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Abbreviations & Nomenclature

Term Meaning

β Vector of FE

ci Censoring time for cluster i

di,j Censoring indicator

ηi,j xTi,jβ + vi

fi,j(t)
∂Fi,j(t)

∂t

fi,.(t1, t2)
∂Fi,.(t1,t2)

∂t1∂t2

fi,j|Z(t|z)
∂Fi,j|Z(t|z)

∂t

fi,.|Z(t1, t2|z)
∂Fi,.|Z(t1,t2|z)

∂t1∂t2

Fi,j|Z(t|z) P (Ti,j ≤ t|Z = z)

Fi,.|Z(t1, t2|z) P (Ti,1 ≤ t1, Ti,2 ≤ t2|Z = z)

FE Fixed Effect

gZ(z)/ gV (v) Density of frailties/ log-frailties respectively

h0(t) Baseline hazard

h0,i(t) Sub-population baseline hazard: exp{xTi,jβ}h0(t)

hi,j|Z(t|z) Conditional hazard of individual j from cluster i

hi,j(t) Sub-population hazard of individual j from cluster i

H-Likelihood Hierarchical Likelihood

h-loglihood Hierarchical log-likelihood

OR Odds-Ratio

I Indicator function

i; ic i usually refers to cluster i. ic 6= i

j; jc j usually refers to individual j. jc 6= j

loglihood Log-likelihood

MLE/s Maximum Likelihood Estimate/s

n Number of clusters

RE/REs Random Effect/s

RV/RVs Random Variable/s

Si,j(t) 1− Fi,j(t)
Si,.(t) P (Ti,1 > t1, Ti,2 > t2)

Si,j|Z(t|z) 1− Fi,j|Z(t|z)

Si,.|Z(t1, t2|z) P (Ti,1 > t1, Ti,2 > t2|Z = z)

Sub-population Any particular group of the entire population separated

by some criterion



Abbreviations & Nomenclature

Term Meaning

tj Specific value for survival time. Chosen for analytical

reasons (function input). j = 1, 2 refers to the specific

individual, j might be dropped when unnecessary (uni-

variate functions).

ti,j Observed survival time of individual j from cluster i

Ti,j Random Variable: Survival time of individual j from

cluster i

τ Kendall’s τ

θ V [Zi]

xi,j Covariate vector of individual (i, j). i, j do not refer to

matrix indices. Sometimes abbreviated as xi.

X Covariate matrix. Ordered by cluster.

vi Realisation of Vi, typically unobserved

v̂i MLE of vi

Vi Random Variable: Log-Frailty for cluster i. Sometime

V is used as generic RV

V [] Variance operator

yi,j Observed value for Yi,j

Yi,j Random Variable: min(Ti,j, ci,j)

zi Realisation of Zi, typically unobserved

ẑi MLE of zi

Zi Random Variable: Frailty for cluster i. Sometime Z is

used as generic RV

ζ Cross Ratio Function



1 INTRODUCTION

1 Introduction

Survival time analysis investigates systematic patterns of the time from origin to a certain

event, for example, the time from birth to death (Collet, 2015, p.1). A key measure is the

population hazard rate, which is the instantaneous risk to die in the very next moment if

one is still alive, possibly dependent on covariates.

Variation that is left when accounted for covariates might in some cases still inhibit

important information. This is the case if there is some structure between (certain) ob-

servational units. For example, twins might be more alike than total strangers due to

unobserved factors like a common lifestyle or because of genetic disposition. Neglecting

this kind of structure might disrupt inference: individuals with a higher risk will more

likely experience the event in the early stages. This leaves those with a lower hazard at

later stages. The interpretation of a model which neglects the structure between indi-

viduals could be that the hazard is steadily decreasing with time. However, due to the

selection effect, this is entirely unclear and might even be upside down in a scenario where

the increased risk is masked by the selection effect. (Aalen et al., 2008, p. 231-232) Addi-

tionally, the dependence in the data as described above destroys the iid assumption which

is necessary for valid maximum Likelihood estimates (MLEs). Hence, an appropriate

modelling of the cluster-specific hazard becomes compelling.

The structure within clusters can be accounted for by adding random effects (REs)

to the analysis. In the context of survival time analysis, the term frailty is used for

random effects. The modelling of unobserved influences via frailty models might simply

be conducted to account for confounding influences or it might be of interest itself, as it

will be in this thesis.

This thesis deals with bivariate clusters: the lifetime of twins is examined, where

the unobserved factor, inducing a twin-specific hazard, is genetics and to a certain degree

shared environmental influences. The dataset contains mono- and dizygotic twins, and the

first, naturally, share more from the gene pool as the latter. Consequently, monozygotic

twins should be more alike and the twin-specific hazard rates should be more pronounced

for a lot of twins than for those of dizygotic twins. The variance (θ) of the frailty term

indicates how pronounced the twin-specific hazard can get. Hence, the precision of θ is

of major importance.

The H-Likelihood framework of Lee and Nelder (1996) is chosen for modelling. An

implementation for survival analysis can be found in the frailtyHL package (version 2.2)

(Ha et al., 2018) available for R (R Core Team, 2013) (version 3.6.0). The frailtyHL

framework is very promising for two reasons: Firstly, it is very general and can, in general,

be extended to any appropriate frailty distribution. Secondly, the order of approximation

to the Likelihood function is higher and it includes further computational details as, for

Page 1 of 65



1 INTRODUCTION

example, coxph from the survival package. Hence, one expects improved estimates.

The frailtyHL package will be put in competition to coxph from the survival package

(Therneau and Grambsch, 2015) (version 2.44-1.1). The differences in results will be

discussed for the twin dataset. A simulation study finally evaluates the performance. This

thesis considers only proportional hazard models with semi-parametric baseline hazard

and gamma as well as log-normal distributed frailty distributions. The differences in the

estimated frailty distributions will be discussed thoroughly for the twin dataset.

One problem with the frailtyHL package emerged early: it is utterly slow. The smallest

sub-sample of the twin dataset (male monozygotic twins) converged after more than 5

days. All other sub-sets took much longer (eight days and more) and did not converge

(with default settings). Hence, a sub-sample of the twin dataset was drawn for illustration.

The results of this thesis are that the differences in the two approaches are considerable

for the twin data, the log-normal frailty distribution is a better fit to the twin data than the

gamma and finally, the higher order of approximation in the frailtyHL package performs

badly for lognormal frailty and small cluster size.

This thesis is structured as follows: Firstly, the twin data is introduced. A brief

discussion of basic concepts of survival analysis follows. Afterwards, the dependence in

the data will be measured before the dependency is modelled. The sixth chapter discusses

the H-Likelihood concept and the optimisation scheme. Then, the results of the frailty

models for the twin data will be compared for both estimation procedures. The eighth

chapter evaluates the methods based on a simulation study. The last chapter concludes.
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2 DATA

2 Data

Two types of datasets will be used in this thesis. The first one is a real-world example of

Danish twins. The second type of data is simulated data, where all parameters are known.

The latter will be used to evaluate the accuracy of the methods used in this thesis.

The real-world dataset used to illustrate the models in this thesis comes from the

Danish twin register (Hauge et al., 1968). In the Danish twin register data of all same-sex

twins born in Denmark from 1881 to 1930 were collected. Regarding the version of the

dataset used in this thesis, those twins were followed up to 1980. If at least one twin

remained untraced or emigrated within the time period the observations were expelled

from the dataset. The dataset also only includes information on twins where both got at

least 15 years old. This left a sample 8985 twin-pairing or 17970 individuals respectively.

(Hougaard et al., 1992, p. 17)

The variates covered by this dataset are sex, the zygosity status, year of birth, infor-

mation if the individual died within the time period of observation and a time variable

in unit days that either gives information when the individual died or was known to be

alive at least, depending on the former variable.

The zygosity status is also the reason why pairs, where an individual died before the

age of 15, were not included in the dataset, as zygosity status is hard to obtain if an

individual died in childhood (Hougaard, 2000, p.12). And so the information gathered

in this dataset is conditional on the event not happening before that barrier. This is

called left-truncation (Hougaard, 2000, p. 30). Of the 8985 twin pairings, the zygosity

status of 927 pairs was unknown. This data was deleted from the dataset leaving a total

sample of n = 8085 twin-pairings. Unfortunately, this dataset (and most useful subsets)

is too big to be analysed by the frailtyHL package. The computation lasted either more

than five days, failed to converge or broke up because matrices that had to be inverted

were singular. Hence, a sub-sample was drawn by sampling 2400 twin ID’s, leaving 4800

observations in total. The subscript i will be used to refer to an arbitrary twin-pair, i.e.

i ∈ {1, 2, . . . , 2400}. If an individual is to be addressed the second subscript j will be

used, i.e. j ∈ {1, 2}. In the following, summary statistics will be discussed, with the

values of the entire dataset in brackets.

A share of 0.34 (0.35) of the twins was monozygotic and the remaining share of 0.66

(0.65) was dizygotic. The corresponding variable of the zygosity status is defined as

zygi,j ∈ {mono, di}. Further on, 48% (48%) were male and 52% (52%) female. The cor-

responding variable is defined as sexi,j ∈ {m, f}. As already mentioned, the information

of the birth-year covers the years from 1881 to 1930, but 1900 was deducted from the year

of birth. The corresponding variable is defined as birthi,j ∈ {−19,−18, . . . , 30}. Those

variables serve either directly as potential covariates in the models or indirectly, in order
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2 DATA

to separate the dataset into more useful subsets. The covariate matrix will be called X

and is of size 2n × K, with K being the number of chosen covariates. Note, that there

will never be an intercept in the models used in this thesis. The value of n differs if

different subsets are subject to examination, say monozygotic males or dizygotic females.

The corresponding sample size will be mentioned when the subsets are analysed.

The random variable (RV) on which statistical inference focuses on, is the time to

event Ti,j. It covers the time (in days) from birth to death. This means that Ti,j has

a different origin with respect to calender time as long as birthi,j 6= birthic,jc , where

i 6= ic and j 6= jc (throughout this thesis). The year of birth will serve as an im-

portant covariate as life expectation is expected to increase with ongoing time. Re-

alisations of Ti,j are called ti,j. However, in some cases people survived the observa-

tion period and so ti,j cannot be observed. In such cases, however, it is known that

ti,j > the number of days from birth up to the deadline in 1980 = ci,j. Note, that the

censoring time ci,j is not random because the data is collected from public registers on the

deadline in 1980 and so the censoring time only depends on ones own birthday (Hougaard,

2000, p.12). This is what is called homogeneous right censoring (Hougaard, 2000, p.29),

i.e. if both individuals are censored, then ci,1 = ci,2 = ci. If only one of the twins is

censored, say the second, it must be that ti,2 > ci > ti,1. In the dataset this information

is recorded through the RVs Yi,j = min{Ti,j, ci} and Di,j = I{Ti,j < ci}, with I being the

indicator function. The realisations of Yi,j and Di,j are yi,j and di,j respectively. There

is no further censoring, say left- or interval censoring, at play in this dataset. Further

on, (Di,1, Di,2) and (Ti,1, Ti,2) are assumed to be independent, i.e. the knowledge that an

observation is censored does not affect the distribution of (Ti,1, Ti,2), neither in the past

nor in the future.

All birth cohorts together, there was a share of 0.52 (0.52) of the twins, where both

survived the observation time period, another 0.24 (0.25) where at least one individual

died and thus, there is a share of 0.24 (0.23) remaining where both individuals survived.

In total the censoring rate equals 64% (64%). The earliest death occurred 15 years and

18 days (15 years and 15 days) after birth. The earliest censoring time is 49 years and

15 days. The latest death occurred 94 years and 222 days (94 years and 296 days) after

birth, whereas there was an individual who got older than 98 years and 30 days (98 years

and 348 days).

Figure 1 gives an impression of the survival times. The bulk of observations, being

censored or not, can be found in the age from 50 to about 85 years. Considering that

area only and only twins where at least one individual died (black and red dots), one

might also suspect a positive dependency within the survival times of twins by a purely

data-driven approach.

It should be noted that within a twin-pairing there is no information that distin-
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2 DATA

Figure 1: Survival times (in years) of the twins

guishes the twins that could be used as explanatory variable as birthi,1 = birthi,2 =

birthi, sexi,1 = sexi,2 = sexi, zygi,1 = zygi,2 = zygi. There is also no natural ordering

in the data. The first twin is simply the one that was named first in the public register.

Thus, each twin pairing is an unordered cluster in which the twins are indistinguishable

(apart from the dependent variable). Therefore, the sub-script j will often be dropped.

In some cases, however, formulas are easier to understand with both sub-scripts. Hence,

especially when sums and products are shown j will often be kept.
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3 SURVIVAL BASICS

3 Survival Basics

Survival Time Analysis examines the time to a certain event. In the bivariate context of

the twin dataset (Ti,1, Ti,2) denote the two RV of the duration from birth to death. Thus,

Ti,j ∈ R+. The two pairings (Ti,1, Ti,2) and (Tic,1, Tic,1) are assumed to be independent.

Within a cluster, however, the RVs Ti,1 and Ti,2 are assumed to be dependent.(Ha et al.,

2017, p. 68) With respect to the twin dataset, this translates to the survival times of two

twins being dependent as they share their genetic make-up but unrelated people being

independent. The distribution of bivariate survival times might be different with respect

to the chosen sub-sample, e.g. male monozygotic twins versus female dizygotic twins. To

put it in a more general expression:

(Ti,1, Ti,2) ∼ πsexi,zygi(ωi), (1)

where πsexi,zygi is some bivariate distribution with joint sub-population pdf fi,.(t1, t2) and

joint sub-population cdf Fi,.(t1, t2) = P (Ti,1 ≤ t1, Ti,2 ≤ t2) and parameter vector ωi

possibly dependent on covariate birthi. The “.” refers to both of the twins, i.e. the joint

distribution. A more simple model arises if, say, only monozygotic and dizygotic twins

have different distributions, i.e.

(Ti,1, Ti,2) ∼ πzygi(ωi). (2)

This can be the case if sexi and birthi are included as covariates. Model (1) and (2) will

be put in competition to each other. Note, that there will be no notational difference for

fi,. and Fi,. whether the functions are from model (1) or (2). This will be clarified at the

specific part of the thesis.

The individual sub-population pdf will be denoted as fi,j(t) and the individual sub-

population cdf as Fi,j(t) = P (Ti,j ≤ t) respectively. The individual sub-population Sur-

vivor function is Si,j(t) = P (Ti,j > t) = 1 − P (Ti,j ≤ t) = 1 − Fi,j(t). The joint

sub-population Survivor function Si,. is slightly more complicated and defined as

Si,.(t1, t2) = P (Ti,1 > t1, Ti,2 > t2)

= 1− P (Ti,1 ≤ t1, Ti,2 ≤ t2)− P (Ti,1 > t1, Ti,2 ≤ t2)−

P (Ti,1 ≤ t1, Ti,2 > t2)

= 1 + P (Ti,1 ≤ t1, Ti,2 ≤ t2) −

P (Ti,1 ≤ t1)︸ ︷︷ ︸
P (Ti,1≤t1,Ti,2>t2)+P (Ti,1≤t1,Ti,2≤t2)

− P (Ti,2 ≤ t2)︸ ︷︷ ︸
P (Ti,1>t1,Ti,2≤t2)+P (Ti,1≤t1,Ti,2≤t2)

= 1 + Fi,.(t1, t2)− Fi,1(t1)− Fi,2(t2). (3)

Page 6 of 65



3 SURVIVAL BASICS

In the context of bivariate Survival analysis, there are a couple of relevant hazard

functions. The first, and with respect to univariate Survival analysis most straightforward

one, is the sub-population hazard hi,j based on the univariate distribution of Ti,j. The

second one is the sub-population hazard conditional on the survival of the other twin

hi,j|jc which is based on the joint sub-population distribution of (Ti,1, Ti,2). A third one,

which will be introduced later in chapter 5, is the conditional hazard where conditionality

refers to a RV Zi that accounts for the dependence within twins. In the following, the first

two concepts will be introduced and the interrelationships of Survival function, hazard

function and pdf will be discussed.

