure then proceeds as follows: The variance terms in (10) are substituted by their

estimates after reaching n1, the internal pilot study sample size. The sample size is re-

calculated as in (10) and the newly estimated sample size is denoted as ñ(x). For this

simulation, it is assumed that the re-estimated sample size must be at least as large as the

size of the internal pilot study n1. Following the suggestion by Gould (1992), an upper

limit for the final sample size is defined at 10,000 subjects to prevent excessively large

sample sizes and reduce computational effort. Therefore, the re-estimated final sample

size, denoted as ñ(x), must satisfy

n1 ≤ ñ(x) ≤ 10, 000. (14)
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It should be noted that the variance estimation based on the pilot study data is not used

in the final analysis of the data. Instead, the variance of the test statistic is estimated

unblinded.

In order to adress the proposed Questions 1. to 5., the performance of the sample size

re-estimation (SSR) based on the UG and OSU estimator will be assessed in simulation

studies by means of power and type I error rate. The abbreviation SSR will be used to

denote the employed sample size re-estimation procedure in the ensuing simulation. The

scenarios for the simulation study are listed in Table 4. Column 2 displays the scenarios

considered for examining the power performance, while column 3 presents the parameters

utilised to investigate the type I error rate.

Table 4: Scenarios for the simulation study investigating the behaviour of the proposed
sample size re-estimation procedure based on the UG and OSU estimator under the
null and alternative hypothesis.

Parameter Values under H1 Values under H0

Distributions Normal, t, Lognormal, Chi-squared

Non-inferiority margin ∆ 0.8

Ratio in the mean differences
(µEXP − µPLA)/(µREF − µPLA) 1 0.8

Group variances at planning stage
(σ2∗

EXP;σ
2∗
REF;σ

2∗
PLA) (1; 1; 1)

True group variances
(σ2

EXP;σ
2
REF;σ

2
PLA) (1; 1; 1); (3; 2; 1)

Sample size allocations
(nEXP : nREF : nPLA) (1 : 1 : 1); (1 : ∆ : 1−∆)

Internal pilot study size n1 30,40, . . . 120

Target power 1− β 0.8

One-sided
nominal level α 0.025

Permutation replications 10,000

Simulation replications 5,000

The Hasler sample size formula is derived based on the assumption of normality of

the data. The studentized permutation test, however, also proved feasible in scenarios

where data does not conform to normality (refer to Sections 3.2.1 and 3.2.2). Accounting

for situations where the normality assumption may be violated, the simulation also covers
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lognormal, t, and χ2-distributed data, similar to the previous simulations. The non-

inferiority margin ∆, again, is fixed at 0.8. Under the alternative hypothesis, the typical

planning assumption of equal treatment effects between the experimental and reference

treatment is employed, represented by (µEXP − µPLA)/(µREF − µPLA) = 1. Under the null

hypothesis, the true effect under the hypothesis (µEXP−µPLA)/(µREF−µPLA) is set to 0.8

while the planning is, again, made under the assumption of equal treatment effects, that is

(µEXP −µPLA)/(µREF −µPLA) = 1. In the planning stage, homogeneous variances, that is

σ2∗
i = 1, are assumed. Note that in previous simulations, the heterogeneous scenario was

defined in terms of standard deviations (see Table 1). In order to reduce computational

effort and simulate a more realistic situation, the heterogeneous scenario is now expressed

in terms of variances. Two cases for the true variances are considered, the first one being

that true variances coincide with the ones specified in the planning stage and a second one

where the true variances deviate from the planning assumptions with (σ2
EXP;σ

2
REF;σ

2
PLA) =

(3; 2; 1). Due to the liberal behaviour under the null hypothesis for skewed data and an

increasing variance structure, only a decreasing variance scenario is considered. Our

hypothesis is that the UG estimator would perform well under both variance settings,

whereas the OSU estimator is expected to be less effective in a heterogeneous variance

setting. Both estimators will be applied to both variance settings for comparison. Two

sample size allocations are included, a balanced group design and the optimal allocation

based on the assumption of (σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (1; 1; 1), that is (1 : ∆ : 1 − ∆). The

required total sample sizes n based on the Hasler sample size formula (10) for a target

power of 80% in a fixed design are 993 for the balanced group design and 787 for the

unbalanced design, respectively. These calculations assume (σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (1; 1; 1).

The size of the internal pilot study is varied from 30 to 120 by steps of 10. It is expected

that the power of the studentized permutation test will increase towards the desired power

level with increasing internal pilot study data when sample sizes are re-estimated, since the

precision of the variance estimation will improve. The data for the pilot study is generated

with the same allocation as the final trial. Again, 10,000 permutation replications are used

to obtain the rejection area of the studentized permutation test. Each scenario is replicated

5,000 times which results in a Monte Carlo error of roughly 0.006 for the targeted power

level of 0.8. The scripts for conducting the simulation study in R are provided in Appendix

A.

3.4.1 Question 1. Power in a fixed sample size design

The first question investigates how correct versus incorrect specification of variance pa-

rameters during the planning phase impacts the power of the studentized permutation

test. Thus far, no procedure for re-estimating the sample size is considered. This means

that the total sample size n remains fixed at 993 for the balanced group design and 787 for

the unbalanced design. Data from the internal pilot study is not used for re-estimation.
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Nevertheless, in order to facilitate comparison with the re-estimation procedures at a

later point, the empirical power of the studentized permutation test is depicted in Figure

5 against the size of the internal pilot study n1 on the x-axis. It should be noted, once

again, that the pilot study data is not utilised, and therefore, the power is not anticipated

to vary based on the pilot study size n1. Again, the columns indicate the four underlying

data-generating mechanisms and the rows display the two variance scenarios. The first

row corresponds to the scenario where the variances are appropriately specified during the

planning stage, with values of (σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (1; 1; 1). The second row, on the other

hand, reflects the situation where the variances deviate from the planning assumptions,

with values of (σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1). The two allocation schemes are indicated

by the two line types, that is the balanced design (dot-dashed line) and the optimal al-

location of (1 : ∆ : 1 − ∆) (solid line). The boundaries of the area representing the

targeted power level of 80% ± two times the Monte Carlo error, which is approximately

0.006, are demarcated by the two grey lines. Note that achieving the desired power level

is understood in relation to the Monte Carlo error of this simulation study. Specifically, if

the attained power level falls within the boundaries of 1−β = 0.8 ± two times the Monte

Carlo error, it is considered that the desired power level of 80% is met. This terminology

will be used consistently throughout the subsequent analysis.

Figure 5: Observed power of the studentized permutation test in the fixed sample size
design without sample size re-estimation. The dashed grey lines depict the area of
1− β = 0.8 ± two times the Monte Carlo error.
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When variances are correctly specified in the planning stage, as shown in the first row,

the power curves meet or even exceed the target area, as defined by the two grey lines,

for all four examined data-generating mechanisms. For normal and t-distributed data

the power curves for both allocation schemes hit the targeted region precisely, showing

a similar performance between the two allocation ratios. In the case of lognormal data,

both power curves exceed the targeted region. The χ2-distributed data’s power curve

exceeds the targeted region when using a balanced design. Notably, the balanced design

demonstrates higher power levels for both skewed data scenarios (The achieved power

levels are displayed separately in Table S4 in the Appendix).

Since the power simulation results in Section 3.2.2 showed the studentized permutation

test having a higher power level compared to the Hasler test for these data types (see Table

3), it was anticipated that the power exceeds the target level under lognormal and χ2-

distributed data. Still, the level of the difference is higher than expected. Specifically,

this is the case for lognormal data. For a brief analysis of this phenomenon, please refer

to the Appendix A.

Overall, when applying the studentized permutation test for the analysis of normal

and t-distributed data, the sample sizes estimated using the Hasler formula in the fixed

design result in achieving the desired power level. For lognormal and χ2-distributed data,

it is even possible to anticipate a power level higher than the targeted one, especially in

the balanced design. However, it is important to note that these observations hold only

true when the parameters, specifically the variance parameters, are correctly specified in

the planning stage.

The question remains what happens to the power of the test when parameters are

misspecified in the planning stage, specifically if there are misspecifications in the vari-

ance parameters. Consider row two of Figure 5 that shows the impact on the power of the

studentized permutation test when the true underlying variances deviate from the plan-

ning stage by (σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1). The power levels for all four data-generating

mechanisms lie within the range of 0.4 to 0.5, indicating considerable underpowering (refer

to Table S4 in the Appendix for the achieved power levels). For lognormal data, again, the

power level is slightly elevated compared to the other data types, while χ2-distributed data

does not appear to differ significantly from normal and t-distributed data. Additionally,

both normal and t-distributed data report a slightly greater power level in the unbalanced

design while for both skewed data, no pattern between the allocation schemes is visible.

Despite these variations, it is clear that the power curves fall far below the target area

outlined by the two grey lines, emphasising a notable loss in power when variances are

misspecified in the planning stage.

In summary, when variances are accurately specified in the planning stage, Figure 5

demonstrates that the studentized permutation test can meet or even exceed the target

power level. For lognormal and χ2-distributed data, using the Hasler sample size formula
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in planning may even lead to higher power levels. Therefore, it can be said once again

that the sample size estimation using the Hasler formula is highly effective when analysing

with the studentized permutation test in terms of successfully reaching the desired power

level. However, this holds only true when parameters are correctly specified during the

planning phase. Under misspecification of the variance parameters Figure 5 showed that

the desired power level cannot be reached. Particularly in this scenario, the trial is hugely

underpowered with a power level of roughly 0.4 to 0.5. In such cases, the estimated

sample size is not sufficient to adequately reach the desired power and a fixed design is

not recommended. Rather, this motivates a procedure that estimates the sample variance

while the trial is ongoing and re-adjusts sample sizes accordingly.

3.4.2 Question 2. Power with sample size re-estimation

Utilising the two proposed variance estimators, the second question of interest addresses

a comparison between the power performance of the fixed sample size design and the

design with sample size re-estimation. For the sample size re-estimation the unblinded

group-variance estimator (UG) and the blinded adjusted one-sample variance estimator

(OSU) are employed (refer to Section 3.4 for a derivation of the estimators). The goal is

to determine if sample size re-estimation equals or surpasses the fixed sample size design

in achieving the desired power level. After addressing this question, a discussion on the

differences between the two estimators will follow in the next paragraph.

At this point, a distinct evaluation of the two variance scenarios is provided. In

the first scenario, variances are rightly specified in the planning stage, with values of

(σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (1; 1; 1). Figure 6 shows the empirical power on the y-axis against

the varying internal pilot study size n1. Again, the columns represent the four underly-

ing data-generating mechanisms and the two allocation schemes are represented by two

different line types.
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Figure 6: Observed power of the studentized permutation test without sample size re-
estimation compared to the observed power with sample size re-estimation when vari-
ances are correctly specified in the planning stage with (σ2∗

EXP;σ
2∗
REF;σ

2∗
PLA) = (1; 1; 1)

against the internal pilot study size n1. The dashed grey lines depict the area of
1− β = 0.8 ± two times the Monte Carlo error.

The power curves represented by the orange lines demonstrate a fixed sample size

design that does not employ any of the proposed variance estimators for sample size re-

estimation. These two curves are identical to the ones in row 1 of Figure 5. The power

curves represented by the two other colours show the power behaviour of the two re-

estimation procedures. The green line illustrates the re-estimation procedure that uses

the UG estimator, while the blue line illustrates the re-estimation procedure that uses the

OSU estimator.

As mentioned above, the fixed sample size design has a constant power curve that

meets or exceeds the desired power level of 80% across the internal pilot study size n1.

In contrast, the power curves of the two re-estimation procedures now increase as the

internal pilot study size n1 increases, but only reach the desired power level in a few

cases. Specifically, the desired power level is achieved for normal data when n1 is at least

60 using the UG estimator in the balanced group design and at least 50 in the unbalanced

group design. When using the OSU estimator, re-estimation achieves the target level in

the case of normal data for n1 ≥ 110 in the balanced design and n1 ≥ 60 in the unbalanced

design. Both procedures achieve the desired power level in a few instances of non-normal
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data (refer to Table S5 in the Appendix for the achieved power levels).

Thereby, both re-estimation procedures seem to attain similar power levels in the

unbalanced design. For the UG estimator, the power curve of the unbalanced design is

slightly elevated to the power curve in the balanced design across all scenarios, indicating a

better performance in the unbalanced design. For the OSU estimator, a slightly improved

power performance can be observed in the unbalanced design for normal and t-distributed

outcomes, whereas the balanced design appears to perform better for lognormal and χ2-

distributed data. The difference between the allocation schemes, though, seems to be

subordinate.

Nevertheless, both re-estimation procedures perform best for normal data where the

highest power curves are achieved. However, for non-normal data (t, lognormal, and χ2-

distributed data), the attained power levels are noticeably lower than for normal data. In

fact, the desired power level can only be achieved in a few instances (refer to Section 3.4.3

for a discussion on this phenomenon). This contrasts with the fixed sample size design,

in which the desired power level is met across all considered data types (as depicted by

the orange lines in Figure 6). For lognormal data, the disparity is particularly noticeable.

The power curves of the re-estimation procedures are remarkably lower than for other

data types and it fails to approach the desired level. For t- and χ2-distributed data, the

power curves behave similar, remaining slightly below the targeted area even for greater

pilot study sizes.

At this point, it is crucial to note that the power curves of both re-estimation pro-

cedures are consistently below the power curve in the fixed sample size design. This

indicates that, when variance parameters are correctly specified in the planning stage, the

fixed sample size design is able to achieve the desired power level, whereas designs with

sample size re-estimation do not. In fact, neither of the proposed re-estimation procedures

can achieve the desired power level across all n1. It is only met for greater n1.

The second variance scenario, wherein (σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1), presents a devia-

tion of the variances from the planning assumption (σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (1; 1; 1). Figure

7 illustrates the power performance of the re-estimation procedures for this case.
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Figure 7: Observed power of the studentized permutation test without sample size
re-estimation compared to the observed power with sample size re-estimation when
variances deviate by (σ2

EXP;σ
2
REF;σ

2
PLA) = (3; 2; 1) from the planning assumption of

(σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (1; 1; 1) against the internal pilot study size n1. The dashed grey

lines depict the area of 1− β = 0.8 ± two times the Monte Carlo error.

As illustrated by the orange lines, a power range between 0.4 and 0.5 is exhibited by the

studentized permutation test in the fixed sample size design. As previously highlighted,

the fixed sample size design shows considerable underpowering of the trial. The impact

of re-estimation is demonstrated by the green and blue lines, which represent the power

after re-estimation based on the UG and the OSU estimator, respectively.

In contrast to the previous variance scenario, the re-estimation procedures now ex-

hibit higher power curves than the fixed sample size design for all four underlying data-

generating mechanisms. This indicates a better power performance compared to the

fixed sample size design. Specifically, both re-estimation procedures demonstrate similar

power behaviours in the unbalanced design. However, in the balanced design, the power

curve of the UG estimator is slightly lower compared to the unbalanced design, while

the re-estimation procedure based on the OSU estimator shows a significant decline in

performance. This suggests that the behaviour of the OSU estimator differs substan-

tially between the balanced and unbalanced designs. An analysis of the OSU estimator’s

behaviour will be provided in the next paragraph.

The power curves of the re-estimation procedures increase again with increasing pilot
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study size n1. However, even with the maximum pilot study size considered, the desired

power level cannot be achieved for t-distributed, lognormal, and χ2-distributed data,

except for one instance. In contrast, the target power is met in the case of normal

data when n1 ≥ 60 in the unbalanced design and n1 ≥ 80 in the balanced design using

the UG estimator, as well as when n1 ≥ 50 in the unbalanced design using the OSU

estimator. Both t-distributed and χ2-distributed data display power curves similar to

those of normal data, albeit slightly lower. On the other hand, lognormal data shows

a considerable deviation. As also illustrated in Figure 6, the attained power level for

lognormal data falls far short of the targeted area. Refer to Tables S6 in the Appendix

for the achieved power levels.

