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1 Introduction

Meta-analysis is a foundational methodology in medical research, facilitating the synthesis
of evidence from multiple clinical trials to yield more precise estimates of treatment ef-
fects. In fields such as cardiology, oncology, and epidemiology, individual studies often lack
adequate statistical power or produce inconclusive outcomes. Meta-analytic approaches
systematically aggregate information, thereby improving the validity of inferences. In-
tegrating data across studies makes it possible to quantify overall treatment efficacy,
identify heterogeneity sources, and assess the generalizability of results. The method is
especially valuable for rare adverse events, where individual trials may report few or no
cases, requiring specialised modelling techniques to achieve stable estimation. The relia-
bility of meta-analytic inference depends on the underlying data-generating processes and
the assumptions imposed on study-level parameters. Several factors significantly affect
the performance of meta-analytic models, including between-study heterogeneity in true
effects, imbalances in treatment-to-control randomisation ratios, and the presence of rare
events (Sweeting et al., 2004; Mathes and Kuss, 2018). High heterogeneity increases esti-
mator variance and may introduce bias if normality assumptions are not met. Imbalanced
randomisation can lead to disproportionate weighting of study arms and bias estimates
toward the null. Sparse data scenarios, such as single-zero or double-zero studies, fur-
ther complicate inference because traditional continuity corrections or study exclusions
can distort pooled estimates (Ren et al., 2019; Zabriskie et al., 2024). Clarifying how
these design features influence estimator performance is crucial for methodological trans-
parency and guiding evidence synthesis. Despite progress in modelling heterogeneity and
sparse outcomes, variability in baseline risk across studies is often implicitly treated in
most simulation studies. Baseline risk, commonly defined as the control-group event
probability, directly affects the variance of the estimated log-odds ratio and influences
bias and efficiency. However, existing literature rarely addresses baseline variability as a
primary parameter. Instead, it is typically incorporated indirectly through assumptions
about event probabilities or fixed study-level effects. When pronounced heterogeneity,
imbalance, or sparse data are present, failing to model baseline variability explicitly can
result in misleading conclusions regarding estimator robustness. This thesis systemati-
cally compares the effects of explicitly considering baseline pooling in meta-analysis on
model performance. Specifically, the impact of baseline variance on bias, mean squared
error, and coverage is assessed across diverse simulation scenarios. Additionally, cases
in which baseline risks are correlated with study size are examined, reflecting real-world
study designs such as small trials with higher-risk populations and extensive trials with
broader, lower-risk cohorts. The remainder of this thesis is structured as follows. First,
current research on model performance in meta-analyses with rare events is reviewed, em-
phasising methodological challenges and research gaps. The theoretical foundations and
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statistical formulations of the models considered in this study are then introduced. These
models include the Inverse Variance (IV) method, Mantel–Haenszel (MH) method, Ran-
dom Effects (RE) model estimated using Restricted Maximum Likelihood (REML), and
the Hartung–Knapp–Sidik–Jonkman (HKSJ) adjustment. An extensive simulation study
is then conducted to evaluate the performance of these models under varying baseline-
risk variances, heterogeneity levels, and correlation structures. Finally, the findings are
applied to the rosiglitazone dataset (Nissen and Wolski, 2007), demonstrating the appli-
cation of methodological insights to real-world meta-analytic data. All simulation scripts
and data generation functions were implemented in R, and the complete codebase, in-
cluding documentation and example workflows, is available on the GitHub repository:
https://github.com/PhiltonM/PoolingSimStudy.

2 State of Research

Extensive research has investigated the impact of data characteristics and model assump-
tions on the performance of meta-analytic estimators. The literature primarily addresses
factors such as heterogeneity, treatment allocation imbalance, and sparse data. These fac-
tors contribute to bias and instability in classical pooling methods. Additionally, studies
have examined baseline risk variability and the effects of violating distributional assump-
tions on model performance. However, most investigations address baseline variability in
isolation, or as a secondary consideration, rather than as a central methodological param-
eter. Ghidey et al. (2013) fitted structural and functional models to simulated scenarios
where they varied the distribution of the baseline risk over a grid of four different k-values
(k = 10, 20, 50, 100) and two different error variance values. They found that as long
as the normality assumption for the baseline risk is violated, the estimates of the struc-
tural models were slightly less biased than the parametric estimates. Arends et al. (2000)
proposed a hierarchical Bayesian modelling approach to estimate the relationship be-
tween baseline and treatment risk and applied it to three different meta-analysis datasets.