The sub-population hazard hi,j is the risk to face the event in the very next moment

given that the individual survived so far, i.e.

hi,j(t) = lim
∆→0

P (t < Ti,j ≤ t+ ∆|Ti,j > t)

∆

= lim
∆→0

P (t < Ti,j ≤ t+ ∆)

∆

1

P (Ti,j > t)

=
fi,j(t)

Si,j(t)
. (4)

The sub-population hazard hi,j can also be expressed as

hi,j(t) = −∂ln{Si,j(t)}
∂t

. (5)

The cumulative sub-population hazard Hi,j =
∫ t

0
hi,j(u)du and using relationship (5)

Hi,j(t) = −
∫ t

0

∂ln{S(u)}
∂u

du

= −[ln{S(u)}]t0
= −ln{S(t)}, (6)

and consequently,

Si,j(t) = exp{−Hij(t)}. (7)

These kind of relationships between the sub-population hazard, cumulative hazard and

Survival function are needed for theoretical considerations as well as for the calculation

of estimators of those quantities.

The second concept of hazard is that of the sub-population hazard conditional on

the survival time of the other twin hi,j|jc . This measure will be needed to construct

dependency measures in chapter 4. Here, two cases of conditionality are considered:
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3 SURVIVAL BASICS

• Ti,jc = tjc

• Ti,jc ≥ tjc

The measure hi,j|jc has to be derived from the bivariate sub-population pdf fi,.. Let

Ti,j ∈ A denote one of the above two scenarios, then

hi,j|jc(t1|Ti,jc ∈ A) = lim
∆→0

P (tj < Ti,j ≤ tj + ∆|Ti,j > tj, Ti,jc ∈ A)

∆

= lim
∆→0

P (tj < Ti,j ≤ tj + ∆|Ti,jc ∈ A)/∆

P (Ti,j > tj|Ti,jc ∈ A)

=
fi,j|jc(tj|Ti,jc ∈ A)

Si,j|jc(tj|Ti,jc ∈ A)
, (8)

where fi,j|jc and Si,j|jc are the sub-population pdf and Survivor Function of Ti,j conditional

on Ti,jc ∈ A.

Firstly, the case A = tjc is considered. Then,

fi,j|jc(tj|Ti,jc = tjc) =
fi,.(t1, t2)

fi,jc(tjc)
, (9)

and

Si,j|jc(tj|Ti,jc = tjc) = lim
∆→0

P (Ti,j > tj, tjc ≤ Ti,jc < tjc + ∆)/∆

P (tjc ≤ Ti,jc < tjc + ∆)/∆

=
∂Si,.(t1, t2) / ∂tjc

−fi,jc(tjc)
. (10)

Secondly, the case A = R>tjc culminates in

fi,j|jc(tj|Ti,jc > tjc) = lim
∆→0

P (tj < Ti,j ≤ tj + ∆, Ti,jc > tjc)/∆

P (Ti,jc > tjc)

=
−∂Si,.(t1, t2) / ∂tj

Si,jc(tjc)
, (11)

and

Si,j|jc(Tj > tj|Ti,jc > tjc) =
P (Ti,j > tj, Ti,jc > tjc)

P (Ti,jc > tjc)

=
Si,.(t1, t2)

Si,jc(tjc)
. (12)

Hence, using (9) and (10) for (8) implies

hi,j|jc(tj|Ti,jc = tjc) = − fi,.(t1, t2)

∂Si,.(t1,t2) / ∂tjc
. (13)
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3 SURVIVAL BASICS

Using (11) and (12) for (8) yields

hi,j|jc(tj|Ti,jc > tjc) = −∂Si,.(t1, t2) / ∂tj
Si,.(t1, t2)

. (14)

Theses hazard functions will be needed for developing measures of dependence.
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4 Measures of Dependence

Measures of Dependence are an important tool for assessing the degree and kind of de-

pendence that is present in the data. So these measures are of significance when it comes

to deciding for frailty or no-frailty modelling and to asses if a given frailty model is able

to capture the characteristics of the data.

In the following, Kendall’s τ and the cross-ratio function will be explained.

4.1 Kendall’s τ

The measure τ is considered a global measure of dependence as the whole domain of the

RVs is taken into account. (Hougaard, 2000, p. 129) Kendall’s τ (Kendall, 1938, p. 82-86)

in the survival context is defined as (Duchateau and Janssen, 2008, p. 123)

τ = E[sign{(Ti,1 − Tk,1)(Ti,2 − Tk,2)}].

As

sign{z} =


−1 if z < 0

0 if z = 0

1 if z > 0

,

τ can be re-expressed as

τ = E[I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) > 0}]− E[I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) < 0}]

= P [I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) > 0}]− P [I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) < 0}]

= P [I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) > 0}]− (1− P [I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) > 0}])

= 2P [I{(Ti,1 − Tk,1)(Ti,2 − Tk,2) > 0}]− 1,

with I{} being the indicator function (Duchateau and Janssen, 2008, p. 124). The clusters

i and k are (assumed to be) independent and identically distributed, i.e. fi,. = fk,.. The

dependence might be within the pairing i and k respectively. The case τ > 0 means that

there is more probability mass when both values within a cluster are relatively big or

small at once, compared to a combination of a relatively big and a small value within

a cluster. This leads to a situation where there is relatively more probability mass for

situations where (Ti,1−Tk,1) and (Ti,2−Tk,2) have the same sign, compared to a situation

where (Ti,1 − Tk,1) and (Ti,2 − Tk,2) have opposite signs. Interpreted with respect to the

life-times of twins, this kind of positive dependency means that we expect individual 1 of

group i to live longer if individual 2 of twin pairing i lives longer, vice versa.

If τ < 0, there is some negative dependency in the population: If Ti,1 tends to live
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4 MEASURES OF DEPENDENCE

longer, Ti,2 tends to die earlier. The value τ = 0 indicates no pattern in dependency at

all: In case of independence between Ti,1 and Ti,2 it follows that fi,. = fi,1fi,2, fi,j = fk,j,

and, consequently,

τ = 2× 2

∫ ∞
0

∫ ∞
0

fi,.(u1, u2)

[ ∫ u1

0

∫ u2

0

fk,.(r1, r2) dr1 dr2

]
du1 du2 − 1

= 4

∫ ∞
0

fi,1(u1)

∫ u1

0

fi,1(r1) dr1 du1

∫ ∞
0

fi,2(u2)

∫ u2

0

fi,2(r2) dr2 du2 − 1

= 4

∫ ∞
0

Fi,1(u1) dFi,1(u1)

∫ ∞
0

Fi,2(u2) dFi,2(u2) − 1

= 4
1

2

1

2
− 1

= 0.

Note, that τ = 0 does not imply independence. This also implies that τ is not cohort

adjusted in the case of the twin data and might soak up some of the cohort information.

The measure τ varies between −1 and 1, where an absolute value of 1 indicates perfect

dependence but not necessarily Ti,1 = Ti,2 as, say, Ti,2 might be shifted in location or on

another scale as Ti,1. With respect to an estimation of τ , an absolute value of 1 refers to

perfect dependence in rank (Kendall, 1938, p. 85).

A non-parametric estimate is obtained by

τ̂ =
n∑
i=1

n∑
k=1

ai,kbi,k
n2 − n

,

with

ai,k =


1 if ti,1 > tk,1

0 if ti,1 = tk,1

−1 if ti,1 < tk,1

and bi,k equivalently for the second individual from both clusters (Hougaard, 2000, p. 132).

This, however, only works in a setting without censoring. To account for censoring, the

empirical counterparts of 2P (Ti,1 > Tk,1|Yi,1, Yk,1, Di,1, Dk,1) − 1 are calculated as values

for ai,k.(Wang and Wells, 2000, p. 1202) In a case where both are censored and yi,1 > yk,1
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(suppressed in following notation), this leads to

2P (Ti,1 > Tk,1|Ti,1 > yi,1, Tk,1 > yk,1)− 1 = 2
P (Ti,1 > Tk,1, Ti,1 > yi,1, Tk,1 > yk,1)

Si,1(yi,1)Sk,1(yk,1)
− 1

= 2

∫∞
yi,1

fi,1(u)

[ ∫ u
yk,1

fk,1(r) dr

]
du

Si,1(yi,1)Sk,1(yk,1)
− 1

= 2

∫∞
yi,1

fi,1(u)

[
Sk,1(yk,1)− Sk,1(u)

]
du

Si,1(yi,1)Sk,1(yk,1)
− 1

= 2

∫∞
yi,1

fi,1(u)Sk,1(yk,1)du−
∫∞
yi,1

fi,1(u)Sk,1(u)du

Si,1(yi,1)Sk,1(yk,1)
− 1

= 2
Si,1(yi,1)Sk,1(yk,1)− Si,1(yi,1)2/2

Si,1(yi,1)Sk,1(yk,1)
− 1

= 1− Si,1(yi,1)

Sk,1(yk,1)
.

Note, that Si,1(t) = Sk,1(t), fi,1 = fk,1. The case where i is censored and yi,1 < yk,1

(suppressed in following notation) leads to

2P (Ti,1 > Tk,1|Ti,1 > yi,1, Tk,1 = yk,1)− 1 = 2
P (Ti,1 > Tk,1, Ti,1 > yi,1|Tk,1 = yk,1)

Si,1(yi,1|Tk,1 = yk,1)
− 1

= 2

∫∞
yk,1

fk,1(yk,1)fi,1(u) du /fk,1(yk,1)

Si,1(yi,1)fk,1(yk,1)/fk,1(yk,1)
− 1

= 2
Sk,1(yk,1)

Si,1(yi,1)
− 1

The cases where both are dead are either 1 or −1 and the for the other scenarios the

values can be derived as the previous two. The corresponding estimator is obtained by

putting the hats on the Survivor function. Ties are apart from the above definition defined

to be zero. Table 1 gives an overview for all terms of ai,k (Hougaard, 2000, p. 133), where

the indices for the individual sub-population Survivor functions Si,1, Sk,1 were dropped

because of equivalence.

Table 1: ai,k for the Estimation of τ̂

(di,1, dk,1) yi,1 > yk,1 yi,1 = yk,1 yi,1 < yk,1

(1,1) 1 0 −1

(0,1) 1 1 2Ŝ(yk,1)/Ŝ(yi,1)− 1

(1,0) 1− 2Ŝ(yi,1)/Ŝ(yk,1) −1 −1

(0,0) 1− Ŝ(yi,1)/Ŝ(yk,1) 0 Ŝ(yk,1)/Ŝ(yi,1)− 1
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4 MEASURES OF DEPENDENCE

The values for bi,k are obtained by substituting the index 1 with 2. Finally, τ̂ =∑n
i=1

∑n
k=1 ai,kbi,k√

(
∑n
i=1 a

2
i,k)(

∑n
k=1 b

2
i,k)

(Hougaard, 2000, p. 132). Note, that both approaches are equiva-

lent in the absence of censoring. The corresponding univariate non-parametric Survivor

functions are estimated by a separate estimation of the distribution of minimum lifetimes

and of maximum lifetimes given the minimum. The comparison of the maximum and

the minimum respectively also makes the estimated Survivor functions and Kendall’s τ

unaware of the arbitrary ordering in the clusters. (Hougaard et al., 1992, p. 20)

For the entire sample Hougaard et al. (1992) estimated τ̂m,mono = 0.173 > τ̂f,mono =

0.147 > τ̂f,di = 0.104 > τ̂m,di = 0.091.(p. 21) Thus, indicating stronger dependence

within monozygotic twins versus dizygotitic twins in general. In particular the dependency

among monozygotic male twins seems to be stronger than for monozygotic female twins.

However, there is an indication of a stronger dependence for dizygotic female twins than

for dizygotic male twins. Hougaard et al. (1992) also gives estimators for cohort adjusted

Kendall’s τ , which can be ordered as τ̂m,mono = 0.162 > τ̂f,mono = 0.132 > τ̂f,di = 0.090 >

τ̂m,di = 0.086. (p. 24)

The dependence within the data makes inference based on univariate iid analysis

poorly suited and theoretically wrong. Hence, ways to model the dependence within the

data are needed to apply the iid principle and allocate all information in the data correctly.

4.2 Cross-Ratio Function

The cross-ratio function on the other hand is considered a local measure of dependence

as only a subinterval of Ti,1 and Ti,2 is taken into account. (Hougaard, 2000, p. 136)

The cross-ratio function is the ratio of individual hazards conditioned on the survival

status of the other twin at given points in time (t1, t2). More precisely (Duchateau and

Janssen, 2008, p. 126)

ζ(t1, t2) =
hi,1|2(t1|Ti,2 = t2)

hi,1|2(t1|Ti,2 > t2)
.

In words, ζ(t1, t2) is the factor by which the risk for individual 1 is increased if his or

her twin dies at t2 compared to the twin’s (known) survival (longer than t2).

Using (13) and (14), the cross ratio function can be expressed as

ζ(t1, t2) =
fi,.(t1, t2)/

∂Si,.(t1,t2)

∂t2
∂Si,.(t1,t2)

∂t1
/Si,.,.(t1, t2)

(15)

=
fi,.(t1, t2) Si,.(t1, t2)
∂Si,.(t1,t2)

∂t1

∂Si,.(t1,t2)

∂t2

.
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From the last expression it can also be seen what happens with ζ if Ti,1 and Ti,2 are

independent. In the case of independence, the factors of the denominator simplify to

−∂Si,.(t1, t2)

∂t2
= lim

∆→0

Si,.(t1, t2)− Si,.(t1, t2 + ∆)

∆

= lim
∆→0

Si,1,.(t1)Si,2(t2)− Si,1(t1)Si,2(t2 + ∆))

∆

= Si,1(t1) lim
∆→0

Si,2(t2)− Si,2(t2 + ∆)

∆

= Si,1,.(t1)fi,2(t2)

and equivalently, −∂Si,.(t1,t2)

∂t1
= Si,2(t2)fi,1(t1). Thus,

ζ(t1, t2)
Ti,1⊥Ti,2

=
fi,.(t1, t2) Si,.(t1, t2)

Si,2(t2)fi,1(t1)Si,1(t1)fi,2(t2)

=
fi,1(t1)fi,2(t2)Si,1(t1)Si,2(t2)

Si,2(t2)fi,1(t1)Si,1(t1)fi,2(t2)

= 1.

Note, that ζ(t1, t2) = 1 6=⇒ Ti,1⊥Ti,2 in general.

A non-parametric estimate of ζ can be justified from (15) as being the limiting case

of an odds ratio (Anderson et al., 1992, p.642). Let PU
11 = P (t1 < Ti,1 ≤ t1 + δ, t2 < Ti,2 ≤

t2 + δ), in PU
01 = P (Ti,1 > t1 + δ, t2 < Ti,2 ≤ t2 + δ), PU

10 is as PU
01 but with shifting the

indices 1 and 2 and finally PU
00 = P (Ti,1 > t1 + δ, Ti,2 > t2 + δ). Then,

ζ(t1, t2) = lim
δ→0

PU
11/P

U
01

PU
10/P

U
00

(16)

= lim
δ→0

P11/P (Ti,1>t1,t2<Ti,2≤t2+δ)

P01/P (Ti,1>t1,t2<Ti,2≤t2+δ)

P10/P (Ti,1>t1,Ti,2>t2+δ)

P00/P (Ti,1>t1,Ti,2>t2+δ)

= lim
δ→0

P (t1<Ti,1≤t1+δ|Ti,1>t1,t2<Ti,2≤t2+δ)

1−P (t1<Ti,1≤t1+δ|Ti,1>t1,t2<Ti,2≤t2+δ)

P (t1<Ti,1≤t1+δ|Ti,1>t1,Ti,2>t2+δ)

1−P (t1<Ti,1≤t1+δ|Ti,1>t1,Ti,2>t2+δ)

= lim
δ→0

odds(t1 < ti,1 ≤ t1 + δ|Ti,1 > t1, t2 < Ti,2 ≤ t2 + δ)

odds(t1 < ti,1 ≤ t1 + δ|Ti,1 > t1, Ti,2 > t2 + δ)︸ ︷︷ ︸
≡OR(t1,t2,δ)

(17)

(Duchateau and Janssen, 2008, p. 127), which is useful for interpretation.