In short, two variance scenarios were examined. In the first scenario, variances were

correctly specified in the planning stage. Figure 6 showed that designs with fixed sample

sizes are able to reach the desired power level while the sample size re-estimation proce-

dures only managed to reach it in a limited number of instances. This was the case for

higher internal pilot study sizes n1 under normal data. Therefore, re-estimation performs

worse than the fixed sample size design in terms of attaining the target power level when

variances are correctly specified in the planning stage. That means the re-estimation pro-

cedure cannot guarantee that the studentized permutation test will achieve the desired

power level, unlike the fixed design. For that reason, a fixed sample size design should be

preferred over re-estimation procedures when variances are specified under certainty.

In the second scenario, the true variances differed from the planning assumptions

with heterogeneous variances. This resulted in a considerable underpowering issue with

the fixed sample size design. The re-estimation procedures, using both the UG and OSU

estimator, on the other hand, were able to effectively increase the power level. Although

the OSU estimator falls short of reaching the target level in the balanced group design,

the re-estimation procedures are both more effective than the fixed sample size design in

terms of achieving greater power levels that are closer to the targeted one. Therefore, a

design with sample size re-estimation is recommended over a fixed sample size design in

case of uncertain variance specification. It should be noted though that neither of the

proposed re-estimation procedures achieved the desired power of 80% for all pilot study

sizes n1 and all distributions of the data.

To better understand the varying power behaviour for both re-estimation procedures,

as well as the instances in which the re-estimation procedures fail to achieve the desired

power level, the following discussion will offer an analysis of the behaviour of both variance

estimators.

3.4.3 Question 3. Comparison between the two sample size re-estimation procedures

In the next step, the effectiveness of the re-estimation procedures using the OSU estimator

and the UG estimator will be compared. The simulation results showed that in the
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first scenario with homogeneous variances, the re-estimation based on the OSU estimator

showed comparable power to the UG estimator, with only minor differences observed in

the balanced design. In the second scenario with heterogeneous variances, both procedures

performed equally well in the unbalanced group design. However, the power performance

of the OSU estimator fell significantly short of the UG estimator’s performance in the

balanced design.

Although the power behaviour of both re-estimation procedures might appear to be

similar at first sight, the estimators exhibit distinct characteristics that are inherent to

each of them. Therefore, the following paragraph will provide separate investigations of

the behaviour of the OSU estimator and the UG estimator. Following that, a brief discus-

sion comparing both re-estimation procedures will be provided, along with an exploration

of the scenarios in which the estimators fail to achieve the desired power level.

Sample size re-estimation based on the OSU estimator We hypothesised earlier in Sec-

tion 3.4 that the re-estimation based on the OSU estimator may not be as effective as

the UG estimator in a heterogeneous variance scenario. Interestingly, in the simulation,

the power performance of the OSU estimator was satisfactory in the unbalanced group

design but showed inadequate power levels in the balanced design. To explain this dis-

crepancy, the behaviour of the OSU estimator when used as a procedure for sample size

re-estimation will be investigated.

To gain a comprehensive understanding of the OSU estimator’s performance in the

context of variance estimation, its estimates will be compared to the actual underlying

pooled variance, which is given by

σ2
pool = σ2

EXP · nEXP

n
+ σ2

REF · nREF

n
+ σ2

PLA · nPLA

n
.

In the homogeneous variance scenario, σ2
pool = 1 for both allocation schemes. In the

heterogeneous variance scenario, σ2
pool = 2.4 in the unbalanced design and σ2

pool = 2 in

the balanced design. For illustration purposes, the variance estimation will be considered

based on the OSU estimator for normal data with n1 = 120. Figure 8 displays the density

of the variance estimates obtained from the OSU estimator for both variance scenarios,

as depicted by the rows. The two different line types represent the group designs, and the

true pooled variance is shown as a grey line for each variance scenario and group design.
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Figure 8: Density plot of the variance estimation based on the OSU estimator for
data following a normal distribution with n1 = 120. The grey lines depict the true
underlying pooled variance.

The density plot clearly shows that for both variance scenarios and allocation schemes,

the peak of the variance estimate aligns, though approximately, with the true underlying

pooled variance. This indicates that, on average, the OSU estimator accurately estimates

the true underlying pooled variance of the data, demonstrating its unbiasedness.

In the homogeneous variance scenario, the variance estimation in the balanced design

shows greater tails compared to the estimation in the unbalanced design. This suggests

that the variance estimation exhibits greater variation in the balanced design. The greater

variability in the variance estimation, in turn, leads to more variability in the re-estimated

sample sizes, explaining why the procedure based on the OSU estimator performed slightly

worse in the balanced design compared to the unbalanced design (see Figure 6).

In contrast to the homogeneous variance scenario, the variance estimate in the het-

erogeneous variance scenario shows a broader range, indicating higher variability in the

variance estimation. However, the broadness appears to be similar for both allocation

schemes. Furthermore, in both allocation schemes of the heterogeneous setting, the OSU

estimator, on average, provides an unbiased estimation of the true underlying pooled

variance.

One might assume that being an unbiased estimator would result in the re-estimation

of the required total sample size needed to achieve the desired power level. While this

was true in the homogeneous variance setting, it was not the case in the heterogeneous

setting with the balanced design (see Figure 7). Therefore, these findings do not explain

the differing power behaviours observed between the two allocation schemes in the hetero-

geneous variance scenario. For a deeper understanding, it becomes essential to examine

the re-estimated sample sizes that are derived from the OSU estimator.
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By employing the Hasler sample size formula (10) as an approximation for the power of

the studentized permutation test, it becomes possible to derive the required total sample

sizes n needed to achieve a power of at least 1− β for both variance scenarios under both

group designs as follows:

Table 5: Required total sample sizes n based on the Hasler sample size formula for the
considered variance scenarios and group designs.

(σ2
EXP;σ

2
REF;σ

2
PLA) (nEXP : nREF : nPLA) Required total sample size n

1; 1; 1
(1 : 1 : 1) 993

(1 : ∆ : 1−∆) 787

3; 2; 1
(1 : 1 : 1) 2547

(1 : ∆ : 1−∆) 1886

Figure 9 displays the density of the re-estimated final sample sizes for both variance

scenarios and both allocation schemes for data following a normal distribution with n1 =

120. The line types indicate the two group designs.

Figure 9: Density plot of the re-estimated final sample sizes based on the re-estimation
using the OSU estimator for data following a normal distribution with n1 = 120. The
grey lines depict the required total sample size to attain a power of at least 1−β based
on the Hasler sample size formula.

In the first scenario with homogeneous variances, the peak of the re-estimated final

sample sizes under both group designs aligns with the required total sample size calculated

using the Hasler sample size formula (see Table 5). It is also apparent that the re-estimated

sample sizes exhibit greater variability in the balanced design, as evidenced by the wider
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range depicted in the density plot. As briefly mentioned, the variance estimation of the

balanced design demonstrated slightly heavier tails compared to the unbalanced design

(see Figure 8). As a result, the higher power level in the unbalanced design, as shown in

Figure 6, can be attributed to the fact that the variance estimation is denser around the

true underlying pooled variance, indicating less variability and thus more precise sample

size estimation. The slightly worse power performance in the balanced design can then

be explained by the greater variability in the variance estimation.

In the second scenario of heterogeneous variances, the peak of the re-estimated sample

sizes aligns closely with the required total sample size in the case of the unbalanced design.

However, in the balanced design, the average re-estimated sample size falls considerably

below the required total sample size. On average, the re-estimated sample size amounts

to 1981.715, whereas the required total sample size is 2547 subjects. This renders the

re-estimation procedure insufficient to achieve the desired power level (as seen in Figure

7).

As previously discussed, the OSU estimator is unbiased in estimating the true un-

derlying pooled variance. In the heterogeneous variance scenario where the variances are

(σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1), the true underlying pooled variance is 2, i.e. σ2

pool = 2.

According to the Hasler sample size formula, the required total sample size for this vari-

ance scenario in the balanced group design is 2547 subjects (refer to Table 5). However, if

one assumes homogeneous variances in the planning stage and provides the pooled vari-

ance estimate of 2, i.e. (σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) = (2; 2; 2), the Hasler sample size formula now

estimates a required total sample size of 1980.

Unsurprisingly, the average re-estimated sample size based on the OSU estimator

coincides with 1980, which is significantly lower than the actual required total sample size

of 2547. The underestimated sample size re-estimate is therefore insufficient to achieve the

desired power level, as observed in Figure 7. This suggests that assuming homogeneous

variances generally leads to inadequate re-estimated sample sizes to achieve the desired

power. That is because the power of the studentized permutation test, as well as the

Hasler test, is not solely determined by the pooled variance across the three groups, but

rather by the variances specific to each group. A more detailed discussion on the impact

of assuming homogeneous variances, when in reality the variances are heterogeneous, can

be found in Hasler et al. (2008). Thus, the inability to achieve the target power in the

balanced design with heterogeneous variances can be attributed to the fact that the OSU

estimator fails to account for differing variances among the three groups, since it provides

a single estimate only.

However, in the unbalanced group design, the re-estimation was able to achieve the

desired power level. This can be explained as follows: In the unbalanced group design,

the pooled variance of (σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1) is 2.4, denoted as σ2

pool = 2.4. By

providing this pooled variance estimate in the Hasler sample size formula, the required
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total sample size is calculated as 1886. Surprisingly, this matches the required total sample

size for (σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1) (compare Table 5). However, this occurrence can

be considered a coincidence. Calculating the required total sample size for a scenario of

(σ2
EXP;σ

2
REF;σ

2
PLA) = (1; 2; 3) results in a figure of 1258. Although the pooled variance

remains the same, the required total sample size is significantly lower than the 1980

estimated by the OSU estimator. Therefore, in that scenario, a design with sample size

re-estimation is expected to be overpowered.

Nevertheless, these results suggest that estimating a single nuisance parameter in

unbalanced group designs and providing this estimate in the sample size formula might

balance out the fact that planning with homogeneous variances does not lead to the actual

required total sample size. Further research is needed to investigate the power behaviour

when assuming homogeneous variances in the sample size re-estimation for unbalanced

group designs. Specifically, the relationship between the group design and the pooled

variance estimate should be further examined. It is of interest to determine whether

blinded re-estimation based on the OSU estimator in unbalanced designs can generally

achieve the desired power level when variances are heterogeneous.

In summary, it can be concluded that the OSU estimator performs well in homoge-

neous variance scenarios by providing an unbiased estimate for the variance, leading to

the attainment of the desired power level particularly in the case of normal data. It should

be noted that the re-estimation procedure still fails to attain the desired power level for

non-normal data and smaller pilot study sizes n1. The reader may refer to Mütze and

Friede (2017) for a more detailed investigation of the re-estimation performance using the

OSU estimator in homogeneous variance settings. However, in heterogeneous variance

scenarios, the OSU estimator is unable to accurately re-estimate the sample size as it

provides a single estimate only. As a result, it fails to achieve the desired power level.

However, there is evidence suggesting that the estimates in unbalanced group designs re-

sult in re-estimated sample sizes that are closer to the actual required total sample sizes.

Further research is needed to investigate the relationship between group design and pooled

variance estimation in heterogeneous variance settings.

Sample size re-estimation based on the UG estimator Observations from the power

simulation suggest that the re-estimation based on the UG estimator is able to achieve an

adequate power level in both variance scenarios. However, a slight difference in power lev-

els was observed between the unbalanced and balanced group designs, with higher power

in the unbalanced design. To gain insights into the behaviour of the UG estimator when

used for sample size re-estimation, an examination on the variance estimates obtained

with the UG estimator will be conducted. As the UG estimator provides group-specific

sample variances, it is now possible to examine the density of the variance estimate for

each treatment group. For the purpose of illustration, the focus will be on the estimate
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obtained with normal data for n1 = 120. Figure 10 displays the density of the variance

estimation by treatment group in the columns and the variance scenario in the rows. The

two line types indicate the two allocation schemes.

Figure 10: Density plot of the group-specific variance estimation based on the UG
estimator for data following a normal distribution with n1 = 120. The grey lines
depict the true underlying group-variances.

Figure 10 reveals that the peak of the variance estimation coincides with the true

underlying group variances, indicating that the UG estimator is an unbiased estimator

for the group-specific variances. Consequently, it is also an unbiased estimator for the

pooled variance. However, depending on the allocation scheme, the density of the variance

estimate can be either wider or denser, indicating more or less variability in the estimate.

For example, in the heterogeneous variance scenario, the variance estimate for the placebo

group (row 2, column 3) is much more peaked compared to the experimental group (row

2, column 1). This suggests that with a smaller variance and lower proportion of the total

sample size, a denser variance estimate is obtained.

In comparison to the OSU estimator, it can be concluded that both the UG estimator

and the OSU estimator provide unbiased estimates of the pooled variance. However, the

UG estimator has the additional advantage of also providing unbiased estimates of the

group-specific variances. The re-estimated sample sizes based on the UG estimator are

depicted in Figure 11 for normal data with a pilot study size of n1 = 120. The required

total sample sizes based on the Hasler sample size formula, as calculated in Table 5, to

achieve a power of at least 1− β, are indicated by the grey lines.
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Figure 11: Density plot of the re-estimated final sample sizes based on the re-estimation
using the UG estimator for data following a normal distribution with n1 = 120. The
grey lines depict the required total sample size to attain a power of at least 1−β based
on the Hasler sample size formula.

Other than for the OSU estimator, the peak of the re-estimated final sample sizes

now aligns with the required total sample sizes across all scenarios. This suggests that,

on average, the re-estimated sample size is accurately determined when the variances are

specified based on the UG estimator.

Additionally, Figure 11 also helps explain why the observed power with the UG es-

timator in the unbalanced design was slightly higher than in the balanced design. The

density curve of the unbalanced design is denser than that of the balanced design in both

variance scenarios, indicating more variation in the re-estimated sample sizes for the bal-

anced design. However, since the UG estimator provides an adequate power level in both

group designs it can be considered a reasonable estimator for both allocation schemes,

despite a slightly worse performance in the balanced design. Furthermore, it can be ob-

served that the variation in the re-estimated sample sizes is greater in the heterogeneous

variance scenario. However, this increased variation does not result in a worse power

behaviour in the heterogeneous variance scenario.

Comparison between the two sample size re-estimation procedures To explain the be-

haviour of both re-estimation procedures, an investigation was conducted on the variance

estimation and the resulting re-estimated sample sizes for both procedures. It was shown

that both variance estimators provide unbiased estimates of the pooled variance, regard-

less of the variance scenario being homogeneous or heterogeneous. In the homogeneous

scenario, the re-estimated sample sizes were accurately determined, resulting in both re-

estimation procedures achieving adequate power levels that were approximately the same.
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Compared to the fixed design, however, both re-estimation procedures are ineffective in

attaining the desired power level consistently.

In the heterogeneous variance scenario, the OSU estimator failed to adequately re-

estimate sample sizes, as it provided a single estimate for the variances only, resulting in

a much lower power level in the balanced group design. In contrast, the UG estimator

ensures an unbiased estimate of the group-specific variances. By providing group-specific

variance estimates, the UG estimator is able to accurately re-estimate the required total

sample size to achieve the desired power level in both variance settings, homogeneous and

heterogeneous. This was not the case for the OSU estimator. Surprisingly, the average

re-estimated sample size based on the OSU estimator in the unbalanced design, however,

coincided with the required total sample size, thereby achieving adequate power levels.