Thompson and Sharp (1999) examined whether a study-level covariate can explain the
observed heterogeneity in meta-analysis results by comparing a weighted normal errors
regression with a logistic regression method applied to different meta-analysis datasets.
Given these approaches to evaluate the influence of baseline variability and violation of
distributional assumptions on the model performance, it is apparent that a comprehensive
simulation study regarding the effect of baseline variation in the presence of rare events
and a limited number of studies has not been conducted.
Sweeting et al. (2004) found that applying a fixed 0.5 continuity correction biases the
estimates towards the null, especially in the case of imbalanced randomisation. They
simulated sparse 2×2 tables with varying randomisation ratios. They fitted a MH model,
an IV model with corrections, a Peto model, a logistic regression model, and a Bayesian
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fixed-effect model. Among these, the logistic regression model proved to be nearly unbi-
ased. Furthermore, Bradburn et al. (2007) showed that the IV method exhibits substan-
tial bias in rare-event settings when analysing multiple trials with baseline event rates
between 0.1% and 10%, risk ratios between 0.2 and 1, and both balanced and unbalanced
treatment arms. The models applied in their study consisted of the MH model with
and without CC, the DL model, the IV method, logistic regression, the Peto method, the
Crude method and the exact method. They concluded that the MH and logistic regression
models were more robust, while the Peto method performed best for very rare events but
failed under imbalance. Spittal et al. (2015) fitted IV models with and without continuity
correction and Poisson (FE and RE) models to simulated incidence rate data with varying
percentages of zero-events, heterogeneity, and numbers of studies. They observed poor
performance of the IV method with continuity correction, while Poisson random-effects
methods were more robust, even with many zeros.
Kuss (2015) simulated data with parameters calibrated from empirical meta-analyses in-
cluding single-zero and double-zero arms, fitting IV models, MH models, Peto models,
and beta-binomial regression models. They showed continuity correction distorts results
and recommend beta-binomial models for analysing datasets with single- and double-zero
arms. Cheng et al. (2016) analysed 2500 simulated datasets with varying baseline risk,
treatment effect, sample size per arm, and heterogeneity. The fitted Peto, MH, and IV
models found that including double-zero studies reduced the MSE and improved coverage
when the true effect was equal to zero, while exclusion reduced bias when the true effect
was large. Ren et al. (2019) fitted IV models with continuity correction, MH models with
CC, Peto models, Bayesian models, and exact models to 368 Cochrane meta-analyses with
varying proportions of double-zero studies. They found significant disagreement between
models when the proportion of double-zero studies was high and recommend the Bayesian
or exact methods. Zabriskie et al. (2024) fitted MH, IV, DL, and RE models with differ-
ent CC strategies to simulated datasets with varying heterogeneity and zero-event rates,
finding no universally optimal CC since model performance depended heavily on hetero-
geneity. Tsujimoto et al. (2024) analysed 885 Cochrane reviews with single-zero studies
by fitting MH models with and without CC, IV RE models with CC, Peto models, and
Bayesian binomial-normal models. They reported that results changed in about 30% of
cases when CC was applied. Andreano et al. (2015) simulated competing risks and cen-
sored data with varying incidence and heterogeneity, fitting IV meta-analyses of arcsine,
logit, and raw incidence and GLMMs. They found that the arcsine transformation had
the lowest bias among the variance-based models, while GLMMs performed best at very
low incidence.
Piaget-Rossel and Taffé (2019) simulated data for rare events under a homogeneous treat-
ment effect while varying baseline risk and randomisation ratio. They showed that the
MH and binomial regression models were robust under imbalance, while the IV method
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failed to provide reliable results. Rücker and Schumacher (2008) analysed real rosiglita-
zone trials with correlation between baseline event risk and allocation ratio. By fitting a
common-effect model, a RE model, and baseline-risk adjusted models, they demonstrated
that such correlations may induce Simpson’s paradox and that ignoring baseline effects
can distort pooled estimates.
Langan et al. (2019) simulated rare binary outcomes with equal and unequal study sizes
across varying levels of heterogeneity. They fitted nine different meta-analysis estimators
and concluded that the RE model provides the most reliable performance. Other studies
have used simulation designs where baseline risk was modelled as a covariate and error-in-
variables approaches were considered using linear models with or without distributional
assumptions, concluding that baseline risk can explain a large portion of heterogeneity.