A more useful expression for constructing an estimator, however, can be obtained if
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fraction (16) is multiplied by
P (Ti,1>t1,Ti,2>t2)/P (Ti,1>t1,Ti,2>t2)

P (Ti,1>t1,Ti,2>t2)/P (Ti,1>t1,Ti,2>t2)
which yields

OR(t1, t2, δ) =
P11/P01

P10/P00

, (18)

with P11 = P (t1 < Ti,1 ≤ t1 + δ, t2 < Ti,2 ≤ t2 + δ|Ti,1 > t1, Ti,2 > t2), P01 = P (Ti,1 >

t1 + δ, t2 < Ti,2 ≤ t2 + δ|Ti,1 > t1, Ti,2 > t2), P10 is as P01 but, again, with shifting

the indices 1 and 2 and lastly, P00 = P (Ti,1 > t1 + δ, Ti,2 > t2 + δ|Ti,1 > t1, Ti,2 > t2).

(Anderson et al., 1992, p.642)

There are two remaining issues to be clarified before an estimator can be calculated.

Firstly, the estimator needs to be unaware of ordering in the cluster. Secondly, censoring

has to be incorporated.

The first issue can be coped with by comparing the minimum of a cluster to the

minimum of the function input and the maximum with the maximum. This is important

to account for the conditionality in P11, . . . , i.e. for selecting the subset of the data

which satisfies ti,1 > t1, ti,2 > t2 respectively. A simple selection based on the cluster

indices only makes sense in a setting where the first and the second individual can be

distinguished, say, by a treatment. This is not the case here. Hence, the corresponding

subset of the data is selected by the condition min{yi,1, yi,2} = yi,min > min{t1, t2} = tmin

and simultaneously max{yi,1, yi,2} = yi,max > max{t1, t2} = tmax. This subset of the data

is called ỹt1,t2 and the corresponding censoring indicators d̃t1,t2 .

The second issue has to be dealt with by deleting observations that are censored within

the interval of observation as it is impossible to know if they survived the period or not:

The cluster i has to be removed from ỹt1,t2 in the case of yi,min ∈ (tmin, tmin + δ) if

di,min = 0 or yi,max ∈ (tmax, tmax + δ) if di,max = 0. The remaining subset of the data is

called yt1,t2 and dt1,t2 , the number of clusters is n′ and is dependent on (t1, t2).

Then, P̂11(tmin, tmax) = 1
n′

∑
yt1,t2

I{yi,min ≤ tmin + δ ∧ di,min = 1, yi,max ≤ tmax + δ ∧
di,max = 1}, P̂10(tmin, tmax) = 1

n′

∑
yt1,t2

I{yi,min ≤ tmin+ δ∧di,min = 1, yi,max > tmax+ δ},
P̂01(tmin, tmax) = 1

n′

∑
yt1,t2

I{yi,min > tmin + δ, yi,max ≤ tmax + δ ∧ di,max = 1}, and P00

follows. This approach is problematic, however, if t1 and t2 are very close to each other

as P̂01(tmin, tmax) is forced to be zero in the most extreme case of tmin = tmax. So by

construction the the OR is forced to explode around the diagonal arguments. Adding 1

instead of 0.5 to the counter if P0,1 is 0 did not solve the problem as the denominator of

OR(t1, t2, δ) = P00P11

P10P01
is forced to be relatively small because it is a product. This was

solved by defining P10/01 ≡ 1
2
(P01 +P10). This helps to inflate the the denominator of the

OR. As there is no ordering in the data, this seems to be a more useful comparison as

it yields much smoother results. The corresponding estimator of P10/01 is P̂10/01(t1, t2) =
1
2
(P̂0,1(t1, t2) + P̂1,0(t1, t2)).

Finally, ÔR(t1, t2, δ) = P̂11(t1,t2)P̂00(t1,t2)

P̂01/10(t1,t2)2
will approximate an estimator for the cross-
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ratio function. For this purpose, the survival-times of twins were transformed into yearly

data. The distance δ was chosen to be ten years and the whole sample was taken. Figure

2 shows a plot of estimated ORs for a 55-year-old individual (left) and a 70-year-old

individual (right) for any of the subsets. The time of his or her twin varies from 40 to 80

years. The ages of both individuals themselves are marked by the blue vertical lines for

orientation. The black line represents an OR of 1 as reference.

One can see that the peak of one’s risk is determined by one’s own age. For the

55-year-old individual the risk typically starts to decline when his or her twin reaches

at least the age of around 65. In the right panel of the older individual, however, the

higher risk is shifted to later ages. This implies that the survival status of the other

twin is especially informative if the twins are roughly equally old. This makes sense, as

if one of the twins got substantially older than the other one, he or she might not be

affected by, say, a genetic defect. On the other hand, this might also be because of deaths

caused by different environmental influences or non-genetically reasons like accidents. The

dependence in the data seems to differ locally.

Figure 3 shows the estimated OR in the area of [40, 80] × [40, 80] for monozygotic

and dizygotic males. The risk factors are higher for monozygotic twins than for dizygotic

twins, as already indicated by Kendall’s τ . One can see that the risk peaks around the

diagonal as could also be suspected from 2. This gets a little more narrow, the older the

individuals get.

The low on the diagonal itself is somewhat hard to justify. This is caused by the

adaptation too P10/01 as explained above. If this would not be done, the values around the

diagonal are inflated up to values of around 250 in regions where the bulk of observations

are. This is entirely dominated by P̂00(t1, t2) being very big and P̂01(t, t) → 0.5
n′

in most

cases. This might also be exacerbated by the homogeneous censoring and the high-

censoring rate. Because of those extremes, this did not seem to be a particularly good

representation of reality. So the decision between two evils was made in favour of the

depicted one. However, the diagonal itself should be regarded with caution and preferably

only compared to other diagonal values. The general conclusions are not affected by

choosing the adapted P̂10/01 apart from the numerical values and the diagonal itself.
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Figure 2: Odds Ratio of Survival Times
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Figure 3: Odds Ratio of Survival Times of Male Twins

5 Frailty

The core idea of modelling dependence within the clusters is that they share a common

feature in the risk to face the event of death in the very next moment. Say, a twin pair

might inhibit a particular ”unhealthy” set of genes, with respect to the susceptibility of

getting cancer. Then, the risk of both twins might be particularly high of dying relatively

early. This is modelled by introducing a random effect Zi > 0, with realisation zi in a

multiplicative fashion on the hazard,(Aalen et al., 2008, p.275) i.e.

hi,j|Z(t|Z = zi) = zih0,i(t),

where h0,i(t) = exp{xTi β}h0(t) is the sub-population baseline hazard that might depend

on time as well as on potential covariate information, indicating the subgroup of the

population. A subscript j might also be needed if covariates on the individual level are

present what is not the case in this thesis. Note that neither i nor (i, j) refers to the indices

of the matrix X or any other matrix. The measure hi,j|Z will be called the conditional

hazard rate from now on.

The random effect Zi is assumed to follow a distribution πZ ∀i, with parameter set θ

and density gZ(z). Further on, Zi and Zic are independent,(Ha et al., 2017, p. 69) that

is, two different twin pairs do not share the same genetic make-up. The parameters of

the frailty distribution are usually chosen such that E[Z] =
∫∞

0
zgZ(d)dz = const. for

matters of identification (Ha et al., 2017, p. 70). The constant might chosen to be 1 but

this is not always the case as will be seen later. The frailty distribution parameter θ is a

set of flexibility parameters. In the case of this thesis, θ = θ is a single parameter. Note
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that the hazard will be relatively high if zi > const., and relatively low if 0 < zi < const.

relative to the expectation from the entire population. The sub-population baseline hazard

h0,i should not be confused with the sub-population hazard rate even if E[Zi] = 1 The

reason is that with time running, people die and thus, the composition of the population

changes. In particular, those with a relatively high conditional hazard will tend to die

out much earlier and this leaves those with a relatively low conditional hazard. This will

be investigated further below in more detail, but first, the conditional and unconditional

Survival functions are required.

The conditional Survival function Si,j|Z can be derived via the conditional cumulative

hazard function Hi,j|Z . The cumulative conditional hazard function can be obtained by

integrating the conditional hazard up to time t:

Hi,j|Z(t|zi) =

∫ t

0

zih0,i(u)du

= zi

∫ t

0

h0,i(u)dt

= ziH0,i(t).

Using the relationship (7),

Si,j|Z(t|zi) = exp{−ziH0,i(t)}

yields the conditional univariate Survival function. The unconditional univariate Survival

function can be obtained by integrating the frailty out of the joint density of survival time

and frailty:

Si,j(t) =

∫ ∞
t

fi,j(u)du

=

∫ ∞
t

∫ ∞
0

fi,j|Z(u|z)gZ(z) dz du

=

∫ ∞
0

∫ ∞
t

fi,j|Z(u|z)du gZ(z) dz

=

∫ ∞
0

Si,j|Z(t|z)gZ(z)dz

=

∫ ∞
0

exp{−zH0,i(t)}gZ(z)dz. (19)

The sub-population hazard rate can be obtained by using the relationship (4):

hi,j(t) =

∫∞
0
hi,j|Z(t|z)Si,j|Z(t|z)gZ(z)dz

Si,j(t)
. (20)
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In order to entirely understand the last expression it is worthwhile to derive the condi-

tional distribution of Zi given that we have a survivor at time t (Duchateau and Janssen,

2008, p. 112)

gZ|T (z|Ti,j > t) =
P (Ti,j > t|Zi = z)gZ(z)

P (Ti,j > T )

=
Si,j|Z(t|z)gZ(z)

Si,j(t)
. (21)

Combining result (21) with equation (20), shows that

hi,j(t) =

∫ ∞
0

hi,j|Z(t|z)gZ|T (z|t)dz

= h0,i(t)

∫ ∞
0

zgZ|T (z|t)dz

= h0,i(t)E[Z|Ti,j > t]

the sub-population hazard rate is the expectation of the conditional hazard rate given

the current distribution of frailty at time t. This feature also makes clear why frailty

modelling is so important. If everything were to be modelled and interpreted based on

the sub-population hazard rate one might only observe that the hazard decreases with

increasing time. This might, however, only be a selection effect as only those with a low

conditional hazard survive and thus, relatively high values for Zi become rarer in the

conditional distribution gZ|T (z|t). So it could still be the case that the baseline hazard

h0,i increases with increasing time what would be entirely unobserved when modelling

the sub-population hazard rate only. Frailty modelling is able to distinguish between a

selection effect and the development of baseline hazard. Of course, this is not the only

pattern of a selection effect and the development of baseline hazard but frailty modelling

is able, if modelled adequately, to find those patterns. Pure population hazard modelling

is not. (Aalen et al., 2008, p. 231-232)

In similar fashion to the univariate density, the bivariate density of the twins can

be obtained by adding the fact, that conditional on zi the event times Ti,1 and Ti,2 are

independent (Ha et al., 2017, p. 69). Starting with the conditional Survivor function,

Si,.|Z(t1, t2|zi) = Si,1|Z(t1|zi)Si,2|Z(t2|zi)

=

∫ ∞
0

exp{−zi(H0,i(t1) +H0,i(t2))}
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one can derive the unconditional Survivor function

Si,.(t1, t2) =

∫ ∞
t1

∫ ∞
t2

fi,.(u1, u2) dt1dt2

=

∫ ∞
t1

∫ ∞
t2

∫ ∞
0

fi,.|Z(u1, u2|z)gZ(z) dzdt1dt2

=

∫ ∞
0

∫ ∞
t1

∫ ∞
t2

fi,.|Z(u1, u2|z)gZ(z) dt1dt2 dz

=

∫ ∞
0

Si,.|Z(u1, u2|z)gZ(z) dz.

The unconditional Survivor function Si,j and Si,. are often expressed in a Laplaceian

form. The Laplace function L is defined as

L(c) =

∫ ∞
0

exp{−zc}gZ(z)dz

= E[exp{−Zc}]

ans so it is possible to re-express Si,j as

Si,j(t) = E[exp{−ZH0,i}]

= L(H0,i)

(Aalen et al., 2008, p. 235) and Si,. as

Si,.(t1, t2) = E[exp{−Z(H0,i(t1) +H0,i(t2))}]

= L(H0,i(t1) +H0,i(t2)).

Note, that fi,j(t) = −∂L(H0,i(t))

∂t
and, because of (3), fi,. = ∂2L(H0,1(t1)+H0,2(t2))

∂t1 ∂t2
what might

be used to calculate hazard rates.

The advantage of the Laplace formulation is, that for some functions gZ(z) the results

for L(c) are well established.
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6 Likelihood

This chapter discusses the Maximum Likelihood Estimation of fixed effects (FE) β, RE

zn×1 = [zi], baseline hazard h0(t) and flexibility parameter θ of the frailty distribution.

This will be done with the Hierarchical-Likelihood (H-Likelihood) approach of Lee and

Nelder (1996), which specifies the scale of the RE.

The chapter is structured as follows: The first sub-section discusses the H-Likelihood

approach. In the second sub-section, the Likelihood for β and z is derived under the

assumption that θ and h0(t) is known. Later in that sub-section a profile Likelihood ap-

proach is adopted which plugs the MLE of the baseline hazard h0(t) into the Likelihood.

In the third sub-section, the restricted Likelihood for the flexibility parameter θ is dis-

cussed. In the fourth sub-section, the equations for maximum Likelihood estimations are

gathered and the iterative algorithm to estimate all quantities of interest is introduced.

This is the frailtyHL approach. Differences to the coxph command are then pointed out.

The last sub-section discusses a Goodness of Fit measure and a hypothesis test.

6.1 H-Likelihood for Fixed and Random Effects

Care has to be taken when it comes to deriving MLEs for β and z. Consider the extended

likelihood

L(β, z;Y, Z) = L(β;Y |Z) L(z;Z)

=
n∏
i=1

[ 2∏
j=1

fi,j|Z(yi,j|zi)di,jSi,j|Z(yi,j|zi)1−di,j
]
gZ(zi)

=
n∏
i=1

[ 2∏
j=1

hi,j|Z(yi,j|zi)di,jSi,j|Z(yi,j|zi)
]
gZ(zi),

where the RVs behind the semicolon in L specify the distribution on which the Likelihood

is based:

• for L(β, z;Y, Z) the Likelihood is based on the joint distribution of Y and Z

• for L(β;Y |Z) the Likelihood is based on the conditional distribution of Y given Z,

• for L(z;Z) the Likelihood is based on the distribution of Z.

For construction of the Likelihood L(β, z;Y, Z) independence and non-informativeness

between censoring and survival times is assumed (Ha et al., 2017, p. 69). Therefore,

contributions to the Likelihood coming from the distribution of censoring times are ignored

as they do not enrich the analysis of survival times at all. In case of the FEs β the MLEs
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are invariant to transformations in the sense that k(β̂MLE) = k̂(β)MLE for some element-

wise function k() due to its non-random nature (Ha et al., 2017, p. 42). This is not the

case for Z, however, as there is a Jacobian term involved if the random variable is brought

to another scale V = k(Z) (Lee et al., 2017, p. 105)

gV (v) = gZ(k−1(v))

∣∣∣∣∂k−1(v)

∂v

∣∣∣∣ .
Then,

L(β,v;Y, V ) = L(β;Y |V ) L(v;V )

=
n∏
i=1

[ 2∏
j=1

hi,j|V (yi,j|vi)di,jSi,j|V (yi,j|vi)
]
gV (vi)

=
n∏
i=1

[ 2∏
j=1

hi,j|Z(yi,j|k−1(vi))
di,jSi,j|Z(yi,j|k−1(vi))

]
× gZ(k−1(vi))

∣∣∣∣∂k−1(v)

∂v
|v=vi

∣∣∣∣ ,
with hi,j|V (yi,j|vi) = hi,j|Z(yi,j|k−1(vi)) and Si,j|V (yi,j|vi) = Si,j|Z(yi,j|k−1(vi)) as the RE is

a fixed parameter in the conditional distribution of T .