Still, the simulation results demonstrate that re-estimation based on both estimators can

be recommended over a fixed sample size design when variances are misspecified in the

planning stage

In summary, the OSU estimator and the UG estimator are unbiased estimators for the

variance in the homogeneous variance setting, enabling them to achieve adequate power

levels. However, in heterogeneous variance settings, the OSU estimator cannot guarantee

an accurate re-estimation of sample sizes, while the UG estimator can. Therefore, for the

considered scenarios, the UG estimator can be declared more effective in re-estimating

sample sizes and reaching the target power level. Still, there remain instances where the

desired power level cannot be achieved, particularly for non-normal data and smaller pilot

study sizes n1. In the subsequent analysis, an explanation for these cases will be provided

by examining the behaviour of the UG estimator.

Scenarios where sample size re-estimation based on the UG estimator fails to reach the

desired power level As discussed earlier, both re-estimation procedures fail to reach the

target power level across all n1 and underlying distributions of the data, particularly in

case of non-normal data.

The behaviour for non-normal data may not come as a surprise, since planning with

the Hasler formula is based on the assumption of normal data, and the presence of heavier

tails and skewness in the data, as represented by the t, lognormal and χ2-distributions,

deviate from this assumption. However, in a fixed sample size design the studentized

permutation test was able to attain the desired power level for these data types when

parameters were correctly specified (refer to Figure 6). Hence, it can be concluded that

the disparity in power performance for the re-estimation procedures across different data

types cannot be attributed to the studentized permutation test performing inadequately

for non-normal data. Instead, it appears that the reason for this difference lies within the

re-estimation procedures themselves. To investigate this further, the focus will be on the

variance estimation using the UG estimator. Specifically, the pooled variance estimate
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obtained from the sample variances of the three groups will be considered, that is

σ̂2
pool =

(n1,EXP − 1)σ̂2
n1,EXP,UGEXP

+ (n1,REF − 1)σ̂2
n1,REF,UGREF

+ (n1,PLA − 1)σ̂2
n1,PLA,UGPLA

n1 − 3
.

It holds true that the pooled variance estimator is unbiased for any underlying distribution.

However, in order to comprehend the disparity in performance across the four data types,

it becomes necessary to examine the distribution of the variance estimation. Figure 12

displays the density of the pooled variance estimation for the four different underlying

data-generating mechanisms in the unbalanced design, with a fixed internal pilot study

size of 120. The rows represent the underlying variance scenarios, while the four colours

indicate the data-generating mechanisms. The dashed grey line indicates the true pooled

variance, that is

σ2
pool = σ2

EXP · nEXP

n
+ σ2

REF · nREF

n
+ σ2

PLA · nPLA

n
= 1

in the homogeneous scenario (Figure 12, row 1) and σ2
pool = 2.4 in the heterogeneous

scenario (Figure 12, row 2). Please note that the x-axis limits in the figure are manually

set from 0 to 6 to enhance the visibility of the distribution of the variance estimation.

Figure 12: Density plot of the pooled variance estimation based on the UG estimator
for data following a normal, t(4), lognormal and χ2(2)-distribution with n1 = 120 in
the group design (1 : ∆ : 1−∆).

The distribution of the variance estimation for normal data is approximately sym-

metrical around the true value and displays a prominent peak (dark orange line). The

distribution of the variance estimation for non-normal data, however, clearly differs from

that, with a less pronounced peak, higher skewness, and more variability in the variance
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estimation.

Recall that the UG variance estimate for each of the three groups is simply the sam-

ple variance of each group based on the internal pilot data. Therefore, σ̂2
n1,i,UGi

can be

represented as (
(n1,i − 1)σ̂2

n1,i,UGi

)/
σ2
i

Assuming the data follows a normal distribution, it can be shown that this random variable

follows a χ2-distribution with (n1,i − 1) degrees of freedom. As the value of n1 increases,

the χ2-distribution starts to resemble the curve of a normal distribution more closely.

Specifically, for n1,i > 100, the χ2-distribution approximates a normal distribution with

mean n1,i and variance 2n1,i. This explains why the density of the variance estimation for

normal data exhibits characteristics similar to a normal density curve in Figure 12.

For non-normal data, however, the distribution of
(
(n1,i − 1)σ̂2

n1,i,UGi

)/
σ2
i can deviate

from the χ2-distribution with (n1,i − 1) degrees of freedom. The shape of the distribu-

tion then depends on the underlying distribution of the data, and it can exhibit heavier

tails and/or more skewness. This is also evident in Figure 12. Specifically, the variance

estimation for lognormal data (light purple line) differs significantly from that for normal

data, exhibiting considerable skewness and greater variability. Consequently, the variance

of the variance estimation is higher for non-normal data, resulting in greater variability

of the re-estimated sample sizes and a higher probability of misestimating sample sizes to

achieve the desired power level. This explains the poor performance of the re-estimation

procedure for lognormal data. On the other hand, the density curves for t-distributed

data (light orange) and χ2-distributed data (dark purple line) behave similarly, explain-

ing their comparable power behaviour when sample sizes are re-estimated. The symmetry

observed in the variance estimation for χ2-distributed data, however, is unexpected, given

that it is a skewed distribution.

Thus, it can be inferred that re-estimation procedures based on variance estimation

can result in greater deviation from the targeted power level due to the higher variability

in the variance estimation for non-normal data. Nonetheless, the degree of this effect relies

on the extent to which the non-normal data deviates from the characteristics of normal

data. In this simulation, the re-estimation procedures fail to perform well for lognormal

data (see Figures 6 and 7). Consequently, lognormal data will no longer be considered for

the sample size re-estimation procedures in the following. For t- and χ2-distributed data,

the power levels come at least close to the target level, although not reaching it entirely.

Next, the power simulation also revealed that the desired power level is often met only

for larger pilot study sizes. For illustrative purposes, the behaviour of the UG estimator

for normal data will be examined once again. In this case, the effect of increasing pilot

study sizes on the re-estimated final sample sizes will be explored. Figure 13 shows the

variation in the re-estimated final sample sizes based on the UG estimator, represented by
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the interquartile range (IQR) in the unbalanced group design. The required total sample

size is indicated by the dashed grey lines.

Figure 13: Median and interquartile range of the distribution of the re-estimated final
sample sizes based on the UG estimator against the internal pilot study size n1 for data
following a normal distribution in the group design (1 : ∆ : 1 −∆). The dashed grey
lines depict the required total sample size based on the Hasler sample size formula.

Figure 13 demonstrates that as the size of the pilot study n1 increases, the variability

in the re-estimated sample sizes ñ(x) decreases. The median of the re-estimated sample

sizes becomes closer to the required total sample size and the IQR decreases. The density

of the re-estimated sample sizes therefore becomes denser around the required total sample

size, indicating more accurate estimation.

The variation in the re-estimated sample sizes again can be explained by the under-

lying distribution of the variance estimation. As mentioned earlier, it can be shown that(
(n1,i − 1)σ̂2

n1,i,UGi

)/
σ2
i follows a χ2-distribution with (n1,i − 1) degrees of freedom under

normality of the data. From this, it is easy to see that the accuracy of the variance pre-

diction depends on the pilot study size n1,i. That is because for a normal population, it

holds that

Var(σ̂2
n1,i,UGi

) =
2σ4

n1,i − 1
.

Consequently, as n1,i increases, the variance of the sample variances decreases. This is

because the variance of σ̂2
n1,i,UGi

is inversely proportional to n1,i−1, so a larger pilot study

size will lead to a smaller variance of the sample variance.

However, as the pilot study size increases, the variance estimate becomes more precise,

resulting in more accurate re-estimated final sample sizes, as depicted in Figure 13. This

improved accuracy enables the attainment of the desired power level for larger pilot study

sizes (refer to Figures 6 and 7).
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To sum up, it can be concluded that for both scenarios in which the sample size

re-estimation procedure fails to attain the desired power level, the underlying cause can

be attributed to the distribution of the variance estimation. In the case of non-normal

data, the variance estimation exhibits greater variability, leading to increased variability

when recalculating sample sizes. Furthermore, for smaller pilot study sizes, the variance

estimation is less precise compared to larger pilot study sizes, owing to its properties as a

scaled χ2-distributed random variable. This highlights the need for approaches that can

enhance the power performance. In the following, an approach will be explored to adjust

the sample size re-estimation procedure by incorporating the uncertainty associated with

variance estimation.

3.4.4 Question 4. Improvement of power performance by inflating the re-estimated

sample sizes

The simulation revealed that the re-estimation procedures consistently fell short of the

desired power level of 80% for small pilot study sizes and non-normal data. This failure can

be attributed to the greater variability in the prediction of the true variance by the variance

estimate (see Section 3.4.3), which in turn leads to inaccurate sample size estimation.

Essentially, the sample size re-estimation procedure does not effectively account for the

uncertainty associated with the variance estimation, resulting in a failure to reach the

desired power level across all pilot study sizes and underlying distributions of the data.

In order to address the limitations observed in the power performance, the focus will

be on improving the re-estimation procedure based on the UG estimator. This choice

is based on our previous findings, which showed that the UG estimator was the most

suitable option for the scenarios considered in this study.

One such approach, suggested by Zucker et al. (1999), involves adjusting the sample

size formula to account for the uncertainty associated with the variance estimation. In

this approach, the re-estimated sample size ñ is increased by an inflation factor ζ to ensure

that the desired power level is achieved. To determine this inflation factor, the assumption

is made that the power of the studentized permutation test can be approximated by that

of the Hasler test. Therefore, the power function of the Hasler test will be used as a basis

to derive the inflation factor.

It is worth noting that another possible suggestion to ensure that the desired power

level is met is to simply increase the pilot study size n1, as the simulation study results

indicated that increasing n1 brings the power closer to the target level. However, this

approach has two potential drawbacks. Firstly, it remains unclear how large the pilot

study size must be in order to achieve the target power level with certainty. Secondly, in

scenarios where the internal pilot study size exceeds the actually required total sample

size to meet the target power, it would result in a waste of resources.

In the following, the proposed method by Zucker et al. (1999) will be introduced by
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deriving the inflation factor for the two-arm design, noting that the derivation assumes

homogeneous variances. The concept will then be extended to a three-arm design with

heterogeneous variances for the UG estimator, and the resulting power behaviour of the

re-estimation will be evaluated through a simulation study.

Sample size inflation factor for the two-arm design with homogeneous variances as

proposed by Zucker et al. (1999) Let B(n) denote the power function of the test under

consideration, where the power depends on the total sample size n. In order to achieve

the desired power level, the total sample size is chosen such that the power is equal to the

desired level. In a homogeneous variance setting, the total sample size n is determined as

a function of the nuisance parameter σ2, that is n(σ2). This implies that the sample size

n varies depending on the value of σ2, and hence the power is dependent on σ2.

Consider a two-arm non-inferiority trial, consisting of an experimental and reference

arm, that is tested using the two-sample t-test, assuming homogeneous variances. To

obtain a power of at least 1 − β, the total sample size n can be approximated by the

smallest n that satisfies

n =
1

r(1− r)

(
Φ−1(1− α) + Φ−1(β)

)
∆∗ − δ

σ2 (15)

where r denotes the allocation ratio between the two groups, Φ−1(1 − α) and Φ−1(β)

the (1 − α)th and βth percentile of the standard normal distribution, σ2 the variance

and ∆∗ − δ the difference between the assumed treatment group difference ∆∗ and the

non-inferiority margin δ with δ < 0.

In a fixed sample size design, the required total sample size n to achieve the desired

power level is determined by using a pre-specified value of σ2∗ in the sample size formula

(15). To validate the assumption regarding this nuisance parameter, one approach, as

proposed in this work, is to estimate the variance using data from an internal pilot study,

obtaining an estimate denoted as σ̂2
n1
. At this stage, it is important to note that σ̂2

n1
is

considered as an arbitrary variance estimator of the variance of the internal pilot study.

Subsequently, the sample size is re-estimated based on this estimate, denoted as ñ(x)

with n1 ≤ ñ(x) ≤ 10, 000. However, the sample size formula does not account for the

uncertainty associated with the variance estimate σ̂2
n1
. Hence, the re-estimation cannot

generally guarantee that the desired power is met.

In fact, the actual power of the re-estimation is no longer solely determined by B(n),

but instead depends on the properties of the variance estimator σ̂2
n1

as well. Denote fσ̂2
n1
(·)

as the density of the nuisance parameter estimator σ̂2
n1
. Taking the uncertainty of σ̂2

n1
into

account, the power of the design with sample size re-estimation can now be approximated
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by

Power ≈
∫ ∞

0

B
(
ñ(x)

)
fσ̂2

n1
(x)dx.

The power based on the re-estimated sample size B
(
ñ(x)

)
is therefore weighted by the

density of the nuisance parameter estimator fσ̂2
n1
(x).

We now wish to determine an inflation factor ζ that guarantees that the desired power

level is met. For that reason, the re-estimated sample size ñ(x) is inflated by an inflation

factor ζ with ζ ∈ (0,∞). The inflated re-estimated sample size based on the variance

estimate σ̂2
n1

is given by ñζ(x) = ζ · ñ(x). Again, a lower and upper boundary is defined

for the inflated re-estimated sample size with

n1 ≤ ñζ(x) ≤ 10, 000.

The power of the design with inflated re-estimated sample size ñζ(x) can then be

approximated by

Power ≈
∫ ∞

0

B
(
ñζ(x)

)
fσ̂2

n1
(x)dx. (16)

Setting (16) equal to 1− β, that is

Power ≈
∫ ∞

0

B
(
ñζ(x)

)
fσ̂2

n1
(x)dx = 1− β (17)

and solving for ζ yields the solution for the inflation factor. For this, the density of

the variance estimator fσ̂2
n1
(x) needs to be derived. For the unblinded pooled variance

estimate in the two-arm design, that is

σ̂2
pool =

(n1,EXP − 1)σ̂EXP + (n1,REF − 1)σ̂REF

n1 − 2
,

with the group-specific sample variances σ̂EXP and σ̂REF, the approximated power function

(16) can be rearranged such that the density fσ̂2
pool

can be substituted by the density

fσ̂2
pool/σ

2 , which is given by a scaled χ2-density with 2(n1 − 1) degrees of freedom (Zucker

et al., 1999). The known formula for fσ̂2
pool/σ

2 can then be substituted in (17) and the

inflation factor ζ can be obtained with

ζ =

[
t1−α(n1 − 2) + tβ(n1 − 2)

Φ−1(1− α) + Φ−1(β)

]2
(18)

where t1−α and tβ denote the (1− α)th and βth percentile of the distribution function of

the central t-distribution with (n1 − 2) degrees of freedom, and Φ−1(1− α) the (1− α)th
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and Φ−1(β) the βth percentile of the standard normal distribution. The inflation factor is

a ratio between the quantiles of the central t-distribution with degrees of freedom that are

dependent on the size of the internal pilot study size n1 and the quantiles of the standard

normal distribution which represent the quantiles if one had planned the trial in a fixed

sample size design with (15).

In equation (18), the denominator remains constant for all pilot study sizes n1, while

the numerator changes. Specifically, for smaller pilot study sizes n1, the quantiles of the

corresponding t-distribution are larger than those for larger pilot study sizes. As a result,

the numerator is larger for small pilot study sizes and smaller for larger pilot study sizes.

This implies that the inflation factor ζ is greater for smaller pilot study sizes and smaller

for larger pilot study sizes. Consequently, the re-estimated sample size is more inflated

for smaller internal pilot study sizes than for larger pilot study sizes. Expectedly, this

leads to an increase in power levels, particularly for smaller pilot study sizes.

A sample size inflation factor for the three-arm design with heterogeneous variances

based on the UG estimator In a heterogeneous variance setting, the sample size n

is now a function of the three group variances σ2
i with i = EXP,REF,PLA, that is

n(σ2
EXP, σ

2
REF, σ

2
PLA). To obtain a power of at least 1 − β, the sample size of the ex-

perimental group is given by the smallest nEXP that satisfies (10) for fixed group ratios

of the reference and placebo group. The total required sample size is then given by

n = nEXP + nREF + nPLA.