Let β(1) and β(2) be some unequal vectors for β and ẑ(1) and ẑ(2) the corresponding

MLEs of the REs. Further on, let ṽ(1) = k(ẑ(1)) and ṽ(2) = k(ẑ(2)) respectively, be the

naive estimates of v. In general,

L(β(1), ṽ(1);Y, V )

L(β(2), ṽ(2);Y, V )
6= L(β(1), ẑ(1);Y, Z)

L(β(2), ẑ(2);Y, Z)

because the Jacobian term
∣∣∣∂k−1(v)

∂v
|
v=ṽ

(q)
i

∣∣∣, q ∈ {1, 2}, at any individual Likelihood con-

tribution does not cancel out in the case of a non-linear function k(). The unequal

Likelihood ratios show that inference on both, the RE and β, is somewhat arbitrary, de-

pending on the chosen parametrisation of the RE. Additionally, without further criteria

no parametrisation of the random effects can be claimed to be correct or in some sense

natural.

Criteria to find a natural or canonical scale of the random effects comes from the H-

Likelihood approach. The H-Likelihood requires a parametrisation of the random effects

v = k∗(z), with element-wise function k∗(), such that β̂MLE is identical in the maximi-

sation of L(β,v;Y, V ) or L(β;Y ) =
∫∞

0
L(β,v;Y, V )dv. More precisely, with v̂(q) being
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the MLE given β̂
(q)

the canonical scale of the random effect satisfies

L(β(1);Y )

L(β(2);Y )
=
L(β(1), v̂(1);Y, V )

L(β(2), v̂(2);Y, V )
,

i.e. the evidence for β̂MLE is the same in both Likelihood concepts. (Ha et al., 2017,

p. 46) The extended Likelihood with canonical RE is called H-Likelihood. Once the

H-Likelihood is found, the Likelihood is frozen and v is treated as a parameter, i.e. even

if there is a transformation of V the Likelihood will not be changed, in particular, no

Jacobian term will be multiplied (Ha et al., 2017, p. 71-72).

Unfortunately, there is not a canonical scale in every case and, in lack of an analytical

expression for v̂, there is none here. There is a weak canonical scale, however. (Lee et al.,

2017, p. 169)

Let vi = ln{zi}. Then, subject to estimation in L(β, z;Y, Z) and L(β,v;Y, V ) is

ηi = xTi β + log{zi} or ηi = xTi β + vi respectively, for all i. Obviously, both models are

equivalent and should, therefore, lead to equivalent inference (Lee et al., 2017, p. 170).

Thus, a scale of the RE must be chosen and kept fixed no matter if vi or zi is subject

to estimation. The scale of the RE is called weakly canonical if inference is identical for

trivial re-parametrisation of the form vi = m v∗i + b or ln{zi} = m ln{z∗i }+ b, with some

m ∈ {R\0} and b ∈ R (Lee and Nelder, 2005, p. 146). In case of ln{zi} = m ln{z∗i }+b→
zi = z∗i

m exp{b}, the Jacobian term in gZ∗(z
∗) = gZ(z(z∗)) |m z∗(m−1)exp{b}| still depends

on z∗. This affects the Likelihood ratio and therefore, inference is not invariant to the

choice of the trivial reparameterisation. This is not the case for v, however. As gV ∗(v
∗) =

gV (v(v∗)) |m|, the multiplicative constant m simply cancels out in the Likelihood ratio

and inference is unaffected by a trivial reparameterisation. In consequence, the parameter

is (always) weakly canoncial if it combines additively with xTi β (Lee et al., 2017, p. 170)

and the H-Likelihood is set as

L(β,v;Y, V ) =
n∏
i=1

[ 2∏
j=1

hi,j|V (yi,j|vi)di,jSi,j|V (yi,j|vi)
]
gV (vi)

=
n∏
i=1

[ 2∏
j=1

hi,j|V (yi,j|ln{zi})di,jSi,j|V (yi,j|ln{zi})
]
gV (ln{zi})

= L(β, z;Y, V )

(Lee et al., 2017, p. 171).

Note, that in the above equations there was no Jacobian term involved and all functions

remain functions of v, even though v is expressed as a function of z in the second and

third line. Invariance with respect to parameter transformation is thereby (artificially)

maintained by fixing the Likelihood on the scale of v.
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From now on the H-Likelihood for the FE and RE L(β,v;Y, V ) is abbreviated as Lh.

The hierarchical log-likelihood (h-loglihood)

ln{Lh} =
n∑
i=1

2∑
j=1

{
di,j ln{hi,j|V (yi,j|vi)}+ ln{Si,j|V (yi,j|vi)}

}
+ ln{gV (vi)}

=
n∑
i=1

2∑
j=1

{
di,j(ηi + ln{h0(yi,j)})− exp{ηi}H0(yi,j)

}
+ ln{gV (vi)},

using the interrelationship (7) between Survival and cumulative Hazard function. The

h-loglihood is from now on abbreviated as lh.

6.1.1 Profile H-Likelihood

The semi-parametric approach taken in this thesis leads to the assumption that the hazard

is constant from one event in the dataset to the next. Let y(0) := 0 < y(1) < y(2) < · · · <
y(D) be the D distinct ordered event times, i.e. at least one person died at at every y(m).

Further, let dt(m) = y(m) − y(m−1). Then, the assumption of a piecewise constant baseline

hazard rate from event to event leads to H0(t) =
∑

m>0:y(m)<t,y(m+1)<t
h

(m)
0 dt(m) + (t −

ym∗)h(0)(m∗), with h(0)(ym) = h(0)(m) and m∗ = max(m : ym < t) (Link, 1984, p. 602).

Breslow (1974), however, simplified this estimator: ”[...] all withdrawals, or censored

observations, which occur in the interval (ti, ti+1) are adjusted to have occurred at ti” (p.

93). Therefore,

H0(t) =
∑

m>0:ym≤t

dt(m)h(0)(m).

Before proceeding to the lh some definitions are necessary: R(m) denotes the risk set,

i.e. it includes all individuals who are known to be alive just prior to y(m), d(m) is the

number of people who died at y(m) and η(m) =
∑

(i,j):yi,j=y(m)
xTi,jβ + vi and gV (v) =∏n

i gV (vi). With all above definitions the h-loglihood can be expressed as

lh =
n∑
i=1

2∑
j=1

{
di,j(ηi + ln{h0(yi,j)})− exp{ηi}

∑
m>0:y(m)≤yi,j

h
(m)
0 dt(m)

}
+ ln{gV (vi)}

=
D∑

m=1

{
η(m) + d(m)ln{h(m)

0 } − dt(m)h
(m)
0

∑
(i,j)∈R(m)

exp{ηi}
}

+ ln{gV (v)}.

The MLE for h
(m)
0 is derived by ∂lh

∂h
(m)
0

!
= 0 and results in ĥ

(m)
0 =

d(m)

dt(m)

∑
(i,j)∈R(m)

exp{ηi} ,
1 i.e.

1Note, that what here is defined as h
(m)
0 dt(m) is simply h

(m)
0 in the frailtyHL package. This slight

redefinition, however, does not affect inference as the loglihood, as defined in this thesis, differs only
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the Breslow estimator. (Breslow, 1974, p. 93).

Using ĥ
(m)
0 as a plug-in estimator leads to the profile loglihood

lhprof =
D∑

m=1

{
η(m) + d(m)ln

{
d(m)

dt(m)

∑
(i,j)∈R(m)

exp{ηi}

}
−

d(m)∑
(i,j)∈R(m)

exp{ηi}
∑

(i,j)∈R(m)

exp{ηi}
}

+ ln{gV (v)}

∝
D∑

m=1

{
η(m) − d(m)ln

{ ∑
(i,j)∈R(m)

exp{ηi}
}}

︸ ︷︷ ︸
lp

+ln{gV (v)}, (22)

where from (22) it can be seen that maximising lhprof is equivalent to maximising the

partial h-loglihood lp with Breslow approxmation to account for more than one death at

a given point in time plus the penalty-term ln{gV (v)} (Ha et al., 2017, p. 73). From now

on lh is defined as (22).

6.2 Derivatives

This sub-section is purely technical and might be regarded as an integrated appendix. If

technical details are not of interest one might skip this sub-section entirely and maybe

come back to it if technical details or definitions are of interest in later chapters. The first

and second-order derivatives of lh with respect to β and v will be derived. They are be

needed for estimation procedures and statistical testing. The estimation procedure itself

will be discussed in one of the later sub-sections.

6.2.1 ∂lh

∂β

The first-order derivatives will be needed for maximisation of the h-loglihood. The first

set of derivatives is

∂lh

∂β
=

D∑
m=1

{
x(m) −

d(m)∑
(i,j)∈R(m)

exp{ηi}
∑

(i,j)∈R(m)

exp{ηi}xi,j
}

=
∑
i,j

{
xi,jdi,j −H0(yi,j)exp{ηi}xi,j

}
.

by the constant term −ln{dt(m)}. If values for the loglihood (via AIC) are reported there will be no
adaptation to this redefinition.
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This can be expressed in matrix notation as

∂lh

∂β
= XT [d− µ],

with

µ =



H0(y1,1)exp{η1,1}
H0(y1,2)exp{η1,2}
H0(y2,1)exp{η2,1}

...

H0(yn,2)exp{ηn,2}


.

The vector µ = W 0MA1, with

W 0 = diag{exp{η1,1}, exp{η1,2}, exp{η2,1}, . . . , exp{ηn,2}},

and M being an indicator matrix that shows if an individual (row) was still at risk at the

distinct death times (column)

M =


I{y1,1 ≥ y(1)} I{y1,1 ≥ y(2)} . . . I{y1,1 ≥ y(D)}
I{y1,2 ≥ y(1)} I{y1,2 ≥ y(2)} . . . I{y1,2 ≥ y(D)}

...
...

. . .
...

I{yn,2 ≥ y(1)} I{yn,2 ≥ y(2)} . . . I{yn,2 ≥ y(D)}

 ,

and A = diag{h(1)
0 dt(1), h

(2)
0 dt(2), . . . , h

(D)
0 dt(D)}, and 1 being a D × 1 vector of ones.

The matrices W 0 and M will also be needed for the following derivations.

6.2.2 ∂lh

∂v

The second set of first-order derivatives is

∂lh

∂vi
=

2∑
j=1

di,j −
D∑

m=1

d(m)∑
(i∗,j∗)∈R(m)

exp{ηi∗,j∗}

2∑
j=1

exp{ηi,j}+
∂ln{gV (vi)}

∂vi

=
2∑
j=1

{
di,j −H0(yi,j)exp{ηi,j}

}
+
∂ln{gV (vi)}

∂vi
.
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Let C be a matrix, indicating cluster membership for each individual, i.e

C =



1 0 . . . 0

1 0 . . . 0

0 1 . . . 0

0 1 . . . 0
...

...
. . . 0

0 0 . . . 1

0 0 . . . 1


,

with units ordered by cluster index. Then,

∂lh

∂v
= CT [d− µ] +

∂ln{gV (v)}
∂v

.

6.2.3 − ∂2lh

∂β∂βT

The negative Hessian will play an important role in the estimation process and its inverse

is also the covariance estimate for the estimated fixed and random effects. The negative

Hessian of β will be called Hβ = − ∂2lh

∂β∂βT
. The Hessian of β is as follows:

Hβ =
∂

∂βT
XTµ

= XT


∂
∂β1
H0(y1,1)exp{η1,1} . . . ∂

∂βK
H0(y1,1)exp{η1,1}

∂
∂β1
H0(y1,2)exp{η1,2} . . . ∂

∂βK
H0(y1,2)exp{η1,2}

...
. . .

...
∂
∂β1
H0(yn,2)exp{ηn,2} . . . ∂

∂βK
H0(yn,2)exp{ηn,2}

 , (23)

with

∂

∂βk
H0(yi,j)exp{ηi,j} = exp{ηi,j }

∑
m>0:y(m)≤yi,j

[
h

(m)
0 dt(m)xi,j:k−

(h
(m)
0 dt(m))

2

d(m)

∑
(i∗,j∗)∈R(m)

exp{ηi∗,j∗}xi∗,j∗:k
]
, (24)

where xi,j:k refers to covariate k of individual (i, j).

Letting W 1 = diag{µ}, U = diag{ (h
(1)
0 dt(1))

2

d(1)
,

(h
(2)
0 dt(2))

2

d(2)
, . . . ,

(h
(D)
0 dt(D))

2

d(D)
}. Then, com-
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bining matrix notation in (23) and the individual derivative (24) leads to matrix expression

∂2lh

∂β∂βT
= XT [W 1 −MUMTW 0]X

= XTW ∗X, (25)

with W ∗ = W 1 −MUMTW 0.

6.2.4 − ∂2lh

∂v∂vT

The negative Hessian of v will be called Hv = − ∂2lh

∂v∂vT
. Using some results from the

previous section,

Hv = CT ∂

∂v
µ− ∂2ln{gV (v)}

∂v∂vT

= CTW ∗C +Q,

with Q = −diag{∂
2ln{gV (v1)}

∂v21
, . . . , ∂

2ln{gV (vn)}
∂v2n

}

6.2.5 − ∂2lh

∂v∂βT

The negative Hessian − ∂2lh

∂v∂βT
will be denoted asHv,β. Note thatHT

v,β = Hβ,v = − ∂2lh

∂β∂vT
.

From the previous two sub-section one can see that

Hv,β =
∂

∂βT
CTµ

= CTW ∗X.

6.2.6 All First and Second Order Derivatives

With letting τ =

[
β

v

]
, P =

[
X C

0n×K In×n

]
, d∗ =

[
d

0n×1

]
, µ∗ =

[
µ

0n×1

]
and b =[

02n×1

ln{gV (v)}
∂v

]
, the first order derivatives are (Ha et al., 2017, p. 102)

∂lh

∂τ
= P T [d∗ − µ∗ + b]. (26)

With V =

[
W ∗ 02n×n

0n×2n Q

]
, the negative Hessian is (Ha et al., 2017, p. 80)

Hτ = P TV P . (27)
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The inverse negative Hessian H−1
τ will serve as a covariance estimate of τ (Ha et al.,

2017, p. 47).

Note that in all those equations h
(m)
0 , m = 1, . . . , D, is a function of τ , even though

this was not explicitly stated by notation.

6.3 Restricted Likelihood for the Variance of the Frailty

This sub-section deals with the restricted maximum Likelihood estimation of θ = θ.

Restricted maximum Likelihood estimation is necessary to obtain an unbiased estimator

as a naive inference based on lh would not account for the information lost through the

estimation of τ . Hence, a restricted Likelihood is necessary that is free of both, β and v.

The restricted Likelihood LR is approximated by integrating v and β out of L(β,v;Y, V )

and treating it as a function of the formerly fixed θ.2 (Lee et al., 2017, p. 181) As this

function involves high dimensional integrals of dimension n + K in this case, useful ap-

proximations need to be found. This is done by a second-order Laplace approximation

in this case. The Laplace approximation will be discussed first, then the second-order

Laplace approximation is applied to lh to obtain the (approximated) restricted likelihood

function.

6.3.1 Laplace Approximation

The notation used here is entirely unique to this sub-section. None of the previous notation

is valid here and none of the notation used in this sub-section will be valid for any other.

The results obtained here are general. Its use will be clarified at the end of this sub-section.

This sub-section is based on the univariate second-order Laplace approximation of the

integral I(x) =
∫∞
−∞ exp{xφ(t̃)}dt̃ as described in (Bender and Orszag, 1978, pp. 261-

274) and extended to the multivariate integral I(x) =
∫
Rn exp{xφ(t̃)}dnt̃, with t̃ ∈ Rn

and φ(t̃) ∈ R1. At the end of this sub-section xφ() will be related to the loglihood and t̃

to the random effects. Thus, I(x) will be the basis of the REML.

Let I(x) =
∫∞
−∞ exp{xφ(t̃)}dnt̃, with x→∞ and −∞ < t̃m <∞ maximises φ(t̃), i.e.

t̃m is a stationary point. Then,

I(x) ≈
∫
‖t̃m−t̃‖≤ε

exp{xφ(t̃)}dnt, (28)

with ε being an arbitrary (small) positive real. This is because exp{xφ(t̃m)} will dominate

the integral and the remainder is exponentially small. Approximating φ(t̃) by its fourth

2In this thesis there will be no notational difference made between the exact restricted Likelihood
function and the approximated one, as the first is not available here.

Page 30 of 65



6 LIKELIHOOD

order Taylor expansion leads to

φ(t̃) ≈φm +
∑
i

tiφ
(m)
i +

1

2

∑
i,j

titjφ
(m)
i,j +

1

6

∑
i,j,k

titjtkφ
(m)
i,j,k +

1

24

∑
i,j,k,l

titjtktlφ
(m)
i,j,k,l, (29)

where ti = [t]i[t̃ − t̃m]i and the number of indices in φ refer to the specific derivative

evaluated at t̃m. For example, ∂4φ(t̃)

∂t̃i,∂t̃j ,∂t̃k,∂t̃l
|t̃=t̃m = φ

(m)
i,j,k,l. Each of the indices in the sums

in (29) runs from 1 to n, i.e. i, j, k, l = 1, . . . n.

The Taylor expansion is sharp around a very small ball around tm and thus can be

used to approximate I(x) as in (28): by using (29) in (28) it follows that

I(x) ≈ exp{xφ(m)}
∫
‖t‖≤ε

exp

{
x

(
1

2

∑
i,j

titjφ
(m)
i,j

+
1

6

∑
i,j,k

titjtkφ
(m)
i,j,k +

1

24

∑
i,j,k,l

titjtktlφ
(m)
i,j,k,l

)}
dnt. (30)

Let y = x(1
6

∑
i,j,k titjtkφ

(m)
i,j,k + 1

24

∑
i,j,k,l titjtktlφ

(m)
i,j,k,l). Substituting exp{y} by its

power series 1+y+ 1
2!
y2+ 1

3!
y3+ 1

4!
y4+· · · = 1+x(1

6

∑
i,j,k titjtkφ

(m)
i,j,k+

1
24

∑
i,j,k,l titjtktlφ

(m)
i,j,k,l)+

1
72
x2(
∑

i,j,k titjtkφ
(m)
i,j,k)

2
+ . . . and replacing the corresponding values in (30) leads to

I(x) ≈ exp{xφ(m)}
∫
‖t‖≤ε

exp

{
x

1

2

∑
i,j

titjφ
(m)
i,j

}
×
[
1 + x

(1

6

∑
i,j,k

titjtkφ
(m)
i,j,k

+
1

24

∑
i,j,k,l

titjtktlφ
(m)
i,j,k,l

)
+

1

72
x2
(∑
i,j,k

titjtkφ
(m)
i,j,k

)2

+ . . .
]
dnt. (31)

Considering, that all terms with an odd number of terms in t, for example titjtk, vanish

and neglecting all terms captured by the dots in (31), further simplifies the approximation

to

I(x) ≈ exp{xφ(m)}
∫
Rn
exp

{
− x1

2
tT (−φ(m)

.. )t

}
×
[
1 +

1

24
x
∑
i,j,k,l

titjtktlφ
(m)
i,j,k,l

+
1

72
x2
(∑
i,j,k

titjtkφ
(m)
i,j,k

)2]
dnt, (32)

where φ(m)
.. denotes the matrix of second derivatives evaluated at t̃m. Note, that the
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region of integration was changed to Rn what can be done because φ(t̃m) still dominates

the integral.

Now, (32) is a sum of integrals where each can be integrated by its own and analytical

expressions can be found of. The first integral
∫
Rn exp

{
− 1

2
tT (−xφ(m)

.. )t

}
is known to be

the Gaussian kernel and thus∫
Rn
exp

{
− 1

2
tT (−xφ(m)

.. )t

}
dnt =

(2π)
n
2√

det{−xφ(m)
.. }

. (33)

This result will be needed for the next two terms. What is also needed, is a generating

function, with J = [j1, . . . , jn]T ,

Z(J) =

∫
Rn
exp

{
− 1

2
tT (−xφ(m)

.. )t+ tTJ

}
dnt (34)

such that

∂4Z(J)

∂Ji, ∂Jj, ∂Jk∂Jl
|J=0n×1 =

∫
Rn
titjtktl exp

{
− 1

2
tT (−xφ(m)

.. )t

}
dnt. (35)

Note, that this is not restricted to the case of the fourth derivative but can be used with

any order. With (35), the second integral of (32) can be expressed as∫
Rn
exp

{
− 1

2
tT (−xφ(m)

.. )t

}
1

24
x
∑
i,j,k,l

titjtktlφ
(m)
i,j,k,ld

nt =
x

24

∑
i,j,k,l

φ
(m)
i,j,k,l

× ∂4Z(J)

∂Ji, ∂Jj, ∂Jk∂Jl
|J=0n×1 . (36)

Hence, next a solution for (35) is derived in order to solve (36): Let y = t −
(−xφ(m)

.. )−1J . Then (34) can be expressed as

Z(J) =

∫
Rn
exp

{
− 1

2
(t− (−xφ(m)

.. )−1J)T (−xφ(m)
.. )(t− (−xφ(m)

.. )−1J)

+
1

2
JT (−xφ(m)

.. )−1J

}
dnt

=

∫
Rn
exp

{
− 1

2
yT (−xφ(m)

.. )y +
1

2
JT (−xφ(m)

.. )−1J

}
dnt

=
(2π)

n
2√

det{−xφ(m)
.. }

exp

{
1

2
JT (−xφ(m)

.. )−1J

}
, (37)
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and with this result (35) can be solved:

∂4Z(J)

∂Ji, ∂Jj, ∂Jk∂Jl
|J=0n×1 =

(2π)
n
2

det{−xφ(m)
.. }

[
(xφ(m)

.. )−1
i,j (xφ(m)

.. )−1
k,l

+ (xφ(m)
.. )−1

i,k (xφ(m)
.. )−1

j,l

+ (xφ(m)
.. )−1

i,l (xφ(m)
.. )−1

j,k

]
. (38)

Inserting (38) in (36) yields

x

24

∑
i,j,k,l

φ
(m)
i,j,k,l

∂4Z(J)

∂Ji, ∂Jj, ∂Jk∂Jl
|J=0n×1 =

x

24

∑
i,j,k,l

φ
(m)
i,j,k,l

(2π)
n
2

det{−xφ(m)
.. }

×
[
(xφ(m)

.. )−1
i,j (xφ(m)

.. )−1
k,l + (xφ(m)

.. )−1
i,k (xφ(m)

.. )−1
j,l + (xφ(m)

.. )−1
i,l (xφ(m)

.. )−1
j,k

]
=

(2π)
n
2

det{−xφ(m)
.. }

x

8

∑
i,j,k,l

φ
(m)
i,j,k,l

×(xφ(m)
.. )−1

i,j (xφ(m)
.. )−1

k,l . (39)

The third term in the bracket of (32) x2

72

(∑
i,j,k titjtkφ

(m)
i,j,k

)2
can be derived in exactly

the same fashion by applying the sixth order derivative of (37) and results in

−
∑

i,j,k,l,o,p

φ
(m)
i,j,kφ

(m)
l,o,p

[(xφ(m)
.. )−1

i,j (xφ(m)
.. )−1

k,l (xφ
(m)
.. )−1

o,p

8
+

(xφ(m)
.. )−1

i,l (xφ(m)
.. )−1

j,o (xφ(m)
.. )−1

k,p

12

]
.

(40)

Using (33), (39) and (40) to get an expression for the approximation to the integral

I(x) as expressed in (32) yields

I(x) ≈ exp{xφ(m)} (2π)
n
2√

det{−xφ(m)
.. }

[
1 + F (m)

]
, (41)

with F (m) being equal to the sums of equations (39) and (40).

Considering that the interest lays in the loglihood lR and the approximation of I(x)

will be used to get an approximation of LR, the logarithm of (41) will be taken, where yet

another approximation can be made: ln{1 + ε} ≈ ε, if ε→ 0. As x−1 → 0 in the inverse

matrices in the expressions of (40) and (39),this can be applied to ln{1 + F}, i.e

ln{I(x)} ≈ φ(m) + ln

{
(2π)

n
2√

det{−xφ(m)
.. }

}
+ F (m). (42)

Now, (42) will be related to lR after which the notation of this sub-sub-section is
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invalid for the remainder of this thesis and the previous notation starts to kick in again:

• xφ(t̃) = lh

• t̃ = v

• φ(m)
i,j,k,l = ∂4lh

∂vi∂vj∂vk∂vl
|v=v̂, and so on.

Hence,

ln

{∫ ∞
−∞

Lhdnv

}
≈
[
lh + ln

{
(2π)

n
2√

det{Hv}

}
+ F

]
v=v̂

, (43)

with

F =
1

8

∑
i,j,k,l

∂4lh

∂vi, ∂vj∂vk∂vl
(Hv)

−1
i,j (Hv)

−1
k,l

−
∑

i,j,k,l,o,p

∂3lh

∂vi∂vj∂vk

∂3lh

∂vl, ∂vo∂vp[
(Hv)

−1
i,j (Hv)

−1
k,l (Hv)

−1
o,p

8
+

(Hv)
−1
i,l (Hv)

−1
j,o (Hv)

−1
k,p

12

]
(Lee et al., 2017, p.181).

For lR the remaining issue is to condition on the sufficient statistics β̂ which is achieved

by enhancing the approximation (43) to β. (Ha et al., 2017, p. 52,76) This is only done

for the first order Laplaceian approximation as the dimension of β does not increase with

the data, i.e.

lR =

[
lh + ln

{
(2π)

n
2√

det{Hβ,v}

}
+ F

]
β=β̂, v=v̂

, (44)

where v̂ and β̂ maximise lh. Note, that Hv in F is not changed to Hτ .

6.3.2 Derivatives

This chapter discusses the first-order derivative of lr (Ha et al., 2017, p. 103)

∂lR

∂θ
=

[
∂lh

∂θ
− 1

2
trace

{
H−1
τ

∂Hτ

∂θ

}
− ∂F

∂θ

]
τ=τ̂

,
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where it must be considered that lh|τ=τ̂ = lh(τ̂ , θ) and τ̂ = τ̂ (θ) are functions of θ. Hence,

∂lh

∂θ
|τ=τ̂ =

∂lh(τ̂ , θ)

∂θ
+
∂lh(τ , θ)

∂τ
|τ=τ̂

∂τ̂ (θ)

∂θ

=
∂lh

∂θ
|τ=τ̂

=
∂ln{gV (v)}

∂θ
|v=v̂, (45)

because ∂lh

∂τ
|τ=τ̂ = 0 and in lh, θ is only contained through gV . The derivative ∂ln{gV (v)}

∂θ

cannot be derived in general as it depends on the specific choice of distribution.

In the frailtyHL package the term ∂v̂
∂θ

is included but ∂β̂
∂θ

is ignored. Then, ∂Hτ

∂θ
|τ=τ̂

becomes

∂Hτ

∂θ
|τ=τ̂ = P T

[
∂W ∗

∂θ
|τ=τ̂ 0

0 ∂Q
∂θ

]
P ,

with

∂W ∗

∂θ
|τ=τ̂ =

[
∂W ∗

∂θ
+
W ∗

∂v

∂v̂

∂θ

]
τ=τ̂

=

[
W ∗

∂v

∂v̂

∂θ

]
τ=τ̂

,

and, according to (Lee and Nelder, 1996, pp. 105-106),

∂v̂

∂θ
= −H−1

v

∂2ln{gV (v)}
∂v∂θ

|v=v̂.

The derivative of F and the second-order derivatives will not be discussed here.

6.4 Iterative Optimisation Procedure

The parameter estimates τ̂ and θ̂ are obtained on the basis of the Newton-Raphson

Procedure. (Ha et al., 2017, p. 78)

The Newton-Raphson procedure relies on a second order approximation of lh, i.e.

lh(τ ;Y, V ) ≈ lh(τ 0;Y, V ) + [τ − τ 0]TSτ (τ 0)− 1

2
[τ − τ 0]THτ (τ 0)[τ − τ 0]

= lh0 ,

where Sτ (τ 0) and Hτ (τ 0) represent the first order derivatives and the negative Hessian

evaluated at τ 0.
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Then, τ+ = argmax
τ

lh0 leads to

∂lh0
∂τ

!
= 0

=⇒ Sτ (τ 0)−Hτ (τ 0)[τ+ − τ 0] = 0

=⇒ Hτ (τ 0)τ+ = Hτ (τ 0)τ 0 + Sτ (τ 0) (46)

In this case, (46) is not pre-multiplied by H−1
τ in order to solve for τ+ to avoid the

computation of the inverse. (Ha et al., 2017, p. 26) This is not done in the case of θ. (Ha

et al., 2017, p. 103)

The equation (46) can be expressed as

P TV Pτ = Py∗, (47)

with y∗ = V Pτ 0 + d∗ + b∗ − µ∗.
In similar fashion, the variance parameter θ will be calculated by the common Newton

Raphson equation

θ+ = H−1
θ (θ0)Sθ(θ0) + θ0. (48)

Iteration takes place over the equations (47) and (48). The values τ 0 and θ0 either

indicate values from the previous iteration or initialized values: 0K×1 or 0.1 respectively.

The values τ+ and θ+ either indicate values for the the next iteration or β̂ and θ̂, if

τ+ − τ 0 < 10−51K×1 and θ+ − θ0 < 10−5 in which case the procedure converged. (Ha

et al., 2017, p. 80)

6.5 Differences to the coxph-Implementation

In estimating τ both approaches use lh. (Therneau et al., 2003, p. 158) One of the main

differences is the estimation of θ, where the coxph package uses a marginal likelihood

approach. That is, θ is estimated via lm = ln

{∫∞
−∞ exp{l

h(β,v;Y, V )}dv
}

. In the case

of a gamma distributed random term Z, this is done analytically. (Therneau et al., 2003,

p. 160) In the case of a lognormal distributed random term Z this is done by a first order

Laplace approximation with respect to V (Ripatti and Palmgren, 2000, p.1017), which

is as in (44) but without F and using Hv instead of Hβ,v. The consequence is, that a

maximum Likelihood estimator instead of a REML estiamtor for θ is obtained in both

cases. (Therneau et al., 2003, p.161) The coxph implementation also ignores v̂
θ

in lr. (Ha

et al., 2017, p. 77) According to Ha et al. (2017) this can lead to underestimation of θ

especially when the cluster size is small.(p. 77)
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A further simplification is made in the coxph package as Hv is simplified to be a

diagonal matrix which speeds up computation especially if dimensions of the Hessian are

large, i.e. if there are many clusters in the data at hand. (Therneau et al., 2003, p. 164)

Slight differences are also present in the iterative Newton-Raphson procedure. Given

a value for θ, a couple of Newton-Raphson iterations are calculated to get an estimate

for τ . Then it is returned to the outer Newton Raphson loop, where a new value for θ is

calculated and so on. (Therneau et al., 2003, p. 159)

6.6 Model Selection

Model selection will be based on the Likelihood. For testing the presence of frailty the

Likelihood Ratio Test (LRT) will be used. For comparisons across models, the Akaike

Information Criterion (AIC) will be used. This subsection explains both, starting with

the latter.

6.6.1 AIC

The AIC is standard tool for model selection in statistics. (Fahrmeier et al., 2013, p. 148)

Its foundation lies in the Kullback Leibler Divergence. (Ha et al., 2017, p. 87) Consider

the true density ξ(y) of the data y and some density κ(y). The KLD = Eξ[ln{ξ(y)} −
ln{κ(y)}], where Eξ denotes, that the expectation is taken over the real model. If κ is

ξ, then there is no lost information by using κ and the KLD = 0. The model κ usually

involves MLE’s from the data ψ̂ = ψ̂(y). Hence, a useful measure of lost information is

Eξ[KLD] = Eξ(y)[Eξ(y∗)[ln{ξ(y∗)} − ln{κψ̂(y)(y
∗)}]]

= Eξ(y∗)[ln{ξ(y∗)}]− Eξ(y)[Eξ(y∗)[ln{κψ̂(y)(y
∗)}]], (49)

with y∗ being another potential draw from the same RV. The first term of (49) is irrelevant

to model comparison as it is merely a constant for any model. Considering only the second

term multiplied by 2 is the Akaike Information. (Ha et al., 2017, p. 88) It measures the

lost information by a chosen model. The Akaike Information is estimated by the AIC:

AIC = −2ln{κψ̂(y)(y)}+ 2K̃, (50)

where K̃ is the number of free parameters in the model. The AIC is an asymptotically

unbiased estimator of the Akaike Information. (Ha et al., 2017, p. 88)

The AIC considered in this model is based on the conditional model lp (partial h-

loglihood), i.e.