In a fixed sample size design, the total sample size n that is needed to attain the

desired power level is now determined by specifying values σ2∗
EXP, σ

2∗
REF and σ2∗

PLA in the

Hasler sample size formula (10). The estimation of the variances of the three groups

i = EXP,REF,PLA was proposed using the UG estimator σ̂2
n1,i,UGi

, which corresponds

to the sample variance of each treatment group. Based on these estimates, the sample

size is re-estimated with (10), denoted as ñ(x) with n1 ≤ ñ(x) ≤ 10, 000. Again, however,

the uncertainty associated with the group-specific variance estimates σ̂2
n1,i,UGi

is not taken

into account in the re-estimation of the sample size. Consequently, it was observed in the

simulation study that the re-estimation does not guarantee the attainment of the desired

power across all scenarios (see Figure 6 and 7).

Similar to the two-arm design, the objective is to inflate the re-estimated sample size

ñ(x) by a factor ζ with ñζ(x) = ζ · ñ(x) that ensures that the power of the re-estimation

equals at least 1 − β. Based on the UG estimates, the approximated power with the

inflated re-estimated sample size is now given by

Power ≈
∫ ∞

0

B(ñζ(x)fσ̂2
n1,i,UGi

(x)dx = 1− β. (19)

In order to solve this equation for ζ, the density of the UG estimator fσ̂2
n1,i,UGi

(x) needs
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to be derived. Considering that the UG estimator σ̂2
n1,i,UGi

is equivalent to the sample

variance, it can be represented as
(
(n1,i − 1)σ̂2

n1,i,UGi

)
/σ2

i , which follows a χ2-distribution

with (n1,i−1) degrees of freedom. Therefore,
(
σ̂2
n1,UGi

)
/σ2

i follows a scaled χ2-distribution

with 2(n1,i − 1) degrees of freedom. Given the similarity to the pooled variance estimator

as discussed by Zucker et al. (1999), the inflation factor can be directly applied as indicated

in equation (18) to the three-arm design, accounting for the quantiles given in the Hasler

sample size formula (10). It is important to note that a direct solution for ζ in equation

(17) was not obtained. Instead, the underlying structure of equation (18) was transferred

to the three-arm design.

Following the structure of (18), the inflation factor ζ for the three-arm design using

the Hasler sample size formula may be given by

ζ =

[
(t1−α(ν

het
n1

) + tβ(ν
het
n1

))

(t1−α(νhet
ñ(x)) + tβ(νhet

ñ(x)))

]2
. (20)

Here, the quantiles of the central t-distribution with νhet degrees of freedom are used

on both the numerator and denominator of the term. The degrees of freedom νhet are

defined as in equation (9). The degrees of freedom νhet in the numerator of the fraction are

dependent on the pilot study size n1, while those in the denominator are dependent on the

re-estimated sample size ñ(x). In contrast to the two-sample design, the denominator of

the inflation factor for the three-arm design is not based on the quantiles of the standard

normal distribution, but rather on the quantiles of the central t-distribution. The reason

for this is that the Hasler sample size formula (10) requires the use of the t-distribution.

Therefore, the denominator in (20) varies with the re-estimated sample size ñ(x) instead

of being constant. This was done to ensure that the denominator in the inflation factor

for the three-arm design corresponds to the quantiles used for planning, as if the planning

was carried out in a fixed design with the re-estimated sample size ñ(x), similar to (18)

for the two-sample design. It is possible to argue that approximating the denominator

using the quantiles of the standard normal distribution would be sufficient, given that

ñ(x) is expected to be relatively large. However, to ensure precision and accuracy even

for smaller re-estimated sample sizes, this approach is not adopted. Despite the now

varying denominator, the anticipated effect of the inflation factor remains the same as in

the two-sample design. Specifically, smaller pilot study sizes will result in a higher ratio,

leading to a greater inflation factor and an increased power level, enhancing the power

level particularly for smaller pilot study sizes. As before, the adjusted final sample size

using the inflation factor is given by n1 ≤ ñζ(x) ≤ 10, 000.

The impact of the sample size inflation factor on the power of the studentized per-

mutation test In a power simulation, the impact of the inflation factor on the attained

power of the studentized permutation test when sample sizes are re-estimated is inves-
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tigated. The simulation follows a similar structure to the power simulation conducted

under both re-estimation procedures, as described in column 1 of Table 4. However, this

simulation focuses solely on the re-estimation based on the UG estimator and adjusts the

re-estimated sample sizes by the corresponding inflation factor.

Figure 14 displays the power curves for the re-estimation based on the UG estimator

in both variance scenarios, as indicated by the rows. The transparent curves represent the

power curves without the use of the inflation factor, while the solid curves represent the

observed power curves with the inflation factor. The two line types differentiate between

the group designs.

Figure 14: Observed power of the studentized permutation test with inflated sample
size re-estimation based on the UG estimator compared to the observed power without
inflated sample size re-estimation against the internal pilot study size n1. The dashed
grey lines depict the area of 1− β = 0.8 ± two times the Monte Carlo error.

It is evident that the inflation factor considerably increases the power curves compared

to when it is not used. Specifically, the power curves now meet the targeted area more

often and the power curves are more stable across the internal pilot study sizes.

The power curves no longer increase with larger pilot study sizes, but instead remain

relatively constant. As a result, the power level is improved for smaller pilot study sizes,

achieving the desired level of power even with reduced pilot study sizes more often (refer

to Table S7 and S8 in the Appendix for the achieved power levels when the inflation factor
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is applied).

That is specifically the case for normal data. While the power curves without the

inflation factor were already able to approximate the targeted power level and reached

the targeted level for larger pilot study sizes, the power curves were unable to reach

the target level for smaller pilot study sizes. When the inflation factor is applied, the

resulting power curves now meet or even exceed the targeted area for all the pilot study

sizes considered. Notably, the power curves for smaller pilot study sizes under the UG

estimator now surpass the targeted area. With increasing pilot study size, however, the

power curves slightly decrease and come closer to the targeted area.

Still, it generally holds that desired effect of stabilising the power curve and increasing

the power level for smaller pilot study sizes is achieved by the inflation factor.

Also for non-normal data, the power curves of the re-estimation procedures show a

significant improvement when the inflation factor is applied. They are noticeably higher

compared to the power curves without the inflation factor, and they exhibit greater sta-

bility across all pilot study sizes. Figure 14 specifically shows that, without the inflation

factor, the power curves for t-distributed and χ2-distributed data reach the desired power

level range in only a few instances, and the introduction of the inflation factor brings the

power curves closer to the targeted area indicated by the two grey lines. However, even

with the inflation factor, it seems that the power curves still only touch the lower bound

of the desired power level range. Table S7 and S8 in the Appendix provide a detailed

report on the power levels for all underlying data-generating mechanisms. While the de-

sired power level is achieved in most instances in the homogeneous variance scenario for

t-distributed and χ2-distributed data, the attained power levels fall short of the desired

level in the heterogeneous variance scenario, particularly in the balanced group design.

Thus, it can be concluded that the inflation factor can enhance the power level when

data deviates from normality. However, this increase is not always sufficient to attain the

desired power level. Hence, it should be noted that the inflation factor alone does not

guarantee the attainment of the desired power level for all data types.

Interestingly, the introduction of the inflation factor also leads to a more compara-

ble power performance between the unbalanced and balanced group designs. Without

the inflation factor, the power curve of the unbalanced design was higher compared to

the balanced design, primarily due to the greater variability in the re-estimation of the

required total sample size (refer to Figure 11). However, with the inflation factor, both

power curves converge to a similar level.

The resulting power performance, as described, can be understood by examining the

distribution of the re-estimated final sample sizes with the application of the inflation

factor. This distribution is depicted in Figure 15 which illustrates the effect of the inflation

factor on the re-estimated sample sizes by means of the interquartile range (IQR). The

transparent lines represent the re-estimated sample sizes without the inflation factor, while
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the solid line represents the inflated re-estimated sample sizes. For clarity, Figure 15

focuses on the scenario of (σ2
EXP;σ

2
REF;σ

2
PLA) = (3; 2; 1), with the two rows distinguishing

between the balanced and unbalanced group designs.

Figure 15: Median and interquartile range of the distribution of the inflated re-
estimated final sample sizes based on the UG estimator against the internal pilot study
size n1 in the scenario of (σ2

EXP;σ
2
REF;σ

2
PLA) = (3; 2; 1). The dashed grey lines depict

the required total sample size based on the Hasler sample size formula.

Figure 15 illustrates that, for all data-generating mechanisms, the IQR is generally

higher when the inflation factor is applied compared to without it. However, it is worth

noting that the length of the IQR is generally not reduced by applying the inflation factor.

In the case of normal data, the mean and median of the re-estimated sample sizes

are higher than the required total sample size. Without the inflation factor, the median

of the re-estimated sample size was already very close to the actual required sample size,

resulting in the attainment of the desired power level for larger pilot study sizes. With

the inflation factor, the total sample size is now overestimated. This explains why the

target power level is exceeded across all pilot study sizes, as seen in Figure 14.

While achieving higher power levels may seem attractive, it is important to note

that re-estimation procedures that result in overpowering also lead to larger re-estimated

sample sizes and overestimation of sample sizes can raise ethical and resource-related

concerns. It could therefore be argued that applying the inflation factor may not always
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be a reasonable choice when applying to the sample size re-estimation based on the UG

estimator. Using the case of n1 = {30, 40, 50}, Table 6 shows the impact on the re-

estimated sample sizes when overpowering with the UG estimator in the case of normal

data, after adjusting with the inflation factor.

Table 6: Mean and Median (in brackets) inflated re-estimated final sample sizes based
on the UG estimator compared to the mean and median (in brackets) re-estimated
sample sizes without the inflation factor for data following a normal distribution with
(σ2

EXP;σ
2
REF;σ

2
PLA) = (3; 2; 1).

(1 : 1 : 1) (1 : 0.8 : 0.2)

w/o IF w/ IF w/o IF w/ IF

n1 = 30 2542.13

(2421)

3242.26

(3072)

1878.33

(1838)

2196.17

(2124)

n1 = 40 2546.44

(2454)

3044.31

(2925)

1885.76

(1848.5)

2103.13

(2066.5)

n1 = 50 2554.19

(2493)

2927.10

(2838)

1884.19

(1859)

2056.46

(2024)

In the balanced design, the re-estimated sample sizes without the inflation factor

already approximate the required total sample size quite accurately, with an average and

median close to the required size of 2547 (refer to Table 5). However, when the inflation

factor is applied, the average and median re-estimated sample size increase significantly,

exceeding the required total sample size by a considerable margin. For example, with

a pilot study size of n1 = 50, the median re-estimated sample size increases by 345,

exceeding the required size of 2547 by 291 subjects. This corresponds to an increase of

115 subjects per treatment group, which is substantial relative to the total sample size.

In the unbalanced design, the difference between the median re-estimated sample

size and the required total sample size is smaller compared to the balanced design. For

example, with n1 = 50, the difference between the medians is 165 subjects, corresponding

to an overestimation of 55 subjects per treatment group. However, this still represents

a considerable overestimation relative to the required total sample size of 1886, with an

inflation factor leading to an overestimation of 138 subjects. Overall, the application of

the inflation factor results in a notable increase in sample size, particularly in the balanced

design.

In the case of non-normal data, an elevated interquartile range (IQR) can be ob-

served in Figure 14, with the median approaching the required total sample size. How-

ever, compared to normal data, the IQR is still larger, indicating greater variation in the

re-estimated sample sizes. This is a result of the increased variability in the variance
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estimation for non-normal data (refer to Section 3.4.3 for a discussion on the this phe-

nomenon). Therefore, while applying the inflation factor improves the average estimation

of the required total sample size, it does not address the inherent variability in the vari-

ance estimation for non-normal data. This explains why the power curves for non-normal

data are more elevated and stable but still do not reliably reach the targeted range (as

shown in Figure 14).

Moreover, the numbers show that the use of the inflation factor enables re-estimation

to achieve the desired power level, even in the case where variances are rightly specified

in the planning stage. This makes re-estimation comparable to the fixed sample size

design in terms of achieving the desired power level. While the power curves in the fixed

sample size design still demonstrate more stable power curves that meet the targeted

area precisely (compare Figure 6), re-estimation can now be equally recommended as

the fixed sample size design for scenarios where variances are correctly specified. Thus,

re-estimation with the inflation factor emerges as a feasible approach for both variance

scenarios. However, as mentioned, it should be noted that even with the inflation factor,

the re-estimation procedure may still fall short of achieving the desired power level for

non-normal data. In cases where the data exhibits higher skewness and variability, the

effectiveness of re-estimation with the inflation factor may still be compromised compared

to the fixed sample size design.

In summary, Figure 14 clearly demonstrates that applying the inflation factor increases

the power levels associated with the re-estimation using the UG estimator. As a result, the

inflation factor achieves the desired effect of stabilising the power curve and increasing the

power level to the desired power level, particularly for smaller pilot study sizes. However,

it is important to note that the inflation factor may also result in overestimating the

sample size and consequently overpowering the trial. Particularly, this is observed in the

simulation study for small pilot study sizes when data follows a normal distribution. The

simulation results also indicate that both re-estimation procedures with inflation can be

recommended under misspecification and correctly specifying the variance parameters, as

the target power can be met in both variance scenarios. While the re-estimation procedure

using the inflation factor is generally successful in achieving the desired power level (and

even surpassing it) across all n1 values for normal data, there are still instances where

the desired power level cannot be attained, that is when data is non-normal. Therefore,

the inflation factor can effectively increase the power level for small pilot study sizes and

account for the uncertainty associated with variance estimation. However, it may not

always fully compensate for the variability in variance estimation for non-normal data.

It is important to note that the inflation factor utilised in this study was derived solely

from the proposed inflation factor by Zucker et al. (1999). Further research could solve

equation (17) for the group-specific sample variance estimates and obtain the correct

inflation factor that meets the desired power level. Therefore, the findings presented
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here should only be considered as a preliminary indication of the potential usefulness

of the inflation factor. However, it can be concluded that, in general, there are methods

available to enhance the power behaviour of the re-estimation procedures by incorporating

the uncertainty that comes along with the variance estimation.

3.4.5 Question 5. Type I error rate

Besides the attainment of the desired power level, it is important that a sample size re-

estimation procedure controls for the type I error rate from a regulatory point of view

(refer to Committee for medicinal products for human use, 2007). While research has

shown that blinded sample size re-estimation typically does not inflate the type I error

rate in superiority trials (refer to Friede and Kieser, 2013), violations in the type I error

rate were observed for two-arm non-inferiority trials (see for example Friede and Kieser,

2003; Friede and Stammer, 2010; Friede and Kieser, 2011b). Specifically, Glimm and

Läuter (2013) showed cases in which the one-sample estimator proposed by Kieser and

Friede (2003) violates the type I error rate. The type I error rate violation has been

observed not only for blinded methods of sample size re-estimation but also for unblinded

methods (Wittes et al., 1999; Zucker et al., 1999; Friede and Kieser, 2013). In the case of

three-arm designs, Mütze and Friede (2017) also observed a slight increase in the type I

error rate when re-estimating sample sizes using the OSU and UG estimators under the

absolute margin approach. Therefore, the subsequent simulation investigates how the two

proposed methods of sample size re-estimation impact the type I error rate in the specific

scenarios under consideration, as outlined in Question 5. An inflation of the type I error

rate is anticipated in this simulation study.