AIC = −2lp + 2df,
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where df = H−1
τ

−∂2lp

∂τ∂τT
are the effective parameters. Note, that this excludes any kind

of direct Likelihood contributions from θ. This measure is called conditional AIC by Ha

et al.(2017, p.88) and simply AIC in Therneau (2003, p.163-164). The (conditional) AIC

selects the model giving the best conditional predictions. A smaller AIC value indicates

a better model with respect to conditional prediction.

6.6.2 LRT

Testing the hypothesis H0 : θ = 0 will be done with the LRT. The LRT test statistic (LR)

equals −2(lr0−lr), where lr0 is the restricted maximum likelihood under the null hypothesis,

i.e. v = 0 and θ = 0. This essentially reduces to the first order Laplace approximation

to the integral ln

{∫∞
−∞ exp{l

p
0}dβ

}
, which is given by

[
lp0 + ln

{
(2π)

n
2√

det{Hβ}

}]
β=β̂

, with

lp0 being the partial h-loglihood evaluated at v = 0. Care has to be taken as the null

hypothesis is on the boundary of the parameter space. Hence, a mixture distribution has

to be used for p-values. The test statsitic is distributed as 1
2
χ2

0 + 1
2
χ2

1, where χ2
0 has a

point mass on 0. So the p-value can be calculated as P (1
2
χ2

0 + 1
2
χ2

1 > LR) = 1
2
P (χ2

0 >

LR) + 1
2
P (χ2

1 > LR) = 1
2
P (χ2

1 > LR). (Ha et al., 2017, p. 80-81)
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7 FrailtyModels

The models that were investigated are those of

Zi ∼ π(θsexi,zygi),

with Zi being independent of Zic . The conditional hazard is modelled as hi,j|Z(t|zi) =

ziexp{birthiβsexi,zygi}h0(t)(sexi,zygi ) for all i, j, where h
(sexi,zygi )
0 indicates a separate base-

line hazard depending on the combination of sex and zygosity. This, basically, led to

four seperate models: female & monozygotic (fmono), female & dizygotic (fdi), male &

monozygotic (mmono) and male & dizygotic (mdi). The distiribution π is either gamma

or log-normal.

7.1 Gamma Frailty Model

The Gamma Frailty Model assumes

Zi
iid∼ Gamma(α, θ), for i = 1, . . . , n.

The density of Zi therefore is gZ(z) =
zα−1exp{− z

θ
}

Γ(α)θα
, where Γ is the Gamma function. The

expectation of a Gamma distributed RV equals αθ and its variance is αθ2. As an identifica-

tion constraint α is set to 1
θ

and thus E[Zi] = 1 and V ar[Zi] = θ. (Duchateau and Janssen,

2008, p. 44) The interpretation is that a twin-pair has a higher conditional hazard if zi > 1

than is expected from the entire population at time origin and the expected deviation from

E(Zi) = 1 is
√
θ. Hence, if θ is big the conditional hazard rate varies strongly and twins

are more alike in their survival-times than unrelated people. The identification assump-

tions simplifies the density of Zi to gZ(z) =
z
1
θ
−1exp{− z

θ
}

Γ( 1
θ

)θ
1
θ

. With respect to the H-Likelihood

approach, the density gV (v) = gZ(exp{v})∂z(v)
∂v

= gZ(exp{v})exp{v} =
exp{v}

1
θ exp{− exp{v}

θ
}

Γ( 1
θ

)θ
1
θ

is required to compute all necessary derivatives, like the Score function and the Hessian,

for optimisation.

With respect to marginal distributions and sub-population hazard, however, it is easier

to resort on well-known results of the gamma distribution. The univariate sub-population

Survivor function Si,j can be found using well known results for the Laplace function

when gZ is the Gamma pdf, leading to Si,j(t) = L(H0,i(t)) = 1
1+θH0,i(t)

1
θ .(Aalen et al.,

2008, p. 237) Equivalently, the bivariate Survivor function Si,. can be established as

Si,.(t1, t2) = L(H0,i(t1) +H0,i(t2)) = 1
[1+θ(H0,i(t1)+H0,i(t2))]

1
θ . The negative first-order deriva-
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tive of L(H0,i(t)) then delivers the univariate sub-population density of Ti,j

fi,j(t) = −∂L(H0,i(t))

∂t

= (1 + θH0,i(t))
− 1
θ
−1h0,i(t)

and the bivariate sub-population density can be found by

fi,.(t1, t2) =
∂2L(H0,i(t1) +H0,i(t2))

∂t1∂t2

= (1 + θ)[1 + θ(H0,i(t1) +H0,i(t2))]−
1
θ
−2h0,i(t1)h0,i(t2)

respectively.

In case of gamma distributed frailty the joint Survival and density function can be

used to derive an analytic expression for Kendall’s τ . Note, that τ is derived based on

pairs with identical covariate information. (Duchateau and Janssen, 2008, p. 123) Hence,

fi,.(t1, t2) = fic,.(t1, t2) and - by applying the change of variable technique twice and

integration by parts once - similar to (Duchateau and Janssen, 2008, p. 125,138-139),

τ = 2× 2

∫ ∞
0

∫ ∞
0

fi,.(t1, t2)

[ ∫ t1

0

∫ t2

0

fi,.(r1, r2) dr1 dr2

]
dt1 dt2 − 1

= 4

∫ ∞
0

∫ ∞
0

Si,.(t1, t2)fi,.(t1, t2) dt1 dt2 − 1

= 4

∫ ∞
0

∫ ∞
0

(1 + θ)h0,i(t1)h0,i(t2)

[1 + θ(H0,i(t1) +H0,i(t2))]
2
θ

+2
dt1dt2 − 1

= 4

∫ ∞
0

∫ ∞
0

(1 + θ)

[1 + θ(H0,i(t1) +H0,i(t2)︸ ︷︷ ︸
=H̃

)]
2
θ

+2
dH(t1)dH(t2)− 1

= 4

∫ ∞
0

∫ H̃

0

(1 + θ)

[1 + θH̃]
2
θ

+2
dH(t1)dH̃ − 1

= 4

∫ ∞
0

H̃
(1 + θ)

[1 + θH̃]
2
θ

+2
dH̃ − 1 (applying integration by parts ...)

= 4

∫ ∞
0

1 + θ

[1 + θH̃]
2
θ

+1
[θ + 2]−1 dH̃ − 1

= −4

[
1

2

1 + θ

[1 + θH̃]
2
θ

1

2 + θ

]∞
0

− 1

=
2 + 2θ

2 + θ
− 1

=
θ

2 + θ
. (51)
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The cross-ratio function can also be derived analytically:

ζi(t1, t2) =

fi,.(t1,t2)︷ ︸︸ ︷
(1 + θ)(1 + θ(H0,i(t1) +H0,i(t2))−

1
θ
−2h0,i(t1)h0,i(t2)

(1 + θ(H0,i(t1) +H0,i(t2)))−
1
θ
−1 h0,i(t1)︸ ︷︷ ︸

−
∂ Si,.(t1,t2)

∂ t1

×

Si,.(t1,t2)︷ ︸︸ ︷
(1 + θ(H0,i(t1) +H0,i(t2))−

1
θ

(1 + θ(H0,i(t1) +H0,i(t2)))−
1
θ
−1 h0,i(t2)︸ ︷︷ ︸

−
∂ Si,.(t1,t2)

∂ t2

= 1 + θ.

In the gamma frailty model, ζi is not a function of time and can easily be calculated once

the variance is estimated.

7.1.1 Comparison of Estimation Approaches

Now, the different datasets will be examined with the gamma frailty model. Focus is first,

on the differences between the frailtyHL and coxph estimates for each feature and second,

on the interpretation of the estimated values. The measure γ̂ is an estimate of
√
θ

E[Zi]
which

is the standard deviation in the gamma case. This measure will not be discussed in this

subsection but is needed for a comparison with the estimates from the lognormal model.

Table 2: Gamma Model: frailtyHL vs coxph

Variable fmono fdi mmono mdi

BirthHL -0.025*** -0.020*** -0.020*** -0.015***
(0.0069) (0.0046 ) (0.0068) (0.0044)

Birthcoxph -0.025*** -0.020*** -0.020*** -0.015***
(0.0065) (0.0044) (0.0066) (0.0043)

θ̂HL 0.613*** 0.363*** 0.489*** 0.236***
(0.2548) (0.1578) (0.1934) (0.1274)

θ̂coxph 0.534 0.196 0.440 0.201
γ̂frailtyHL 0.783 0.603 0.700 0.486
γ̂coxph 0.731 0.442 0.663 0.448

total observations 844 1638 808 1510
number of events 280 534 323 611

***p < 0.01, **p < 0.05, *p < 0.1

With respect to βsex,zyg it can be seen from Table 2 that the estimates are identically
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(when rounded to three significant digits). Also, the estimated standard errors are pretty

close. A difference can be seen, however, where the frailtyHL package claims to be more

accurate: All estimated variances θ̂sex,zyg of the frailty RVs are bigger than their coxph

counterparts. If the claim of frailtyHL is justified, this could hint on underestimation of

the importance of genetics in the case of the twin’s lifetimes when using procedures with

less accuracy. According to intuition, in both estimation procedures, the variances in the

fmono and mmono models are far bigger than those of fdi and mdi. However, there is a big

difference between the variance in the fdi model in the two estimation procedures (0.363

vs 0.196). The difference in mdi is much smaller (0.236 vs 0.201). Also the difference

between the variance of fdi and mdi under the frailtyHL regime is high (0.363 vs 0.236).

Such a jump in the variance cannot be seen under the coxph regime (0.196 vs 0.201). In

fact, the variance on the fdi model is even slightly smaller than in the mdi model.

In the following, interpretation relies on the estimates of the frailtyHL package unless

otherwise mentioned.

With respect to the impact of the year of birth on expected survival times, it can be

seen that βf,mono > βm,mono and βf,di > βm,di indicating that female mortality declined

more heavily over the years than that of males. However, all confidence intervals of

the slope parameters overlap on 0.95 level (not shown). Ceteris paribus, the conditional

hazard hi,j|Z is estimated to decline by the factor 0.975 if a monozygotic female is one

year younger. In contrast, this is only 0.985 for dizygotic males. The cross-ratio function

is 1.613 for monozygotic females for every combination of the two time variables. Given

the highly varying estimated ORs in chapter 4, where the risk was especially high around

the diagonal and small far away from it, this does not seem to be a good representation

of reality. This also holds for the other sub-samples.

Kendall’s τ , as estimated by (51), is 0.235 for monozygotic females, lower for monozy-

gotic males (0.197) and smallest in both dizygotic sub-populations (0.154 for females

and 0.106 for males). In the coxph approach the order switches only for diyzgotic

males and females. This structure cannot be found when using the entire sample where

τ̂m,mono > τ̂f,mono > τ̂f,di > τ̂m,di (or θ̂m,mono > θ̂f,mono > θ̂f,di > θ̂m,di) as can be seen in

Hougaard (2000, p. 307) or from Table 3. The estimates of τ are all bigger than the

(cohort adjusted) estimates of τ in chapter 4. This is also the case when using the entire

sample except for dizygotic males.

In general, relatively high variance of the frailties means that the twins are highly

dependent on each other and that there is a lot of difference in the population between

different twins as there are relatively many high and low valued frailties that a pair shares.

The frailty variance (at a given point in time) also reflects variability in mortality patterns

across clusters. A high variance of the frailty distribution, however, does not indicate low

or high mortality on the population level in general, as mortality is also governed by the
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Table 3: Gamma Model: Entire Sample with coxph

Variable fmono fdi mmono mdi

Birthcoxph -0.026*** -0.027*** -0.017*** -0.017***
(0.0037) (0.0025) (0.0035) (0.0023)

θ̂coxph 0.389 0.226 0.464 0.120
γ̂coxph 0.624 0.475 0.681 0.346

total observations 2896 5512 2732 4976
number of events 904 1761 1069 1999

***p < 0.01, **p < 0.05, *p < 0.1

baseline hazard.

The impact of the frailty variance will further be analysed by comparing the first

quartile and third quartile of the frailties. All comparison are certeris paribus comparisons,

meaning, that everything is identical between the two hypothetical individuals, except the

frailty value. As a standardised measure of importance, the ratio
hi,j|Z(t|z3rd)

hi,j|Z(t|z1st) = z3rd

z1st
, where

z3rd and z1st indicate the third and the first quartile of the frailty distribution, will be

used. This will be called quartiles ratio (QR) from now on. Interpretation is as follows:

from the perspective of twins at t = 0 on the first quartile of the frailty distribution, there

is a share of 0.25 in the population who have at least z3rd

z1st
times the risk at any t to die

in the very next moment, given that they have survived up to t. The expression ẑ1st, for

example, will refer to the estimated first quartile of the frailty distribution by using θ̂ as

the parameter for the gamma distribution.

This first quartile and third quartile for monozygotic females is ẑ1st = 0.427 and

ẑ3rd = 1.363 respectively. At t = 0, there is an estimated share of 0.25 in the population

who have at least
hi,j|Z(t|ẑ3rd)

hi,j|Z(t|ẑ1st) = 1.363/0.427 = 3.19 times the conditional hazard than

twins on the first quartile.

This is much more than in the estimate of the coxph procedure, where the quartiles

ratio reduces to 1.352/0.463 = 2.92, from the perspective of the same lucky twins as above.

This means, that in the frailtyHL estimation the mortality patterns are more pronounced

by individual frailties than in the coxph estimation, where the impact of the frailties on

the baseline hazard is less variable in the gamma model.

This can be seen in figure 4 which shows the conditional hazard rate for twins born in

1900 (birthi,j = 0) on the first quartile, the median and the third quartile of the frailty

distribution. The individual on the first quartile is more off from the median in the case

of frailtyHL what can best be seen around the value of 0.8.

Looking at the difference [SHLi,j|Z(t|z1st) − SHLi,j|Z(t|z3rd)] − [Scoxi,j|Z(t|z1st) − Scoxi,j|Z(t|z3rd)]

reveals that the spread in the conditional survivor function between the first and third
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Figure 4: Conditional Survivor functions for an individual born in 1900, female, monozy-
gotic and with the (gamma) frailites taking the value of the first quartile, median, and
third quartile

quartile of the frailty distribution, is bigger in the frailtyHL approach than in the coxph

approach. There are differences up to the second significant digit as seen in figure 5.

Differences are not visible in the sub-population Survivor function Si,j(t) (sub-population:

female, monozygotic, twins born in 1900). The difference between the two Survivor func-

tions is negligible with differences only up to lower values in the third significant digit

(figure 6).

The QR of dizygotic females is much smaller (2.36) than that of monozygotic females

(3.19), indicating, that the female dizygotic twins are much less depended, as they do not

share that much from the gene pool as monozygotic females do. This is also mirrored by

the males where the quartiles ratio is 2.77 for monozygotic twins and 1.97 for dizygotic

twins.

Figure 7 shows the estimated frailties for monozygotic females for both estimation

approaches. For the gamma density, the corresponding point estimate is used as “true”

parameter. None of the theoretical distributions seems to be a particularly good fit. In

particular, the empirical distribution is much more narrow around the reference value

of z = 1 and the theoretical distribution is particularly bad in representing very small

values of the frailties. This might be an indication that the frailties are not generated

from a gamma distribution. Further on, the empirical ẑ look quite similar, with slightly

more variation in the frailtyHL approach ( ˆvar(ẑ) = 0.140) than in the coxph approach

( ˆvar(ẑ) = 0.114). Slightly different patterns can be seen after the value of 1.

If the frailties are robust against the choice of distribution, as this seems to be the case

here, this opens up the question of why one should use the theoretical quantiles and point

estimates of the frailty variance parameter for analytic purposes as happened here rather
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Figure 5: Spread = [SHLi,j|Z(t|z1st)− SHLi,j|Z(t|z3rd)]− [Scoxi,j|Z(t|z1st)− Scoxi,j|Z(t|z3rd)]

Figure 6: Sub-population Survivor function for monzygotic females born in 1900. Histor-
gram shows SHLi,j (t)− Scoxi,j (t).
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Figure 7: Density of frailites of monozygotic females for both estimation approaches

than using the empirical quantiles and variance estimate. A profound counterargument

of using empirical quartiles and the variance of ẑ is that those measures do not consider

the insecurity induced by E[(v̂ − v)(v̂ − v)T ].

Estimates were also calculated for the models

Zi ∼ π(θzygi),

and the correspondingly hi,j|Z(t|zi) = ziexp{birthiβ(birth)
zygi + sexiβ

(sex)
zygi }h

(zygi )
0 (t), i.e. sep-

arating only monzygotic (model: mono) and dizygotic (di) twins from each other. As

mentioned previously, the performance of the models will be evaluated in terms of the

AIC, with the estimates from coxph in brackets. The fmono and mmono model combine

for an AIC of 3119.882 + 3631.994 = 6751.876 (3119.367 + 3632.09 = 6751.457) the mono

model had an AIC of 7582.59 (7587.39). This indicates a better conditional prediction if

the sexes are estimated separately.

The same holds for the dizygotic twins: The joint model had an AIC of 15905.29

(15922.94) whereas the two separate models combine for only 6736.407 + 7591.075 =

14327.48 (6735.383+7591.039 = 14326.42). This is probably caused by different mortality

patterns between the sexes and hence, a joint baseline hazard and proportional hazards

are not a good fit to reality. Additionally, the truncation as occurred in this dataset affects

the frailty distribution at the beginning of the study and hence, a joint frailty distribution

and again, a joint baseline hazard is not appropriate. (Hougaard, 2000, p. 300)

As the degree in dependence differs substantially between monozygotic and dizygotic

twins a joint model for all individuals does not make sense, and was thus, not calcu-

lated.(Hougaard, 2000, p. 300)

A significant test for the frailty variance resulted in a rejection of the hypothesis
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that θ = 0 for any of the models: the LR test statistic for fmono was 14.71 (p-value:

6.25× 10−5), 12.11 for fdi (p-value: 2.50× 10−4), 13.85 for mmono (p-value: 9.88× 10−5)

and 7.30 for mdi (p-value: 3.45× 10−3 ).

7.2 Log-normal Frailty Model

The Log-normal frailty model assumes

Zi
iid∼ LN (µ, σ2), for i = 1, . . . , n

(Duchateau and Janssen, 2008, p. 195). It follows that

Vi
iid∼ N (µ, σ2), for i = 1, . . . , n,

and gv(v), as used in the likelihood function, is the product of individual normal p.d.f.’s

with identical µ and σ. As an identification constraint µ is set to zero. The estimated

parameter σ2 is the variance of the frailties on the log-level. If θ = V ar[Zi], then θ =

exp{σ2}(exp{σ2}− 1). Note, that from the identification restriction follows that E[Zi] =

exp{σ2

2
} 6= 1, unless σ = 0. Unfortunately, there is no analytical solution to calculate the

unconditional Survivor or hazard functions and numerical (integration) procedures must

be applied(Duchateau and Janssen, 2008, p. 196). This was not done here.

7.2.1 Comparison of Estimation Procedures & Distribution Assumptions

Now, the different datasets will be examined with the log-normal frailty model. Focus is,

again, first, on the differences between the frailtyHL and coxph estimates and then, on

the interpretation of the estimated values. The results are constantly compared to those

of the gamma models.

Again, βsex,zyg is practically identical between the two methods, with only very slight

differences between the estimators of mmono and mdi in the third significant digit (table

4). The same holds for estimated standard errors. Also, the size of the impact of the year

of birth on one’s hazard is similar to the gamma frailty model.

With respect to the estimators of σ2, however, the picture is turned completely upside

down. Now the estimators of coxph are all bigger than their frailtyHL counterparts. Also,

the jump in the variance between the fdi and the mdi model, that could previously be

seen in the frailtyHL approach but not in the coxph estimation, is now present in the

coxph estimation, while less intense for frailtyHL.

As expected, the variances of both monozygotic models are bigger than the variances

in the dizygotic models for both estimation procedures, as has been the case in the gamma

model. In contrast to the gamma model, a pattern can also be seen across the sexes in
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Table 4: Log-normal Model: frailtyHL vs coxph

Variable fmono fdi mmono mdi

BirthHL -0.023*** -0.019*** -0.019*** -0.015***
(0.0065) (0.0045) (0.0065) (0.0043)

Birthcoxph -0.023*** -0.019*** -0.018*** -0.014***
(0.0066) (0.0046) (0.0066) (0.0044)

σ̂2 HL 0.403 0.236 0.354 0.171
(0.1774) (0.1079) (0.1473) (0.0961)

σ̂2 coxph 0.578 0.383 0.481 0.285

θ̂HL 0.742 0.337 0.605 0.222

θ̂coxph 1.395 0.683 1.000 0.437
γ̂frailtyHL 0.704 0.516 0.652 0.432
γ̂coxph 0.885 0.683 0.786 0.574

total observations 844 1638 808 1510
number of events 280 534 323 611

***p < 0.01, **p < 0.05, *p < 0.1

both estimation approaches: The variance of the female monozygotic twins is bigger than

that of monozygotic males and so is the variance of dizygotic females bigger than the

variance of dizygotic males. A feature that was only present in the frailtyHL estimators

in the gamma model but not in the coxph approach.

Table 5: Log-normal Model: Entire Sample with coxph

Variable fmono fdi mmono mdi

Birthcoxph -0.025*** -0.026*** -0.015*** -0.016***
(0.0037) (0.0025) (0.0035) (0.0023)

σ̂2
coxph

0.407 0.254 0.478 0.187

θ̂coxph 0.755 0.373 0.988 0.248
γ̂coxph 0.709 0.538 0.782 0.453

total observations 2896 5512 2732 4976
number of events 904 1761 1069 1999

***p < 0.01, **p < 0.05, *p < 0.1

Table 5 shows the estimates from the entire sample using coxph. As in the gamma

model, the variance of monozygotic males is bigger than that of monozygotic females.

The variances are all more moderate than in the coxph estimation with the sub-sample

but still bigger as the estimates from frailtyHL.

The cross-distribution comparison shows, that the estimated variances in the lognor-

mal model are bigger than their counterparts in the gamma frailty model for any subset
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of the data and for both estimation procedures. However, it is not straightforward to

compare these estimators between different distributions and distribution assumptions.

This is especially important in the comparison of the lognormal frailty model and the

gamma frailty model, as the former does not restrict E[Zi] to be unity but the latter

does. Hence, a standard deviation (or variance) of Zi has a different meaning relative to

E[Zi]. And this is especially important in the case of hazard modelling, as any restriction

in E[Zi] merely redefines the scale of the baseline hazard but does not impact inference.

Therefore, table 4 also shows an estimator of the relative standard deviation γ =
√
θ

E[Zi]
for

each model.

For the relative standard deviation, the picture is again completely upside down. While

the frailtyHL approach estimates less relative variation in the lognormal model than in the

gamma model, the coxph approach shows an increase of relative variation: For any of the

subsets γfrailtyHLsex,zyg is smaller in the lognormal model than in the gamma model. However,

for any of the subsets γcoxphsex,zyg is bigger in the lognormal model than in the gamma model.

But this is still only one measure of different distributions which, in particular, does not

make the tail behaviour of the estimated frailty distributions visible. If one enriches the

analysis of the relative standard deviation with the QR measure, examination is more

thoroughly: For monozygotic females, the QR reduces to 2.35 in the lognormal model

compared to 3.19 in the gamma model for the frailtyHL approach. This is contrasted by a

QR of 2.79 in the coxph lognormal model versus 2.92 in the gamma model. This illustrates

the shortcoming of analysing the relative standard deviation for itself. Even though the

relative standard deviation is bigger in the lognormal frailty model than in the gamma

model, the QR gets smaller. This is caused by the tail behaviour of the two corresponding

distributions, where the lognormal density incorporates more mass on its right tail, as

can be seen in figure 8. A fair comparison between the two distributions requires a

“standardisation” of Zi in the lognormal case. This was done by dividing Zi with exp{σ2

2
},

leading to the parameters µ∗ = −σ2

2
and σ2 =

√
ln{γf,mono + 1}, such that E[Zi] = 1 and

V ar[Zi] = γ2
f,mono. The corresponding parameter estimates of the two different approaches

were plugged in. The figure also shows the first and third quartiles of the corresponding

estimations. Note, that the QR is independent of µ as the quantile function of the

lognormal distribution equals exp{µ+
√

2σ2erf−1(2F − 1)} and, consequently, µ cancels

out in the ratio.

In the coxph estimation the Gamma and the Lognormal distribution cross at the

value z = 2.94 and from then on, the Lognormal distribution is always above the Gamma

distribution. From that point on, there is 0.014 more probability mass in the lognormal

distribution than in the gamma distribution. That means, the increase in variation in

the coxph estimation comes from “outliers” with a particular bad genetic make-up, while

the majority of the female monozygotic twins are estimated to be closer to each other as
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Figure 8: Estimated & “standardised” Lognormal distribution (left) vs the Gamma dis-
tribution of the frailtyHL approach. Coxph counterpart (right). Dotted lines are the first
and the third quartile.

indicated by the QR. This is a notable feature as it is known that some individuals with

specific genes like the breast cancer genes BRCA1 and BRCA2 have a much larger risk

(Antoniou and Easton, 2006) and might, therefore, be one of the outliers. This effect is

less pronounced in the frailtyHL approach. The distributions cross at z = 4.77 and from

then on the density of the lognormal estimate is slightly bigger: From that point on there

is only 0.0009 more probability mass in the lognormal distribution. So the effect of more

outliers in the lognormal distribution starts to kick in later and is less pronounced as in

the coxph estimation. Summed up a higher relative variance in the lognormal model leads

more mass for outliers but not necessarily to a higher QR.

Figure 9 shows again the individual hazards of monozygotic female twins born in 1900.

It can be seen that the difference to the median is now more pronounced in the coxph

approach.

Looking at the difference [SHLi,j|Z(t|z1st) − SHLi,j|Z(t|z3rd)] − [Scoxi,j|Z(t|z1st) − Scoxi,j|Z(t|z3rd)]

reveals that the spread in the conditional survivor function between the first and third

quartile of the frailty distribution, is bigger in the coxph approach than in the frailtyHL

approach (figure 10). The differences are also much bigger with up to 0.08 in absolute

value compared to the spread in the gamma model. The estimates of the lognormal model

of the two approaches are considerably different.

Figure 11 shows the density of the estimated frailties versus the theoretical distribution

with σ̂2 as value for the log-frailty variance. Though the theoretical densities in both

approaches are still far off especially around the value z = 0. This seems to be less

intense as for the gamma model. Further on, the theoretical density is a much better fit

in the tail of the coxph approach. This might be a valuable feature if this captures the
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Figure 9: Conditional Survivor functions for an individual born in 1900, female, monozy-
gotic and (log-normal) frailites taking the value of the first quartile, median, and third
quartile

Figure 10: Spread = [SHLi,j|Z(t|z1st)− SHLi,j|Z(t|z3rd)]− [Scoxi,j|Z(t|z1st)− Scoxi,j|Z(t|z3rd)]
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Figure 11: Density of the (log-normal) frailites of monozygotic females for both estimation
approaches

true “outliers”.

A rough visual inspection supports this idea. Figure 12 shows the estimated frailties

against the survival times3: a trend is clearly visible.

And it is further supported by figure 13 which shows the estimated (log-centred)

frailties 4 against the survival times for the gamma model (coxph estimation). The biggest

value is ẑmax = 2.156. In the lognormal model, some of the low survival times have much

higher frailties. The highest value is ẑmax = 3.027.

The remaining analysis of the QR of the other subsets do not differ substantially

from that of the gamma model, in the sense that the QR of dizygotic females (frailtyHL:

1.92, coxph: 2.30) is smaller than that of monozygotic females and this also holds for

monozygotic males (frailtyHL: 2.23, coxph: 2.54) and dizygotic males (frailtyHL: 1.75,

coxph: 2.05).

As for the gamma model, estimates were also calculated for the models

Zi ∼ π(θzygi),

and the correspondingly hi,j|Z(t|zi) = ziexp{birthiβzygi + sexiβ
(sex)
zygi }h

(zygi )
0 (t), i.e. separat-

ing only monzygotic (model: mono) and dizygotic (di) twins from each other. The results

of coxph can again be found in brackets. The fmono and mmono model combine for an

3Note that both twins are part of those plots. That means that every frailty value is present twice.
In some cases, the points overlap, especially when both are censored. There is a rare case where both of
the twins died at the same time (ẑ = 2.91 (lognormal) and ti = 27.59 years). That is why on ẑ = 2.91
three dots can be seen in the vertical (and not four).

4Here the ”standardisation” was taken in the opposite direction. The mean of v was deducted from v
from the gamma model to have the same restriction as in the lognormal model. Then the centred frailties
were exponentiated.
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Figure 12: Estimated frailties of the coxph approach from the lognormal model against
survival time

Figure 13: Estimated (log-centered) frailties of the coxph approach from the gamma model
against survival time
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AIC of 3108.897+3624.382 = 6733.279 (3102.423+3619.311 = 6721.734) the mono model

had an AIC of 7565.171 (7556.311). This indicates a better conditional prediction if the

sexes are estimated separately.

The same holds for the dizygotic twins: The joint model had an AIC of 15887.33

(15881.86) whereas the two separate models combine for only 6723.461 + 7584.363 =

14307.82 (6713.859 + 7575.725 = 14289.58).

Other models were again not considered.

A cross frailty distribution comparison shows that the lognormal frailty distribution

led to a better fit in any case (estimates from the coxph approach are again in brackets):

• AICLN
f,mono − AIC

gamma
f,mono = −10.985(−16.944)

• AICLN
f,di − AIC

gamma
f,di = −12.946(−21.524)

• AICLN
m,mono − AICgamma

m,mono = −7.612(−12.779)

• AICLN
m,di − AIC

gamma
m,di = −6.712(−15.314)

Burnham and Anderson (2002) argue that a model which has a bigger AIC by the

value of 10 or more has essentially no support as it fails to explain an essential part of

the explainable variation in the model (p.71). The only models that do not cross this

threshold are mmono and mdi in frailtyHL approach (but the lognormal model still being

the better one). Particularly bad is the gamma fdi model of coxph estimation. This is

the only estimation of dizygotic females where a jump in variation compared to dizygotic

males cannot be seen. In all remaining models, the dependency of females was bigger

than that of males with respect to their counterpart in zygosity status (and estimation

approach).

The better AIC might be caused by a better fit of the lognormal model for extreme

cases, i.e. twins with particularly high frailty.

The significance tests (frailtyHL) for the frailty variance resulted again in a rejection

of the hypothesis that θ = 0 for any of the models: the LR test statistic for fmono was

8.74 (p-value: 1.56 × 10−3), 2.71 for fdi (p-value 3.05 × 10−3 ), 9.09 mmono (p-value:

1.28× 10−3 ), 4.934 mdi (p-value: 1.32× 10−3 ).

Lastly, an overview of the findings in this chapter is given: The cross-estimation

approach comparison showed practically no difference in the fixed effect. Also, the struc-

ture of the order of frailty variances across the different models were the same with one

exception, namely the ordering of the variance between the fdi and the mdi model were

different in the gamma model. The frailty variances were bigger in the frailtyHL approach

than in the coxph estimation for the gamma model but smaller in the lognormal model.