To simulate a situation under the null hypothesis, the effect (µEXP − µPLA)/(µREF −
µPLA) is set to 0.8 for a non-inferiority margin ∆ of 0.8. In the planning stage, homoge-

neous variances across the three groups are again assumed, that is (σ2∗
EXP;σ

2∗
REF;σ

2∗
PLA) =

(1; 1; 1). After reaching n1, the variances are re-estimated based on the UG and OSU esti-

mator. Based on these estimates, the sample size is re-calculated with the Hasler sample

size formula (10) assuming (µEXP−µPLA)/(µREF−µPLA) = 1. The type I error rate of each

re-estimation procedure is then calculated as the number of times that the studentized

permutation test rejects the null hypothesis divided by the number of replications. Refer

to column 3 of Table 4 for the setup of the simulation.

The simulation results are depicted in Figure 16, which presents the variability in the

observed type I error rate for both re-estimation procedures through boxplots. Similar to

previously, the two colours differentiate between the two re-estimation procedures, and two

boxes are shown for each re-estimation procedure to represent the considered allocation

scheme. Note that the observed significance level α̂ is only shown for the homogeneous

variance scenario for the OSU estimator, as it has been demonstrated that the OSU

estimator is not applicable for heterogeneous variance scenarios. The rows correspond to
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the underlying data-generating mechanism, while the columns represent the true variance

scenarios. The two dashed grey lines indicate the one-sided nominal level α, with a margin

of 0.025 ± two times the corresponding Monte Carlo error.

Figure 16: Actual significance level α̂ of the studentized permutation test with sample
size re-estimation based on the UG and OSU estimator. The dashed grey lines depict
the area of α = 0.025 ± two times the Monte Carlo error.

Figure 16 illustrates that the variation in the type I error rate for both re-estimation

procedures remains within the range indicated by the two grey lines, despite showing

occasional outliers. This indicates that the re-estimation procedures do not result in any

inflation of the type I error rate that can be distinguished from the Monte Carlo error.

Thus, the observed type I error rate remains consistent with the predetermined one-sided

α-level in a fixed design. Therefore, from a regulatory point of view, the proposed re-

estimation procedures can be regarded as a valid method for re-estimating sample sizes in

a three-arm design while maintaining the one-sided nominal significance level specified in

advance. This, however, contrasts with the findings of a slight inflation in the type I error

rate for both re-estimation procedures by Mütze and Friede (2017). It should be noted

also that the impact of the inflation factor on the type I error rate was not investigated

and should be addressed by further research.
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3.5 Summary and Discussion

The presented section of this thesis aimed at deriving a procedure to estimate sample sizes

when utilising the nonparametric studentized permutation test in a three-arm clinical trial.

The studentized permutation test The first step involved introducing the non-inferiority

hypothesis within the context of the retention-of-effect approach, followed by the deriva-

tion of the studentized permutation test. To gain insights into the test’s operating char-

acteristics, its performance under the null and alternative hypothesis was investigated.

Through this investigation, two key contributions were made. Firstly, the study observed

that the studentized permutation test exhibits a liberal behaviour under the null hypoth-

esis in scenarios involving skewed data with increasing heterogeneous variance structures,

extending the findings of Mütze et al. (2017). Subsequently, these scenarios were excluded

from the analysis.

Secondly, this study conducted the first investigation of the test’s operating charac-

teristics under the alternative hypothesis. To our knowledge, the power behaviour of this

test has not been previously studied, nor have there been any considerations on sam-

ple size planning. It was observed that the power curve of the studentized permutation

test resembles the one of the parametric equivalent, known as the Hasler test, with minor

variations depending on the underlying data-generating mechanism and variance scenario.

Based on this observation, the proposal was made to use the sample size formula by Hasler

et al. (2008) as a planning method for the studentized permutation test. This approach

offers a straightforward way to determine sample sizes. It requires specifying only the

expectation and variance parameters in advance, making the estimation of sample sizes

convenient without the need for extensive simulation studies.

Sample size planning Simulation studies demonstrated that the studentized permutation

test can effectively achieve the desired power level when sample sizes are planned using the

Hasler sample size formula, even when data deviates from normality. However, this only

holds when expectation and variance parameters are correctly specified in the planning

stage. While the accurate specification of parameters is important for any sample size

formula, variances in the context of three-arm designs, in particular, are often subject

to greater uncertainty when determining sample sizes. Simulation studies have shown

that when variances are misspecified in the planning stage, the initially estimated sample

sizes are inadequate to achieve the desired power level. To address this issue, a sample

size re-estimation procedure based on nuisance parameter estimates has been proposed.

Sample size re-estimation is a widely recognised and feasible approach for maintaining the

desired power level in a clinical trial, which involves estimating the sample variance using

data from an internal pilot study and adjusting sample sizes accordingly while the trial is

ongoing.
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Sample size re-estimation based on nuisance parameter estimates Within the sample

size re-estimation procedure, two variance estimators have been suggested: the unblinded

group (UG) estimator, which requires unblinding of the internal pilot data, and the blinded

adjusted one-sample variance estimator (OSU), which provides a blinded approach. The

findings of this study highlight that when variances are accurately specified in the planning

stage, the re-estimation of sample sizes may lead to a loss of power compared to the fixed

sample size design. However, in the studied cases where variances are misspecified, the

re-estimation approach considerably improves the power level.

Both re-estimation procedures are straightforward to implement and perform equally

well in the homogeneous variance scenario. While each estimator provides an unbiased

estimate of the pooled variance, the OSU estimator fails to account for varying vari-

ances between treatment groups. This limitation makes the OSU estimator impractical

in scenarios involving heterogeneous variances. In the considered scenarios, the procedure

tended to underestimate sample sizes, which consequently led to lower power levels. To

the best of our knowledge, there has been no investigation of blinded variance estima-

tors in the context of heterogeneous variances yet. By demonstrating the inability of

the OSU estimator to accurately re-estimate sample sizes, this study contributes to our

understanding of the feasibility of using blinded estimators in three-arm clinical trials.

Interestingly, in the considered heterogeneous variance scenario within the unbalanced

design, the OSU estimator still managed to provide reasonably accurate estimates, de-

spite estimating a single nuisance parameter only. This outcome raises the question about

the potential advantages of unbalanced designs in re-estimation scenarios when hetero-

geneous variances are present. Further research could explore the behaviour of the OSU

estimator across different group design scenarios and in situations with varying degrees

of heterogeneous variances.

Moreover, it could be argued that the OSU estimator still offers a valid re-estimation

of sample sizes in heterogeneous scenarios when the variances between the treatment

groups are not drastically different. The sensitivity of the OSU estimator to the extent

of heterogeneity and its performance under varying levels of heterogeneity could be the

subject of further investigation.

Furthermore, there is a need to explore additional blinded variance estimators for the

retention-of-effect approach in heterogeneous variance scenarios. This would allow for

a more comprehensive understanding of the performance of different estimators in such

settings and potentially provide alternative approaches for sample size re-estimation.

In contrast to the OSU estimator, the UG estimator demonstrated itself to be a

reliable and valid tool for sample size re-estimation in both variance scenarios. Hence, for

the scenarios considered, it demonstrated broader applicability, making it a recommended

choice for re-estimation purposes. In terms of performance, the UG estimator exhibited

the best results with normal data, where the desired power level was achieved for larger
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pilot study sizes. However, with non-normal data and smaller pilot study sizes, the

targeted power level was often not achieved, highlighting that sample size re-estimation

alone may not always be sufficient to attain the desired power level.

Inflation factor for sample size re-estimation procedures In such cases, employing an in-

flation factor can be a practical solution. This approach involves inflating the re-estimated

sample size based on the UG estimator using an inflation factor ζ, as previously proposed

by Zucker et al. (1999). The aim of this approach is to account for the uncertainty of the

variance estimation in the sample size re-estimation, thereby improving the reliability of

reaching the target power level. The inflation factor was derived for the two-arm design

and then extended to the three-arm design. Simulation results showed that the inflation

factor helped stabilise the power curve, enabling the attainment of the desired power level

across all pilot study sizes in the case of normal data. However, it should be noted that

the use of the inflation factor resulted in overestimation of the sample sizes, leading to

an overpowered trial in case of normal data. On the other hand, for non-normal data,

although the inflation factor considerably improved the power curve, it was not always

sufficient to achieve the desired power level.

Regarding the inflation factor used in this study, it is important to acknowledge that

its derivation for the three-arm design was not based on a mathematical derivation specific

to this design. Instead, the inflation factor was derived by adapting ideas from the two-

arm design to the three-arm design. Future research could focus on deriving the inflation

factor mathematically and refine the approach to balance the trade-off between attained

power level and sample size. Additionally, there may be other approaches to enhance

the power performance of sample size re-estimation procedures, especially when using

the studentized permutation test. One possible approach could be the use of quantiles

based on the permutation distribution instead of t-quantiles, as in the Hasler sample size

formula, for the inflation factor.

Limitations of sample size re-estimation based on nuisance parameter estimates It

should also be highlighted that this study provides first insights into the performance of

re-estimation procedures based on nuisance parameter estimates when dealing with non-

normal data. So far, re-estimation procedures have not been studied for non-normally

distributed continuous data in the context of three-arm non-inferiority trials. This study

revealed that the limitations of re-estimation for non-normal data primarily arises from

the variance estimation itself rather than being a result of the proposed sample size plan-

ning method or the performance of the studentized permutation test. The estimation of

variances for non-normal data tends to exhibit greater variability, leading to less accurate

estimation of re-estimated sample sizes. Consequently, lower power levels are observed in

the re-estimation procedure. The extent of this impact depends on the degree to which the
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data deviates from normality. Therefore, caution should be exercised when using sample

size re-estimation procedures based on nuisance parameter estimates for data that does

not conform to the characteristics of normal data.

The observed limitations of the re-estimation procedures in the presence of non-normal

data also emphasise the need for additional strategies to enhance the power level when

data deviates from normality. One potential approach could involve adjusting the Hasler

sample size formula to account for non-normality when re-estimating sample sizes. This

could be achieved by incorporating estimates of higher moments of the internal pilot study

data into the re-estimation within the Hasler sample size formula. However, it should be

noted that the adjustment of a sample size formula for higher moments has not yet been

explored in the context of the equivalent two-sample t-test situation, making it even more

challenging to apply in the three-arm setting.

Type I error rate of the proposed sample size re-estimation procedures Moreover, this

work found no evidence of inflation in the type I error rate when using the proposed

methods for sample size re-estimation relative to the Monto Carlo error. Therefore, this

study shows that both methods are feasible from a regulatory point of view in terms of

maintaining the nominal significance level as predefined during the planning stage. This

contrasts to previous literature that suggested an inflation in the type I error rate in

three-arm non-inferiority trials.

Further contributions of this work Although not explicitly tested in this study, it is

worth noting that the proposed re-estimation procedure and inflation factor can also be

applied when analysing data with the Hasler test. This work therefore provides an ini-

tial approach for sample size re-estimation based on nuisance parameter estimates when

analysing with the Hasler test under the retention-of-effect hypothesis, allowing for het-

erogeneous variance.

It is also worth highlighting that a minor coding error was discovered in the function-

ality of the studentized permutation test within the package ThreeArmedTrials during

this study. The error was reported to the package owner and a corrected version of the

studentized permutation test has been implemented. As a result, the ThreeArmedTrials

package now correctly supports the analysis of data using the studentized permutation

test in R.

Short summary In summary, the proposed strategy for sample size planning involves

using the Hasler sample size formula and employing the UG variance estimator in cases

of uncertain variance specification. Additionally, the use of an inflation factor can help

enhance the power level, but it may not guarantee the attainment of the desired power

level in all scenarios, particularly when data deviates significantly from normality. The
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presented work therefore provides an initial approach to determining sample sizes in the

analysis of three-arm non-inferiority trials using the studentized permutation test. It

should, however, be noted that the presented work focused solely on continuous data.

The analysis using the studentized permutation test for discrete data remains an area for

further research.
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4 Nonparametric test based on classical mid-ranks

4.1 Statistical model and hypothesis testing

Nonparametric relative effects in the three-arm design Denote Xik with k = 1, ..., ni

and i = EXP,REF,PLA the outcomes of independent random variables under the exper-

imental treatment (EXP), reference treatment (REF) and placebo (PLA) of a three-arm

clinical trial. It is assumed that the respective random variable Xik follows a distribution

Fi that is described by the so-called normalized version of the cumulative distribution

function (CDF), that is, the mean of the right-continuous and the left-continuous version

Fi(x) = 0.5 · [P (Xik < x) + P (Xik ≤ x)].

The relative treatment effects describing the influence of the treatment i to the ob-

servation are derived by

pi =

∫
H(x)dFi(x) (21)

where

H(x) = n−1

3∑
i=1

niFi(x) (22)

denotes the mean of the CDFs for all n =
∑i ni observations in the experiment. The

relative treatment effects pi can therefore be interpreted as a relative deviation from

H(x), the weighted average.

An unbiased estimate for the relative effect pi can be obtained by replacing the CDF

by its empirical counterpart F̂i(x) with Ĥ(x), that is

p̂i =

∫
Ĥ(x)dF̂i(x). (23)

This leads to means R̄i of the mid-ranks Rik among all n observations. The estimation

(23) can then be expressed as

p̂i =

∫
Ĥ(x)dF̂i(x) = n−1

(
R̄i − 1

2

)
. (24)

The relative effects based on H(x) are typically called weighted relative effects as they

are dependent on the sample sizes ni. To avoid this dependence, H(x) can be replaced
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by the unweighted mean

G(x) =
1

3

3∑
i=1

Fi(x). (25)

The relative treatment effects can then be derived as

pi =

∫
G(x)dFi(x). (26)

Replacing G(x) and Fi(x) by their empirical counterparts Ĝ(x) and F̂i(x) leads to

so-called pseudo-ranks. In this case, the estimation of the relative treatment effects pi

does not rely on the group-specific sample sizes ni. The relative effects based on G(x)

are typically referred to as unweighted relative effects. To our knowledge, the concept

of unweighted relative effects was first mentioned by Brunner and Puri (2001), with a

more detailed discussion provided by Brunner et al. (2017), who also established the term

pseudo-ranks to describe the estimation process. When the sample sizes in the groups are

equal, both procedures yield the same estimated effects. However, if there is imbalance in

the group sample sizes, the weighted relative effects may produce distorted results, as they

assign more weight to observations in the larger groups. For a more detailed discussion

on the results obtained with weighted relative effects in contrast to unweighted relative

effects, refer to Brunner et al. (2020).

Munzel (2009) proposed using weighted relative effects for the nonparametric analysis

of three-arm non-inferiority trials. It is worth noting that Munzel did not specifically

consider the effect of group imbalance on the estimated effects. However, the impact of

typical unbalanced group designs in three-arm trials on the estimated effects is generally

minimal. To adhere to the proposed framework and ensure consistency, the analysis will

therefore focus on the weighted relative effects as described in (21).

Non-inferiority hypothesis In a setting where higher values of the response are associ-

ated with a higher treatment effect, non-inferiority of the experimental treatment to the

reference treatment is demonstrated by the following hypothesis by means of nonpara-

metric relative effects, as defined in (21)

H0 : pEXP − pREF ≤ δ vs. H1 : pEXP − pREF > δ (27)

where δ refers to a pre-specified, clinically irrelevant amount that the difference between

the experimental and reference treatment needs to exceed in order to demonstrate non-

inferiority, with δ < 0.

Following the retention-of-effect approach, non-inferiority in the three-arm design can

now be formulated as a fraction of the trials sensitivity using the information of the
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placebo arm by defining the margin δ as a fraction f of the difference between the reference

treatment and placebo

δ = f(pREF − pPLA)

with f ∈ (−1, 0). This leads to the hypotheses

H0 : pEXP − pREF ≤ f(pREF − pPLA) vs. H1 : pEXP − pREF > f(pREF − pPLA). (28)

Let ∆ = 1 + f , then the hypothesis pair can be rewritten as:

H0 :
pEXP − pPLA
pREF − pPLA

≤ ∆ vs. H1 :
pEXP − pPLA
pREF − pPLA

> ∆. (29)

The nonparametric test based on classical mid-ranks This paragraph introduces the

nonparametric test based on classical mid-ranks published by Munzel (2009), which eval-

uates the non-inferiority hypothesis for the retention-of-effect approach. To construct the

test statistic, (29) can be rearranged as

H0 : pEXP −∆pREF + (∆− 1)pPLA ≤ 0 vs. H1 : pEXP −∆pREF + (∆− 1)pPLA > 0. (30)

Replacing the relative treatment effects pi by their estimates p̂i and dividing the term by

estimates of the variance and covariance components yields the test statistic Tn with

Tn =
√
n

p̂EXP −∆p̂REF + (∆− 1)p̂PLA√
ŝ11 +∆2ŝ22 + (1−∆)2ŝ33 − 2∆ŝ12 − 2(1−∆)ŝ13 + 2(1−∆)∆ŝ23

(31)

where ŝij denote the estimates of the variance and covariance components (see Appendix

A for their definition).

The distribution of Tn under the null hypothesis can be approximated by a t-distribution

with (n − 3) degrees of freedom (for a derivation of the approximation refer to Munzel,

2009). The hypothesis of inferiority is then rejected if the test statistic is greater than

the (1− α)-quantile of the central t-distribution with (n− 3) degrees of freedom. For the

vector Xn = (XEXP,1, . . . , XEXP,nEXP
, XREF,1, . . . , XREF,nREF

, XPLA,1, . . . , XPLA,nPLA
) that

contains all observations, this test can be expressed as the function

ϕMunzel
n (Xn) =

1 Tn(Xn) > t1−α(n− 3)

0 Tn(Xn) ≤ t1−α(n− 3).

The test based on classical mid-ranks will be referred to as the Munzel test in the

subsequent analysis. The Munzel test was implemented in R using the terminology and

coding structure of the non-inferiority tests implemented in the ThreeArmedTrials pack-
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age to facilitate its adoption into the package. The estimation of relative effects within

the Munzel test is performed using the functionality of the rankFD package (Konietschke

et al., 2022). The code is provided in Appendix A.

4.2 Operating characteristics of the nonparametric test

In order to develop a sample size planning method for the nonparametric Munzel test,

a similar approach is taken as for the studentized permutation test. First, the one-

sided nominal level is tested under the null hypothesis for the power simulation scenarios

considered. Then, a situation under the alternative hypothesis is studied to derive a

sample size planning method based on the observed power behaviour. Table 7 displays

the simulation scenarios for the Munzel test.

Table 7: Scenarios for the simulation study investigating the operating characteristics
of the nonparametric Munzel test under the null and alternative hypothesis.

Parameter Values under H0 Values under H1

Distributions Normal, Lognormal, Chi-squared

Non-inferiority margin ∆ 0.8

Ratio in the mean differences
(µEXP − µPLA)/(µREF − µPLA) 0.8 0.9, 1, 1.1, 1.2

Group standard deviations
(σEXP;σREF;σPLA)

For all distributions of the data: (1;1;1);
For normal data: (1;2;3); (3;2;1)

Sample size allocations
(nEXP : nREF : nPLA) (1 : 1 : 1); (2 : 2 : 1); (3 : 2 : 1);(1:∆:1-∆)

Total sample size n 30, 60, 120, 210, 300 420

One-sided
nominal level α 0.025

Simulation replications 1,000

The simulation scenarios for the Munzel test are similar to those used for the stu-

dentized permutation test, as described in Table 1, and in Figure S1 of the Appendix

A. The simulations focus on continuous data, specifically normal, lognormal, and chi-

square-distributions. Data underlying a lognormal or chi-square distribution, denoted as

χ2, are simulated using the formula (8) to ensure that data conforms to the appropriate

expectations and standard deviations. t-distributed data are not simulated. The non-

inferiority margin ∆ is again fixed at 0.8. As for the studentized permutation test, the

simulation involves varying the effect of the ratio in the expectation parameters, that is
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(µEXP − µPLA)/(µREF − µPLA), to represent and simulate the relative effects under the

hypothesis. However, in the process of this thesis it became evident that assuming para-

metric distributions with specific parameters does not directly translate into nonparamet-

ric relative effects defined under the hypothesis. The relative effects vary with different

distributions, expectations and standard deviations, making it challenging to establish a

direct relationship between the expectation parameters and the relative effects. For data

following a normal distribution with Fi(x) ∼ N(µi, σ) the weighted relative effects in a

three-arm design correspond to

pi =

∫
H(x)dFi(x) =

1

n

3∑
j=1

nj · Φ
(µi − µj

σ
√
2

)
.

However, while a relationship between relative effects and parameters can be derived

for normal data, to our knowledge, no closed-form solution exists for deriving relative

effects under non-normal data, requiring simulations instead. Consequently, simulating

the situation under the respective hypothesis is not straightforward.

It can be shown that heteroskedastic and skewed data lead to a shift in the relative ef-

fects and consequently the hypothesis. Therefore, the group standard deviation scenarios

are differentiated based on normal and skewed data in this simulation study, representing

symmetric and asymmetric distributions respectively. That is, for data following a log-

normal or χ2-distribution, the heteroskedastic standard deviation scenarios are excluded.

Additionally, fewer group designs are included, specifically (1 : 1 : 1), (2 : 2 : 1), (3 : 2 : 1),

and (1 : ∆ : 1 − ∆). Under the null hypothesis, the total sample size n is varied while

it is fixed at n = 420 under the alternative hypothesis. The simulation scenarios are

replicated 1,000 times. The scripts for conducting the simulation study in R are provided

in Appendix A.

Given the inherent challenges in accurately simulating the type I error rate and power

of the Munzel test, it was decided during the course of this thesis to shift the focus towards

the studentized permutation test as the primary approach for deriving a sample size

planning method. Consequently, the results for the Munzel test may lack completeness,

as they were not further explored. Nevertheless, the following section will briefly present

the results for the type I error rate and power of the Munzel test.

4.2.1 Type I error rate

Figure 17 illustrates the simulation results under the null hypothesis, that is the type

I error rate of the Munzel test as a function of the total sample size n. The different

line types correspond to the group designs, while the columns represent the underlying

distribution of the data and the rows depict the group standard deviation scenarios. It is

important to note that only the results for normal data are shown for all standard deviation
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scenarios, as the relative effects under the hypothesis shift in skewed data, indicating a

situation under the alternative hypothesis. Consequently, the results for skewed data and

heteroskedastic standard deviations are not displayed.

Figure 17: Actual significance level α̂ of the Munzel test against the total sample size
n. The dashed grey lines depict the area of α = 0.025 ± two times the Monte Carlo
error.

Figure 17 shows that in the case of normal data, the one-sided nominal significance

level can be maintained across all standard deviation scenarios. This is indicated by

the lines that remain within the boundaries defined by the grey dashed lines. For data

following a lognormal and χ2-distribution, there is a conservative behaviour observed as

the sample size increases. This suggests a shift in the effect under the hypotheses, with

more evidence supporting the null hypothesis as the sample size grows. It is also observable

that there exist differences in the type I error rate by group design, however no pattern

across all scenarios becomes apparent.

4.2.2 Power

Figure 18 depicts the simulation results under the alternative hypothesis, that is the

observed power of the Munzel test against a varying ratio in the expectation parameters

(µEXP − µPLA)/(µREF − µPLA). The different line types correspond to the group designs,

while the columns represent the underlying distribution of the data and the rows depict
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the group standard deviation scenarios. Similar to the previous Figure 17, the results for

normal data and skewed homoskedastic data are presented, while the results for other

distributions and standard deviation scenarios are not displayed.

Figure 18: Observed power of the Munzel test against (µEXP − µPLA)/(µREF − µPLA)
for a total sample size n = 420.

In the case of normal data, the power of the test increases as the effect under the

hypothesis increases. The highest power is observed in scenarios with homogeneous vari-

ances, while the lowest power is observed in the (σEXP;σREF;σPLA) = (3; 2; 1) structure.

For lognormal and skewed data, the power curves are higher compared to normal data.

This observation suggests a potential shift in the effect under the hypothesis, providing

more evidence in support of the alternative hypothesis. Some minor differences can be

observed due to the chosen group design.

4.3 Sample Size Planning

The simulation results for the Munzel test demonstrate that, similar to the studentized

permutation test, the one-sided nominal level can be maintained across the considered sce-

narios. In the power simulation it is shown that the power is influenced by the expectations

parameters and the underlying group standard deviations. However, the underlying dis-

tribution of the data and the standard deviation significantly affects the relative effects
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of the treatment groups, making it challenging to derive a sample size planning method

based on parametric assumptions.

One possible approach to derive a sample size planning method is to examine the

power function of the test instead. The power function is dependent on various factors,

including the non-inferiority margin ∆, the relative effects pi, the total sample size n, and

the variance and covariance parameters of the test statistic sij. However, deriving the

variance and covariance parameters is difficult since they, like the relative effects, depend

on mid-ranks (see Appendix A). These, in turn, depend on the data. Without information

on the data or the ranks of the data, it is not possible to obtain a power function.

Nevertheless, one alternative option is to specify relative effects and simulate them

rather than defining parametric distributions that yield unknown relative effects. This

method allows for a more flexible and data-driven approach to sample size determination

for the Munzel test. By employing this method, a more comprehensive investigation into

the power behaviour of the test can be conducted, providing valuable insights for potential

sample size planning strategies.

As this thesis primarily focused on the studentized permutation test, the considera-

tions for sample size planning based on the Munzel test are limited. The Munzel test was

investigated in terms of its power and performance, but its application for sample size

determination was not extensively explored.

4.4 Summary and Discussion

The study mainly focused on the studentized permutation test, thus limiting insights

into the Munzel test’s use for sample size planning. While the Munzel test’s power and

performance under the null hypothesis were examined, the application for sample size

determination wasn’t extensively addressed. Simulation results indicate that the power of

the Munzel test is impacted by the expectation parameters and group standard deviations.

However, the relative effects of the treatment groups are greatly influenced by the data’s

distribution and standard deviation. The complex interplay of these elements signifies

that a straightforward sample size determination based on parametric assumptions for

the Munzel test may not be feasible. Assuming and simulating relative effects rather

than simulating parameters of a distributions can potentially provide a more practical

and flexible approach for the Munzel test’s sample size determination. However, deriving

a generalised power function for sample size planning is challenging due to the variance

and covariance components of the test statistic.

Nevertheless, it is recommended to explore and refine the sample size planning method

using the Munzel test in future research, given the limitations of the current study. It is

necessary to understand how different factors, such as the non-inferiority margin, relative

effects, total sample size, and the variance and covariance parameters of the test statistic,
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interact and impact the power of the test.

While this study focused primarily on continuous data, the true strength of the non-

parametric approach by Munzel (2009) is best utilised in the case of ordinal data. Thus,

future research could benefit from a concentrated exploration of this test’s application to

ordinal data.
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5 Conclusion

Through extensive simulation studies, this thesis examined how sample sizes can be deter-

mined for different distributional properties of data in three-arm gold standard designs,

focusing primarily on continuous data. The nonparametric analysis approaches employed

in this investigation included the studentized permutation test by Mütze et al. (2017),

and the nonparametric test based on classic mid-ranks by Munzel (2009).

When analysing with the studentized permutation test, this thesis presents a conve-

nient method for sample size planning utilising the sample size formula of its parametric

counterpart, the test by Hasler et al. (2008). While the Hasler sample size formula effec-

tively achieves the target power level of the studentized permutation test, it depends on

precise parameter specification during the planning stage. To address parameter uncer-

tainties, the proposed method includes a sample size re-estimation procedure that uses

data from an internal pilot study to validate assumptions on the nuisance parameters,

thus ensuring that the desired power is achieved. The comparison of two sample size

re-estimation procedures has shown the unblinded sample variance estimator to be more

versatile, demonstrating effectiveness in both homogeneous and heterogeneous variance

scenarios. However, achieving the target power level remains challenging for non-normal

data, even with the application of an inflation factor, due largely to increased variability

in variance estimation for such data.

In addition to pioneering a method for determining sample sizes in three-arm non-

inferiority trials using the nonparametric studentized permutation test, this research also

provides valuable insights into the test’s operating characteristics under both hypotheses.

It identifies scenarios in which the test exhibits a liberal behaviour and provides insights

into the power characteristics of the test. Furthermore, this study explores sample size

re-estimation procedures based on nuisance parameter estimates for scenarios with het-

erogeneous variances, thereby offering a valid approach for sample size re-estimation when

analysing data using the Hasler test as well. By including an estimator that maintains

the blinding of the data, this study also contributes to our understanding of the feasibility

of using blinded estimators in three-arm clinical trials. Moreover, the study demonstrates

the limitations of sample size re-estimation based on nuisance parameter estimates in

cases of non-normal data due to the increased variability of the variance estimation.

This study highlights several potential areas for further research. Firstly, it sug-

gests exploring additional blinded variance estimators in heterogeneous variance scenar-

ios. Specifically, investigating the performance of these estimators in unbalanced designs

and their sensitivity to the extent of heterogeneity would provide a better understand-

ing of their applicability and limitations in such scenarios. Secondly, the study proposes

further investigation of the applied inflation factor to enhance the reliability of achieving

the desired power level in sample size re-estimation procedures. This involves conducting
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a mathematical derivation of the inflation factor, refining it to prevent overestimation of

sample sizes, and optimising its performance for non-normal data. Furthermore, future

research could examine sample size re-estimation based on nuisance parameter estimates

for non-normal data in more detail, with the goal of uncovering its limitations and explor-

ing strategies to adjust the recalculation of sample sizes. This could involve considering

observed higher moments of the internal pilot data as a basis for adjustment. Lastly, ex-

tending the presented method for the studentized permutation test to discrete data could

be a valuable avenue for further exploration.

In analysing with the nonparametric test based on classic mid-ranks by Munzel (2009),

this thesis identified the simulation of relative effects under the hypothesis as a challenge

for sample size planning. The relative effects of the treatment groups are influenced by

the distribution of the data, as well as the standard deviations and expectation param-

eters. This interplay suggests that simulating the relative effects based on parametric

assumptions of the data is not straightforward, making it difficult to investigate the op-

erating characteristics of the test under the respective hypothesis. This study provided

brief results for the operating characteristics of the test under both the null and alterna-

tive hypothesis and suggests that presuming and simulating relative effects, rather than

simulating parameters of a distribution, could offer better insights into the test’s power

behaviour. These findings could then contribute to the development of a sample size

planning method.

Furthermore, future research aimed at developing a sample size planning method for

the Munzel test could focus on deriving a generalised power function for sample size

planning. However, deriving such a function remains challenging due to the variance and

covariance components of the test statistic. In addition to providing insights into the

operating characteristics of the test, this work also contributes by implementing the test

for analysis in R. The inclusion of the test in the ThreeArmedTrials package is planned.

Moreover, the potential of the Munzel test for analysing ordinal data, which was not the

primary focus of this study, warrants further exploration.
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A Appendix

Absolute margin approach

Rather than establishing non-inferiority of an experimental treatment to a standard ref-

erence treatment based on the observed effect of the reference treatment over a placebo,

the absolute margin approach following the idea by Hida and Tango (2011) defines non-

inferiority by means of a pre-defined fixed margin. That is, the experimental treatment

must show that it is not worse than the reference treatment by more than this fixed mar-

gin. This concept mirrors the approach used in a two-arm design where the superiority of

the reference treatment over placebo is assumed to be consistent across trials. However,

this might not hold true resulting in a lack of of assay sensitivity in the two-arm design.

Therefore, a placebo arm is included to ensure assay sensitivity. As a consequence, the

trial must also prove the superiority of the reference treatment over the placebo.