The cross-distribution comparison showed that the lognormal frailty distribution gives a

better. This is most likely caused by the tail behaviour as the QR’s were more closely
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together in the lognormal model but the lognormal model allowed for more extreme values

(big frailties). From the content-related perspective, all models gave the same interpreta-

tion: (unsurprisingly) genetics matter. That can be seen from the frailty variances. The

monozygotic variances were bigger than the dizygotic variances, i.e. monozygotic twins

are more similar than dizygotic twins. That does not mean that genetics matter less for

dizygotic twins but as they share fewer genes they are less similar in survival times.
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8 Simulation Study

To evaluate the performance of the applied estimation methods 1000 datasets were simu-

lated. Each dataset has n = 350 clusters with a cluster size of 2. The simulation scheme

is as follows:

Firstly, a covariate matrix X with size of 700×2 was simulated. Both covariates were

drawn from a uniform distribution with a lower bound of −20 and an upper bound of

+20. The first covariate x
(ind)
i is individual-specific. In the models that will be estimated

later on, this covariate will be left out. This was done to introduce some reality in the

analysis of the simulated data, as it seems implausible that the lifetime of the twins in

the real world example is entirely governed by the given cluster-specific covariates. The

second covariate x
(cluster)
i , however, is a cluster-specific covariate and mimics the year of

birth, i.e. for each cluster of artificial twins a single value was drawn. The values of

x(cluster) were also rounded to whole numbers. The survival times (in unit days) Ti,j of

individuals were then drawn from a Weibull distribution with individual scale parameter

λi,j = λ0exp{−(xTi,jβ + ln{zi})/αT}, with λ0 = 365× 80, and shape parameter αT = 5.

This parametrisation was chosen to have an easy partition of the conditional hazard

into a baseline hazard and an individual part that fits the style of modelling in the semi-

parametric approach. This will be discussed further below. The vector of slope parameters

β =
[
0.0125 −0.015

]T
. The variable zi is an iid realisation from a lognormal distribution

with parameters µ = 0, σ = 0.5584849, such that the median of Zi is 1, E[Zi] = 1.169 and

V ar[Zi] = 0.5. Note, that ln{Zi} is normally distributed. For each of the 1000 datasets

a single set of z was drawn.

For the first 1000 estimations, the censoring time was set to 72 (72 × 365.25 days)

years for all individuals. This is in contrast to the real world twin example where a

pair that were born one year earlier was observed one year longer (if they did not die

previously). This is the high-censoring setting. For the second set of (1000) estimations,

the censoring time was set to 90 years. This is the low-censoring setting. The aim is to

examine whether there are systematic differences in performance between the approaches

across high-censored and low-censored datasets.

Figure 14 shows the true conditional Survivor function for an individual with ηi = 0.

Median survival time is about 74 years for this individual (1stquartile ≈ 62 years, 3rd quartile ≈
85 years). Given the distribution of xind, xcluster and vi and the values for β, i is almost an

”average” pair. It can be seen that the first censoring time is slightly before the median

and consequently, the censoring rates vary around 53%. In contrast, the censoring rate for

the second simulation run is slightly behind the third quartile and the censoring rates for

those datasets vary around 20%. The censoring rates of each 1000 datasets are depicted

in figure 15.
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Figure 14: Survivor function for an individual with ηi = 0 with first quartile, median,
third quartile survival-time and both censoring rates.

Figure 15: Censoring rates for high- (left) and low-censoring (right) setting.

Page 57 of 65



8 SIMULATION STUDY

Figure 16: Conditional hazard rate

The conditional hazard of the simulated data fits in the proportional hazard frame-

work, as

hi,j|V (t|vi) = exp{xTi,j + vi}
αT t

αT−1

λαT0

= exp{xTi,j + vi}h0(t)

= zihi,0(t).

The true conditional hazard is identical to that of proportional hazards modelling as

conducted here.

Hence, the true model of the simulated data is favourable to the estimated model.

This is because, first, the proportional hazards assumption with respect to the FE and

RE is correct and second, the distribution assumption of RE is also the correct choice. On

the other hand, the true model is unfavourable to the estimated model because the true

model includes x(ind) and x(cluster) whereas the estimated model only include x(cluster).

Also, the true baseline hazard is not modelled in the estimation but its non-parametric

estimate is chosen.

As an example, figure 16 shows the true conditional hazard for an individual with

ηi = −1, 0, 1 (values are chosen arbitrarily). The hazard is steadily increasing with time

running.
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8.1 Bias-Variance Analysis

The quality of an estimator, for example the frailty variance θ̂, is twofold: Firstly, it is

desirable that θ̂ is unbiased, i.e. E[θ̂] = θ. The bias of an estimator is B(θ̂) = E[θ̂] − θ.
Secondly, the variability V [θ̂] around its expected value should be small. Both features

have to be considered simultaneously: The variance of θ̂ gives an indication of how much θ̂

would change if it would be estimated from another dataset of the same random variable.

Too much fidelity to the data, i.e. a high variance, increases the risk that one is confronted

with an estimator that captures too much of unstructured variation for a given dataset.

One can think of the V [θ̂] as a measure of how good the estimator is brought into a certain

shape and B[θ̂] specifies how good that shape represents reality.

Ideally, one has an estimator that minimizes both features. However, that is often

not the case. This should not be confused with the bias-variance trade-off, that arises if

one increases the complexity of the model, by adding parameters. This typically causes

a trade-off in that sense, that the bias is reduced but the model is more strongly fitted

to the specific dataset what increases the variance.(James et al., 2015, p. 33-36) This is

not the case here as there is no competition between models. The model stays the same

but the equations to estimate it alter. Nevertheless, the different estimation procedures

might lead to a different bias-variance structure. It is especially the bias perspective

where frailtyHL claims to be more accurate. The increasing order of approximations

might increase the variance by introducing numerical instabilities on the one hand and

through a higher fidelity to the data by a higher precision on the other hand.

The mean squared error (MSE) serves as an overall measure to discriminate between

estimators, those of frailtyHL and coxph in this case. This is because the MSE unifies

both features, bias and variance, into a single measure, as

MSE(θ̂) = E[(θ̂ − θ)2]

= E[(θ̂ + E[θ̂]− E[θ̂]− θ)2]

= E[(θ̂ − E[θ̂])2] + 2(E[θ̂]− θ)(E[θ̂]− E[θ̂]) + (E[θ̂]− θ)2

= V [θ̂] +B(θ̂)2

By relying on asymptotics the expectation will be calculated as

E(θ̂) =
1

1000

1000∑
l=1

θ̂l, (52)

with θ̂l = (exp{σ̂2
l }−1)exp{σ̂l2} as the estimator of the lth dataset. And correspondingly,
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the variance is calculated by

V (θ̂) =
1

1000

1000∑
l=1

(θ̂l − E(θ̂))2.

As parameters might be very different in absolute size it is desirable to get the quality

of goodness measure on a more readable and comparable scale. This will be done by

dividing all criteria by its true value, the absolute value in the case of β. The following

three criteria will be reported

• SB(θ̂) = B(θ̂)/θ

• SSE(θ̂) =

√
V (θ̂)/θ

• SRMSE(θ̂) =

√
MSE(θ̂)/θ,

where the additional S stands for scaled, the scaled standard error (SSE) for example.

8.2 Comparison of Estimation Approaches

The results from the simulation study mirror observations from the real world example:

β is identical in essence, remarkable differences can be found for θ. The results of the

simulation study can be found in table 6 for the high censoring setting.

The relative bias for β is small for both approaches, though bigger for frailtyHL.

The relative standard error, however, is slightly smaller for frailtyHL. When taking the

scaled root mean squared error as an ultimate criterion, frailtyHL is the better performing

approach, though the difference is very small: the expected relative deviation from the

real β is 0.357 for frailtyHL and 0.361 for coxph.

The scaled bias and scaled standard error are both bigger for θ for both approaches,

indicating the difficulty to estimate parameters, that are further down the model hierarchy.

The differences between the approaches are extreme, however. The frailty variance is

enormously downward biased for frailtyHL with a scaled bias of −0.4305. This is much

smaller in the coxph estimation (−0.079). Figure 17 gives an impression of how the

estimators are distributed. The first (0.139), third quartile (0.353) and the median (0.228)

are all smaller in the frailtyHL approach than in the coxph estimation. The true value

is not even within the range of the first and the third quartile, demonstrating that the

estimation is strongly biased. The coxph approach is also downward biased but the range

from the first (0.258) and third quartile (0.583) include the real parameter and the median

(0.408) is, accordingly, much closer to the real value.

The scaled standard error is smaller for the frailtyHL approach, as can also be seen

from the boxplot. However, this means only that there is relatively low variation around a
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”bad” value. Finally, the scaled root mean squared error is smaller for the coxph approach.

Given the tremendous bias for θ in the frailtyHL estimation, the coxph procedure should

be preferred.

Table 6: Goodness Measures in High-Censoring Setting

Parameter SB SSE SRMSE

β̂HL 0.042 0.355* 0.357*

β̂coxph 0.028* 0.360 0.361

θ̂HL −0.4305 0.475* 0.641

θ̂coxph −0.079* 0.597 0.603*

* marks better performing approach for corresponding criterion

There is no systematic difference in the low-censoring setting. The results can be found

in table 7. The SSE and SRMSE declined for both parameters and both approaches.

Noteworthy - and alarmingly - is the increase in bias for β despite the increased amount

of information in the dataset for both approaches. That is hard to explain and increases

concerns that there was an error made in the simulation or estimation process or elsewhere.

However, if there is one, it could not be found.5 Contra a possible error is, that the results

confirm what has been found in the real world example, especially in the lognormal model:

rather big differences in the frailty variances but small or even negligible differences in

the fixed effect. And: all other Q-criteria declined.

The scaled bias of θ declined heavily for both approaches. Relative to the results

from the high censoring setting, even more for the coxph approach than for the frailtyHL

approach. The bias in the frailtyHL approach is still intolerably high.

Table 7: Goodness Measures in Low-Censoring Setting

Parameter SB SSE SRMSE

β̂HL 0.052 0.291* 0.296*

β̂coxph 0.034* 0.296 0.298

θ̂HL −0.255 0.494* 0.556

θ̂coxph −0.010* 0.550 0.550*

* marks better performing approach for corresponding criterion

Figure 18 shows again a boxplot for the estimated θ. Both got closer and the distance

5The following steps were extensively checked after this finding: were the same datasets (apart from
censoring) used to calculate the models across the different censoring schemes? Were the same datasets
used for the frailtyHL and the coxph estimation? Were model formulas correct? Are the correct values
for the estimators retrieved? Is the bias calculated correctly? The answer is yes, to the best knowledge
of the author, to all of those questions.
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Figure 17: θ̂ from both approaches for all datasets of the high-censoring setting

between the third and the first quartile decreased for both but the true value is still not

covered by the first and third quartile of estimated θ in the frailtyHL approach. The

median (0.448) of the coxph estimations comes quite close to the real value of 0.5. The

median of the frailtyHL estimators was 0.321.

Table 8 shows the performance of both approaches for both settings. The winners are

constant through the different settings.

It is surprising that frailtyHL showed better performance in variance but worse in

bias. It was expected to be the other way around as the higher order of approximation

was assumed to be more sharp in getting all information from the given dataset.

Table 8: Better Estimator in Low- and High Censoring Setting

Parameter SB SSE SRMSE

β̂ :
Low Censoring
High Censoring

coxph
coxph

frailtyHL
frailtyHL

frailtyHL
coxph

θ̂ :
Low Censoring
High Censoring

coxph
coxph

frailtyHL
frailtyHL

frailtyHL
coxph

The difference in SRMSE for β is rather small. Given that the differences are much

stronger for θ one should opt for the coxph package again.

There are essentially three candidates who might be responsible for bad performance:

• Hv which is assumed to be a diagonal matrix in coxph but not in frailtyHL (no

matter the order of approximation),

• ∂v̂
∂θ

which is ignored in coxph but not in frailtyHL (no matter the order of approxi-

mation),
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Figure 18: θ̂ from both approaches for all datasets of the low-censoring setting

• F , the higher order of approximation in frailtyHL (which is also a function of Hv).

It is tempting to blame Hv in settings with low cluster size: little information on the

clusters might lead to a bad estimate of the covariance matrix of the cluster-specific frailty

parameters. Table 9 shows the results of first-order frailtyHL (HL01) estimations in the

high-censoring setting. The results of coxph and frailtyHL (second-order approximation)

are the same as above and are there for comparison. Reducing the order of approximation

significantly improves the estimates in terms of bias. In case of β, bias, standard error and

mean squared error are identical to coxph. The bias of θ reduces significantly and comes

close to that of the coxph estimation but is still a little bit higher. The SSE, however,

is increased. Hence, at least some proportion of the heavy bias is due to the inclusion of

F . Note, that the elements of F are either from H−1
v or negative first- and second-order

derivatives of Hv. This is an indication that there is an issue with Hv as suspected

which might also be responsible for worse performance in the first-order approximation

of frailtyHL.

The additional information in frailtyHL, be it the first- or the second-order approx-

imation, does not lead to better estimations in the case of small clusters. Higher-order

approximations even lead to terrible results in the lognormal case. With respect to the

real-world example, the results of the coxph estimation should be regarded as much more

reliable than those of frailtyHL.
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Table 9: Goodness Measures in High-Censoring Setting Including First-order Approxima-
tion

Parameter SB SSE SRMSE

β̂HL 0.042 0.355* 0.357*

β̂HL01 0.028* 0.360 0.361

β̂coxph 0.028* 0.360 0.361

θ̂HL −0.4305 0.475* 0.641

θ̂HL01 −0.096 0.608 0.615

θ̂coxph −0.079* 0.597 0.603*

* marks better performing approach for corresponding criterion

9 Conclusion

The aim of this thesis was to asses the difference between the frailtyHL approach and the

coxph estimation. The frailtyHL approach estimated the frailty variances to be bigger

than the coxph estimation for the gamma frailty for the twin dataset. The opposite

has been the case for the log-normal model. However, both approaches coincided in very

general inferences: the frailty variances of monozygotic twins are bigger than for dizygotic

twins and the log-normal model is a better fit than the gamma model.

From the twin dataset, it can be learned that the choice of distribution should represent

the specific problem at hand. The log-normal distribution resulted in the mass of people

being closer together (by the comparison of the first and third quartile of the frailty

distribution) despite a bigger variance than in the gamma model. However, the right tail

of the log-normal distribution was heavier. This is an interesting feature for modelling

survival times: On the hand, it allowed the log-normal frailty model to better account

for people who died early. On the other hand, there was less mass for frailties very close

to zero than in the gamma distribution which also seemed to be a better fit as there

are fewer people who are getting extremely old. Consequently, the tail behaviour can

be an interesting feature when it comes to the choice of the frailty distribution. Heavy

tails might be a good fit for certain problems: A heavy right tail if there are relatively

many events occurring very early or lots of mass close to zero if there are a lot of events

happening extremely late. The hardly surprising conclusion is that the frailty distribution

should be a good representation of reality. This is a contra argument against the use of

black-box solutions - as happened here - in essence. The frailtyHL approach could be an

interesting standardised approach to model lots of frailty distributions. Identifying the

scenarios where it performs badly and finding countermeasures is, hence, highly desirable.

With respect to more detailed estimations, one should be cautious. It is tempting to

believe that a higher-order approximation and more computational details lead to better
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estimators, at least in terms of bias. However, this does not seem to be the case. For data

with small cluster size the higher-order of approximation led to strongly biased results

for log-normal frailty. That also means that the estimates resulting from frailtyHL with

second-order approximation to the likelihood for the twin dataset should be regarded as

unreliable. It would be interesting to see if this is reversed if the cluster size increases

for a log-normal frailty model. The Hessian of the log-frailties is the main candidate to

be the reason for bad performance but to a big proportion through its influence on the

second-order term. Estimation based on the first-order approximation delivered much

better results in terms of bias. However, results from the coxph function were still better

despite the restriction that the Hessian of the log frailties is a diagonal matrix.
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