That means, in order to establish non-inferiority in the three-arm design, two key

elements need to be shown, namely that

1. the reference treatment is superior to placebo by more than ∆SUP

2. the experimental treatment is non-inferior to the reference treatment with non-

inferiority margin ∆NI

Both margins ∆SUP and ∆NI must be non-negative. Assume that the clinical endpoints

Xik with k = 1, ..., ni and i = EXP,REF,PLA are mutually independent and follow a

distribution Fi with finite mean E[Xik] = µi, common finite positive variance V ar[Xik] =

σ2 > 0 and finite fourth moment E[X4
ik]. In a setting where higher values of the outcome

are associated with higher efficacy of the treatment, the following inequality must hold

for the relationship between the respective µi:

µPLA +∆SUP < µREF < µEXP +∆NI.

This results in the following two sets of hypotheses:

K0 : µREF ≤ µPLA +∆SUP vs K1 : µREF > µPLA +∆SUP (32)

H0 : µEXP ≤ µREF −∆NI vs H1 : µEXP > µREF −∆NI (33)

where K0 refers to the hypothesis of assay sensitivity and H0 to the non-inferiority hy-

pothesis. Rearranging the hypotheses K0 and H0, replacing the respective µi’s by the

group-specific sample means X̄i· and dividing by an estimate of the respective pooled
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standard deviations yields the following two test statistics

T1 =
X̄REF· − X̄PLA· −∆SUP

σ̂1

√
1/nREF + 1/nPLA

with σ̂1 =
(nREF − 1)S2

REF + (nPLA − 1)S2
PLA

nREF + nPLA − 2
(34)

T2 =
X̄EXP· − X̄REF· +∆NI

σ̂2

√
1/nEXP + 1/nREF

with σ̂2 =
(nEXP − 1)S2

EXP + (nREF − 1)S2
REF

nEXP + nREF − 2
. (35)

Here, S2
i denote the group-specific sample variances and ni the respective group sample

sizes.

When allowing for differing variances in the three groups, that is V ar[Xik] = σ2
i > 0,

the pooled sample variances σ̂1 and σ̂2 are not appropriate any longer for constructing

the test statistics as in (34, 35). Replacing the pooled sample variances by the sample

variances of the respective treatment groups yields the test statistics allowing for hetero-

geneous variances between the three groups

T1 =
X̄REF· − X̄PLA· −∆SUP√

S2
REF

nREF

+
S2
PLA

nPLA

T2 =
X̄EXP· − X̄REF· +∆NI√

S2
EXP

nEXP

+
S2
REF

nREF

. (36)

Let Xnl
denote the random vector that contains the corresponding observations of

the trial for the corresponding test statistic Tl with l ∈ (1, 2) , that is

Xn1 = (XREF,1, . . . , XREF,nREF
, XPLA,1, . . . , XPLA,nPLA

) (37)

Xn2 = (XEXP,1, . . . , XEXP,nEXP
, XREF,1, . . . , XREF,nREF

) (38)

and denote P1 and P2 their respective probability measures.

Following the approach by Mütze et al. (2017), a permutation approach can be ap-

plied to approximate the distribution of both test statistics under the corresponding null

hypothesis. A p-value for the respective test statistic can be derived with the following

procedure:

1. Computation of the test statistics T1(Xn1) and T2(Xn2) for observed data Xn1 and

Xn2

2. Permutation of the data with τn1(Xn1) = (Xn1,τ(1), . . . , Xn1,τ(n1)) and τn2(Xn2) =

(Xn2,τ(1), . . . , Xn2,τ(n2)) denoting the randomly permutated vectors based ofXn1 and

Xn2

3. Computation of the test statistics based on permutated data T1(τn1(Xn1)) and

T2(τn2(Xn2))

4. Repetition of steps 2 and 3 for J times, e.g. 10,000 times (number of permutation

replications)
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5. Computation of the respective p-values as the number of times that the permutated

test statistic T1(τn1(Xn1)) or T2(τn2(Xn2)) is as or more extreme than the test

statistic based on the observed data T1(Xn1) or T2(Xn2), each divided by J , that is

1

J

J∑
j=1

I
(
T1(Xn1) ≤ T1(τn1(Xn1)

)
and

1

J

J∑
j=1

I
(
T2(Xn2) ≤ T2(τn2(Xn2)

)
where I denotes the indicator function.

Based on the computed p-value, a test decision can be made. It should be noted that

for the demonstration of non-inferiority of the experimental treatment, both test statistics

must reject the null hypothesis.

Distribution of the data for the simulation scenarios considered

The following paragraph briefly describes the characteristics of the data in the simulation

scenarios considered for investigating the operating characteristics of the studentized per-

mutation test, as outlined in Table 1. These descriptions are also valid for the scenarios

considered when investigating the operating characteristics of the Munzel test. However,

it should be noted that the heteroskedastic standard deviation scenarios were not consid-

ered for the Munzel test with data following a lognormal or χ2-distribution. Additionally,

t-distributed were are not simulated for the Munzel test.

Figure S1 illustrates the density curves of the underlying distributions of the data

and standard deviation scenarios under the null hypothesis and alternative hypothesis,

respectively. Specifically, Subfigure S1a depicts the scenarios under the null hypothesis,

while Subfigure S1b presents the scenarios under the alternative hypothesis. The colours

represent the different data-generating mechanisms. The figures are organised into rows

and columns, with each column representing one of the three groups (EXP, REF, and

PLA), and each row representing a standard deviation scenario. The dashed grey lines

represent the true mean of the three groups, with µEXP = 0.8, µREF = 1, and µPLA = 0

under the null hypothesis, and µEXP = 1, µREF = 1, µPLA = 0 under the alternative

hypothesis. Note that under the alternative hypothesis, additional values of µEXP are

considered (refer to Table 1, column 3). For simplicity, only the case where µEXP = µREF

is depicted. To improve clarity, the x-axis limits are manually set from -10 to 10 in both

figures.
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(a) Density curves under H0.

(b) Density curves under H1.

Figure S1: Density curves for data following a normal, t(4), lognormal and χ2(2)-
distribution with µEXP = 0.8 (H0)/µEXP = 1 (H1), µREF = 1, µPLA = 0 for the
standard deviation scenarios considered in the simulation study. The dashed grey lines
depict the respective underlying µi.
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Figure S1 illustrates that normal and t-distributed data exhibit a symmetrical density

with the peak aligning with the true underlying mean of the corresponding group. The

t-distributed data shows a higher peak and has heavier tails compared to the normal

distribution. In the case of lognormal and χ2-distributed data, the peak of the data is

located to the left of the underlying mean for each group. The tails of both distributions

extend to the right, indicating the positively skewed shape of these distributions. It is

worth noting that the peak of data following a lognormal distribution is higher compared

to the χ2-distribution with 2 degrees of freedom. Depending on the underlying scenario

in the group standard deviation, the density curves exhibit varying widths, with greater

standard deviations resulting in wider tails.

Impact of the Coding Error

The following paragraph describes the impact of the coding error that was found in the

process of this thesis. As described in section 3.1 the studentized permutation test per-

mutes the original data J times where J defines the number of permutation replications.

For each permutated dataset, the test statistic as in (6) is computed. In the package

ThreeArmedTrials the variance of the permutated test statistic was calculated by

sigma2_Tperm <- n * (sigma2ExpEst / nExp +

Delta^2 * sigma2RefEst / nExp +

(1-Delta)^2 * sigma2PlaEst / nExp )

The formula divides the variance estimation of each group by the sample size of the

experimental group nExp. While this formula is correct under a balanced group design, it

leads to a miscalculation of the teststatistic’s variance for unbalanced group designs. The

correct formula is given by

sigma2_Tperm <- n * (sigma2ExpEst / nExp +

Delta^2 * sigma2RefEst / nRef +

(1-Delta)^2 * sigma2PlaEst / nPla )

The impact of the coding error became most clearly in the power simulation. In Figure

S2 the power of the studentized permutation test and the Hasler test under the erroneous

estimation are shown. Note that the rows hereby represent the five different allocation

schemes and the two line types represent the group standard deviation scenarios.

Other than in Figure 4, the lines for the two tests, although still running in parallel,

differ visibly for the unbalanced designs of (3 : 2 : 1) and (1 : ∆ : 1 − ∆), that is

(1 : 0.8 : 0.2) (rows 3 and 5). It was suggested that more unbalanced designs in general

created this difference. In the scenarios (2 : 2 : 1) and (3 : 3 : 1) (rows 2 and 4), however,

the power curves aligned again. The mean power difference in percentage points between
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Figure S2: Impact of the coding error on the observed power of the studen-
tized permutation test compared to the observed power of the Hasler test against
(µEXP − µPLA)/(µREF − µPLA) for a total sample size n = 420.

the studentized permutation test and the Hasler test for the different allocation schemes

under the erroneous calculation is shown in Table S1.
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Table S1: Impact of the coding error on the mean differences between the observed
power of the Hasler test and the observed power of the studentized permutation test
in percentage points by group design for a total sample size n = 420 across all (µEXP−
µPLA)/(µREF − µPLA) and variance scenarios.

(nEXP : nREF : nPLA) Mean power Difference w/

coding error

Mean power Difference

w/o coding error

(1 : 1 : 1) 1.23 1.23

(2 : 2 : 1) 0.53 1.03

(3 : 2 : 1) -4.30 0.00

(3 : 3 : 1) 0.00 0.96

(1 : ∆ : 1−∆) -3.31 0.23

On average, the power of the studentized permutation test differed from the power of

the Hasler test by about 4.3 percentage points under (nEXP : nREF : nPLA) = (3 : 2 : 1)

and by 3.31 percentage points under (nEXP : nREF : nPLA) = (1 : ∆ : 1 − ∆). For the

other sample size allocations, the mean difference was reported considerably lower. These

numbers confirmed the suggestion above. Also in comparison with the Hasler test, the

reported type I error rates were considerably lower than the respective ones of the Hasler

test for the group designs (3 : 2 : 1) and (1 : ∆ : 1−∆). In contrast, without the coding

error, the mean power differences for the unbalanced designs are not so apparent (see

Table S1, column 3). Hence, under the respective hypothesis the type I error and the

power of the studentized permutation test were estimated too low.

The error was discovered while searching why these differences between the allocation

schemes occured and subsequently reported to the maintainer of the package. Based

on the code of the package ThreeArmedTrials (Mütze, 2023) a corrected version of the

studentized permutation test was developed. This version was used to re-conduct the

simulations for the unbalanced designs. To account for the loss in simulation time, the

replications of each simulation scenario were reduced from 10,000 to 5,000. The maintainer

of the package promptly addressed and resolved the issue (see the commit of April 18,

2023). A correct version of the studentized permutation test is now implemented in the

package ThreeArmedTrials.

Liberal behaviour for (σEXP;σREF;σPLA) = (1; 2; 3)

To understand the liberal behaviour of both tests for skewed data, one must keep in

mind that the chosen heterogeneous standard deviations represent very extreme scenarios.

Consider Figure S3. It shows the density curves of all considered underlying distributions

of the data under the null hypothesis for (σEXP;σREF;σPLA) = (1; 2; 3). The colours
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represent the data-generating mechanisms and the rows the three groups EXP, REF and

PLA. The grey line indicates the true mean of the three groups, that is µEXP = 0.8,

µREF = 1 and µPLA = 0. To enhance clarity, the limits on the x-axis were manually set

from -10 to 10.

Figure S3: Density curves for data following a normal, t(4), lognormal and χ2(2)-
distribution with µEXP = 0.8, µREF = 1, µPLA = 0 and (σEXP;σREF;σPLA) = (1; 2; 3).
The dashed grey lines depict the respective underlying µi.

Not surprisingly, the peak of the data coincides with the true underlying mean under

normal and t-distributed data. As expected, for both lognormal and χ2-distributed data,

the peak does not coincide with the true mean rather is the mean located to the right

of the data peak, representing the skewness of the data. If one simulates data for a

balanced group design of n = 999 under (σEXP;σREF;σPLA) = (1; 2; 3) and evaluates

the data, then one can explain the liberal behaviour by the distribution of the variance

estimation. Figure S4 shows the variation of the variance estimation by the four underlying

data-generating mechanisms for each of the three groups EXP, REF and PLA (on the

rows) for a 5,000 replications by means of the density curve. The true variances under

(σEXP;σREF;σPLA) = (1; 2; 3) are indicated by the grey line. Please note that the limits

on the x-axis are manually set from 0 to 20 to provide a clearer view of how the variance

estimation behaves across the different data-generating mechanisms. In the case of χ2-

and lognormal distributed data, the estimation ranged up to 100.
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Figure S4: Density plot of the variance estimation of each treatment group for data
following a normal, t(4), lognormal and χ2-distribution with (σEXP;σREF;σPLA) =
(1; 2; 3) in the group design (1 : 1 : 1) with total sample size n = 999. The dashed grey
lines depict the respective underlying σi.

The variance estimation for normal data (dark orange line) appears symmetrical

around the true value. However, the variance estimation for the other three data-generating

mechanisms deviates considerably from that. The density curves for t-distributed and χ2-

distributed data (light orange and dark purple line) also appear symmetrical around the

true value, but with larger tails compared to normal data, indicating greater variability

in their variance estimation. Surprisingly, although the χ2-distribution is also a skewed

distribution, it shows a rather symmetrical curve in the variance estimation here. In con-

trast, the curve for lognormal data (light purple line) is noticeably different from that of

normal, t and χ2-distributed data. It is skewed and exhibits substantial variation across

the range of the x-axis. The peak of the curve and the majority of the estimates are

located to the left of the true value for all three groups, indicating that the variance esti-

mation tends to be underestimated in this sample. It should be noted that the variance

estimation, on average, would estimate the true underlying variance if this experiment

were replicated multiple times, as the variance estimator is unbiased for any underlying

distribution. Additionally, the variance estimation increases for all four data types as the

true variance increases, which can be observed in the placebo group (third row, note the

different scales on the y-axis).
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Recall that the test statistic for both the studentized permutation test and the Hasler

test is given by (6) where the variance estimator on the denominator is calculated by

σ̂2 =
σ̂2
EXP

wEXP

+∆2 σ̂
2
REF

wREF

+ (1−∆)2
σ̂2
PLA

wPLA

.

Hence, the estimated group variances have a direct impact on the test statistic. If σ̂2
i

and thus σ̂2 tend to be small, then the denominator of the test statistic is also smaller

and ultimately, the test statistic is estimated higher. Table S2 shows the quantiles of the

estimated test statistic for a 5,000 replications of the above scenario.

Table S2: Quantiles of the estimated test statistic Tn for data following a normal, t(4),
lognormal and χ2(2)-distribution with (σEXP;σREF;σPLA) = (1; 2; 3).

Data Q0 Q25 median mean Q75 Q100

normal -3.570 -0.675 -0.008 -0.006 0.666 3.865

t(4) -3.378 -0.682 -0.024 -0.010 0.663 3.397

lognormal -2.845 -0.656 -0.012 0.035 0.694 3.901

χ2(2) -3.886 -0.689 0.029 0.023 0.695 4.148

Under the null hypothesis, the test statistic is expected to equal 0. One can see

that, on average, the test statistic for normal and t-distributed data is very close to

that, despite showing slight deviations that stem from the limited number of replications.

For lognormal data, however, the estimate tends to be higher than for the other three

underlying distributions (compare Q0 to Q75). Similarly, the estimated test statistic for

χ2-distributed data is on average more elevated while showing a greater variation. Hence,

the test statistics under skewed data are on average higher and the estimation varies more

than for normal or t-distributed data. Recall that the null hypothesis of the Hasler test

is rejected if

T > t1−α(ν̂
het).

Higher values of the test statistic, therefore, yield more evidence for the alternative hy-

pothesis and hence, the test rejects the null hypothesis more often although it is true.

Similarly, the studentized permutation test rejects the null hypothesis more often. This

leads to an increased type I error rate. The total sample size n acts multiplicatively on the

test statistic and therefore reduces the elevated type I error rate. This effect also became

evident in Figure 1, although it could not control it the desired level of α = 0.025 in the

considered scenarios. Therefore, the liberal behaviour of both tests in case of skewed data

can be explained by the variation in the variance estimation which yields greater variation
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in the test statistic. Ultimately, this leads to a higher rate of false positives. Generally,

one might infer from these results that highly skewed data with great heteroskedastic vari-

ances tend to shift the data in such a way that tests that investigate the mean structure

under the hypotheses are not suitable any longer.

Differing results for the type I error rate compared to the findings by

Mütze et al. (2017)

To provide an explanation for the divergent outcomes observed in Section 3.2.1 compared

to the findings of Mütze et al. (2017) regarding the type I error rate of the studentized

permutation test for skewed data, it is important to consider that Mütze et al. (2017)

examined the reverse effect under the hypotheses, which are given by

H0 =
µEXP − µPLA

µREF − µPLA

≥ ∆ vs. H1 =
µEXP − µPLA

µREF − µPLA

< ∆.

Under the variance scenario of (σ2
EXP;σ

2
REF;σ

2
PLA) = (1; 2; 3) Mütze et al. (2017) found

a conservative behaviour of the studentized permutation test for skewed data whereas

the results in Section 3.2.1 suggested a liberal behaviour for increasing standard devia-

tion scenarios. First, it should be noted that Mütze et al. (2017) investigated variance

scenarios rather than standard deviations. This, however, does not explain the differ-

ing results, since in the overall tendency, the studentized permutation test should be-

have similarly depending on the differences in the group variances. Rather, the different

results can be explained by the reversed effects under the hypotheses, investigated by

Mütze et al. (2017). The variance structure (σ2
EXP;σ

2
REF;σ

2
PLA) = (1; 2; 3) might be lo-

cated at the other end of the distribution under the reversed null hypothesis. Therefore,

the scenario of (σEXP;σREF;σPLA) = (3; 2; 1) under the above simulation corresponds to

(σ2
EXP;σ

2
REF;σ

2
PLA) = (1; 2; 3) in Mütze et al. (2017). Both cases reported a conservative

behaviour for lognormal and χ2-distributed data. In a small simulation, the scenario of

(σEXP;σREF;σPLA) = (1; 2; 3) was simulated under the reversed hypotheses for lognormal

and χ2-distributed data to confirm that an increasing variance structure under the re-

versed hypotheses shows a conservative behaviour, as in Mütze et al. (2017). Figure S5

shows the results of the observed significance level. Note that the simulation setup is

based on the setup as in Mütze et al. (2017). Thereby, µPLA is fixed with 5.5, µREF is var-

ied from {0.5, 1, . . . , 5} and µEXP is adjusted accordingly µEXP = ∆ ·µREF+(1−∆) ·µPLA.

On the x-axis, the varying µREF is displayed. The considered sample size allocations

nEXP : nREF : nPLA are (1 : 1 : 1), (2 : 2 : 1) and (3 : 2 : 1) are indicated by different line

types. The simulation is replicated 5,000 times for a total sample size of n = 30. The

two grey lines depict the area of the nominal significance level α = 0.025 ± two times the

Monte Carlo error.
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Figure S5: Actual significance level α̂ of the studentized permutation test against
µREF for a total sample size n = 30 under the hypothesis H0 = (µEXP −
µPLA)/(µREF − µPLA) ≥ ∆ for data following a lognormal and χ2(2)-distribution with
(σEXP;σREF;σPLA) = (1; 2; 3). The dashed grey lines depict the area of α = 0.025 ±
two times the Monte Carlo error.

Figure S5 demonstrates that, under reversed hypotheses, the increasing standard de-

viation structure leads to a conservative behaviour under the null hypothesis for skewed

data. All lines are considerably lower than the targeted area between the two grey lines.

These results confirm the suggestion above. Depending on the direction of the hypothe-

ses, the variance or standard deviation structures lie on either side of the distribution

under the null hypothesis rendering the test either conservative or liberal under skewed

data. This demonstrates that the results presented here are consistent with the findings

reported by Mütze et al. (2017).

Analysis of the power differences for skewed data in the fixed sample size

design

Table S3 summarises the power differences of the studentized permutation test relative to

the Hasler test as found in Section 3.2.2 and the deviation from the targeted 80% power

level as found in row 1 of Figure 5 for data following a lognormal and χ2-distribution.
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Table S3: Differences in the observed power of the studentized permutation test com-
pared to the observed power of the Hasler test and the deviation of the observed power
in the fixed sample size design from the target power of 80% for data following a
lognormal and χ2(2)-distribution with (σ2

EXP;σ
2
REF;σ

2
PLA) = (1; 1; 1).

(nEXP : nREF : nPLA) Mean power difference

with Hasler test

Deviation from target 80%

power

lognormal-distributed data

(1 : 1 : 1) 2.26 3.85

(1 : ∆ : 1−∆) 0.50 1.17

χ2(2)-distributed data

(1 : 1 : 1) 1.06 1.29

It is reasonable to expect that these two measures align closely. The difference in

power relative to the Hasler test provides insight into the power behaviour when the

Hasler sample size formula is used for sample size planning. In Section 3.2.2’s power

simulation, the power of the studentized permutation test surpassed that of the Hasler

test by 2.26 and 0.50 percentage points. This was under homogeneous lognormal data for

the balanced and the unbalanced design of (1 : ∆ : 1−∆), respectively, as illustrated in

Table S3, column 2. However, on average, the power surpasses the targeted 80% power

level by 3.85 percentage points in the balanced design and by 1.17 percentage points in

the unbalanced design of (1 : ∆ : 1−∆) when planned with the Hasler formula (see Table

S3, column 3). This suggests an overestimation of the trial’s power, particularly in the

balanced design. In other words, when analysing lognormal data using the studentized

permutation test, the Hasler formula tends to yield slightly larger sample size estimations

than required. Consequently, this leads to a modest overestimation of the trial’s power.

As seen in Figure 5, data following a χ2-distribution reveals the same behaviour within

a balanced design. The last row of Table S3 summarises the power differences for χ2-

distributed data.

In a balanced design, the power of the studentized permutation test outperformed the

Hasler test by an average of 1.06 percentage points, as illustrated in Table S3, column 2.

When planned with the Hasler formula, the power surpasses the 80% by 1.29 percentage

points (see Table S3, column 3). Although the deviation from the target power level is still

higher than the difference observed with the Hasler test, the difference is less apparent

compared to lognormal data.
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Observed power levels of the studentized permutation test with sample

size re-estimation

Observed power levels of the studentized permutation test in the fixed sample size

design

Cells colored green denote power levels that fall within the range of 0.8 ± the Monte Carlo

error, while red cells mark instances where the targeted range was surpassed.

Table S4: Mean observed power of the studentized permutation test in percentage in
the fixed sample size design without sample size re-estimation by variance scenario,
underlying distribution of the data and group design across all n1.

(σ2
EXP;σ

2
REF;σ

2
PLA)

Normal t(4) Lognormal χ2(2)

1:1:1 1:0.8:0.2 1:1:1 1:0.8:0.2 1:1:1 1:0.8:0.2 1:1:1 1:0.8:0.2

1; 1; 1 79.854 80.338 80.15 80.206 83.854 81.174 81.294 79.836

3; 2; 1 41.696 44.08 42.616 44.694 46.62 45.83 43.068 44.4
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Observed power levels with sample size re-estimation based on the UG and OSU esti-

mator

Table S5: Observed power of the studentized permutation test in percentage with
sample size re-estimation based on the UG and OSU estimator by n1 and underlying
distribution of the data for the scenario (σ2

EXP;σ
2
REF;σ

2
PLA) = (1; 1; 1).

Normal t(4) Lognormal χ2(2)

n1 UG OSU UG OSU UG OSU UG OSU

(nEXP : nREF : nPLA) = (1 : 1 : 1)

30 76.2 76.16 71.06 72.4 64.84 66.88 71.68 73.58

40 76.38 76.9 72.9 74.4 65.06 68.66 73.76 75.54

50 78.36 78.66 74.88 75.04 67.04 70.14 74.06 76.72

60 79.08 76.88 76.04 75.48 68.34 72.1 76.12 76.28

70 78.66 78.36 74.9 76.8 70.04 72.96 75.86 79.1

80 79.38 78.02 76.64 75.5 71.94 73.98 77.24 77.72

90 78.7 78.7 76.24 76.78 72.44 74.8 78.24 78.78

100 78.58 78.08 76.8 77.22 72.04 75.28 77.12 78.66

110 78.78 79.18 77.48 77.66 73.56 75.46 76.9 78.92

120 79.6 79.26 77.2 76.9 72.94 76.46 79.42 79.46

(nEXP : nREF : nPLA) = (1 : ∆ : 1−∆)

30 77.16 78.3 74.22 73.5 65.22 63.8 73.42 75.34

40 77.58 77.82 74.4 75.58 67.1 66.86 75.02 75.74

50 79.26 78.74 75.52 76.38 68.92 67.84 77.04 75.16

60 79.54 79 76.5 76.56 70.88 70.46 76.44 76.3

70 79.14 78.88 77.74 76.02 72.04 72.02 76.78 76.94

80 78.66 79.22 76.08 77.74 72.42 73 77.66 77.66

90 78.74 79.48 78.3 77.88 73.62 72.88 78.28 78.58

100 78.8 79.92 77.28 77.48 73.74 73.8 78.96 78.06

110 79.4 78.78 77.84 78.68 75.14 74.24 78.58 78.68

120 80.62 78.36 79.32 77.36 74.6 74.46 78.3 78.2
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Table S6: Observed power of the studentized permutation test in percentage with
sample size re-estimation based on the UG and OSU estimator by n1 and underlying
distribution of the data for the scenario (σ2

EXP;σ
2
REF;σ

2
PLA) = (3; 2; 1).

Normal t(4) Lognormal χ2(2)

n1 UG OSU UG OSU UG OSU UG OSU

(nEXP : nREF : nPLA) = (1 : 1 : 1)

30 75.84 67.74 70.3 63.56 60.56 54.46 70.74 64.04

40 77.16 68.16 72.8 64.46 62.34 56.82 72.08 64.42

50 78.72 68.72 73.98 66.04 63.26 57.84 73.88 66.16

60 78.14 68.76 74.02 66 64.32 59.9 75.58 66.24

70 78.68 68.22 74.76 66.9 65.96 60.74 74.62 67.1

80 79 67.94 75.5 66.44 68.56 60.72 75.82 67.06

90 78.66 68.52 76.98 66 67.38 63.52 75.92 68.58

100 79.28 69.54 76.52 67.84 69.36 62.42 76.38 68.06

110 79.66 68.9 76.08 68.34 69.68 63.5 77 68.14

120 79.78 68.9 76.14 67 70.56 64.16 76.48 68.34

(nEXP : nREF : nPLA) = (1 : ∆ : 1−∆)

30 77.18 77.44 72.3 74.36 60.08 60.16 71.92 72.04

40 78.6 78.38 75.16 73.8 64.16 63.4 74.68 73.78

50 78.86 78.96 75.4 75.06 66.66 66.18 73.88 75.34

60 80.08 80.72 75.18 76.4 68.14 66.82 75.5 75.64

70 78.08 79.26 75.46 76.36 69 67.86 77.46 77.04

80 79.16 80.24 77.42 76.66 69.64 68.3 76.68 75.8

90 79.76 79.86 77.74 77.92 70.38 67.64 76.88 77.6

100 78.96 79.1 77.38 77.74 71 70.28 76.06 77.12

110 79.58 78.52 77.64 78.64 71.66 70.26 77.64 77.3

120 79.34 79.86 79.12 77.38 70.86 71.54 78.4 77

93



Observed power levels with inflated sample size re-estimation based on the UG estima-

tor

Table S7: Observed power of the studentized permutation test in percentage with
inflated sample size re-estimation based on the UG estimator by n1 and underlying
distribution of the data for the scenario (σ2

EXP;σ
2
REF;σ

2
PLA) = (1; 1; 1).

n1 Normal t(4) χ2(2)

(nEXP : nREF : nPLA) = (1 : 1 : 1)

30 83.42 79.12 79.66

40 82.8 78.44 79.02

50 82.3 78.2 79.76

60 81.56 78.5 79.02

70 82.12 79.3 79.78

80 81.24 79.66 78.76

90 80.86 78.42 79.06

100 81.68 78.32 79.54

110 80.46 77.8 79.4

120 81.08 79.08 78.56

(nEXP : nREF : nPLA) = (1 : ∆ : 1−∆)

30 82.94 78.9 79.44

40 82.2 79.64 79.02

50 82.2 79.32 79.42

60 81.5 79.12 78.28

70 81.24 77.94 78.98

80 81.34 79.84 79.14

90 81.36 79.26 80.42

100 80.54 78.98 79.16

110 81.4 79.18 80.28

120 81.26 78.76 79.6
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Table S8: Observed power of the studentized permutation test in percentage with
inflated sample size re-estimation based on the UG estimator by n1 and underlying
distribution of the data for the scenario (σ2

EXP;σ
2
REF;σ

2
PLA) = (3; 2; 1).

n1 Normal t(4) χ2(2)

(nEXP : nREF : nPLA) = (1 : 1 : 1)

30 84.3 78.38 78.62

40 83.68 78.76 78.26

50 82.7 77.76 78.5

60 82.54 78.34 78.7

70 81.76 77.12 79.76

80 82.18 78.6 78.9

90 81.74 78.68 79.64

100 81.36 78.86 78.58

110 82.36 78.78 79.92

120 81.94 78.94 77.24

(nEXP : nREF : nPLA) = (1 : ∆ : 1−∆)

30 83.04 79.16 78.54

40 82.18 77.9 78.54

50 81.72 79.14 79.1

60 80.58 78.84 79.06

70 81.98 78.98 78.36

80 82.38 78.42 78.7

90 80.8 78.42 78.58

100 80.1 78.74 78.62

110 80.36 79.02 79.3

120 80.78 79.12 78.54
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Variance and covariance components of the nonparametric test statistic

The variance and covariance components of the test statistic Tn, as derived in (31), are

given by

ŝii =
1

n

[ 1

ni(ni − 1)
Rt

i ·Ri +
1

n2
i

3∑
r=1

nr

nr − 1
Rt

ri ·Rri

]
(39)

ŝij =
1

n

[ 1

ninj

3∑
r=1

nr

nr − 1
Rt

ri ·Rrj −
1

ni(nj − 1)
Rt

i ·Rij −
1

nj(ni − 1)
Rt

j ·Rji

]
(40)

where

Ri = {Rik −R
(i)
ik − R̄i· + R̄

(i)
i· } (41)

Rij = {Rik −R−j
ik − R̄i· + R̄−j

i· } for j ̸= i (42)

with

• Rik = overall rank of Xik among all n observations

• R
(i)
ik = internal rank of Xik among all ni observations in the i-the treatment group

• R−j
ik = partial rank of Xik among all n− nj observations.

R-Code

The scripts used for analysis, along with the results obtained within this thesis, can be

accessed from the following GitLab Repository.
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Use of ChatGPT

In der hier vorliegenden Arbeit habe ich ChatGPT oder eine andere KI wie folgt genutzt:

[ ] gar nicht

[ ] bei der Ideenfindung

[ ] bei der Erstellung der Gliederung

[ ] zum Erstellen einzelner Passagen, insgesamt im Umfang von % am gesamten Text

[ ] zur Entwicklung von Software-Quelltexten

[X] zur Optimierung oder Umstrukturierung von Software-Quelltexten

[X] zum Korrekturlesen oder Optimieren

[X] Weiteres, nämlich: Hilfe mit Latex

Ich versichere, alle Nutzungen vollständig angegeben zu haben. Fehlende oder fehlerhafte

Angaben werden als Täuschungsversuch gewertet.
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