At the same time, mis-specification can introduce bias (Arends et al., 2000; Walter, 1997;
Ghidey et al., 2013).
Mathes and Kuss (2018) evaluated the performance of beta-binomial, IV, MH, and Peto
models in scenarios with between 2 and 5 studies, varying both heterogeneity and ran-
domisation ratios. They concluded that the beta-binomial model performed best, while
the IV method was unreliable even with more than ten studies. Günhan et al. (2020)
compared the performance of Bayesian BNHM with weakly informative priors (WIPs)
against ML and standard Bayesian models using simulated data with few studies and
rare events. They found that WIPs reduced bias and improved coverage, while ML was
biased. Seide et al. (2019) applied DL, REML RE models, and likelihood-based RE mod-
els to simulated data with small numbers of studies, imbalanced study sizes, and varying
heterogeneity, concluding that likelihood-based RE models with HKSJ adjustments per-
form better than DL. Partlett and Riley (2017) investigated confidence intervals from a
standard RE model and an RE model with HKSJ adjustment, simulating data with few
studies, unequal study sizes, and heterogeneity. They found that HKSJ improves cov-
erage, while standard confidence intervals under-cover. Schulz et al. (2024) reanalysed
60,000 sparse-data Cochrane meta-analyses by fitting Peto, DL, PM, RE, GLMM, and
beta-binomial models, concluding that one-stage models produce more conservative esti-
mates while being more stable in the presence of zero-event trials.
Jackson et al. (2018) compared seven RE models with Cochrane-inspired datasets, find-
ing that GLMMs outperformed two-stage models regarding bias and coverage but were
susceptible to numerical instability. Beisemann et al. (2020) simulated 162 scenarios vary-
ing the number of studies, study sizes, heterogeneity, baseline risk, and randomisation.
They fitted RE Poisson models, zero-inflated Poisson models, beta-binomial models, and
IV models. The RE Poisson model was the most robust, the beta-binomial provided a
competitive alternative, while the zero-inflated Poisson suffered from convergence issues.
Jansen and Holling (2023) created a large grid of scenarios with varying event rates, het-
erogeneity, and numbers of studies using two DGMs. They compared a hypergeometric-
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normal GLMM, a beta-binomial model, a MH model, and an IV model, concluding that
the hypergeometric-normal GLMM performed best with moderate or large heterogeneity.
In contrast, the beta-binomial was more robust across DGMs. Sangnawakij et al. (2024)
performed an arm- and contrast-based nonparametric RE estimation using mixture like-
lihoods, Poisson, and DL models. They found that contrast-based mixture models were
superior for the RR, achieving better bias and MSE.
Yao et al. (2023) investigated the integration of real-world evidence (RWE) and RCT
data in Bayesian frameworks, comparing naive pooling, adjusted pooling, bias-corrected
models, and hierarchical three-level models under different proportions of RWE, treatment
effects, and study sizes. Their findings suggest that bias-corrected Bayesian pooling yields
the most reliable estimates, with RWE improving certainty in rare-event contexts. Yao
et al. (2024) simulated data with varying numbers of studies, effect sizes, and event prob-
abilities to compare four parametrisations of Bayesian random-effects models (BNHM,
beta-binomial, and GLMM variants) using both weakly informative and non-informative
priors. They concluded that WIPs consistently outperformed NIPs regarding bias and
coverage, while some parametrisations led to unstable inference. Furthermore, Yao et al.
(2025) compared different priors for the heterogeneity parameter (half-normal, Turner,
uniform, and others) on simulated rare-event datasets with varying degrees of heterogene-
ity. They found that half-normal and Turner priors provided the most robust performance
regarding bias and coverage. In addition, Pateras et al. (2021) analysed the influence of
priors for variance parameters in sparse-event Bayesian RE models, recommending priors
that concentrate mass at small heterogeneity values, since vague priors tended to overes-
timate heterogeneity.
Pateras et al. (2018) compared three different data-generating models (DGMs) for dichoto-
mous outcomes to investigate how methodological choices affect simulation results. By
fitting IV, GLMM, and beta-binomial models to simulated datasets, they demonstrated
that apparent estimator performance depends strongly on the assumed DGM, caution-
ing against over-interpreting single designs. Kulinskaya et al. (2021) conducted a sys-
tematic investigation varying the control-arm event probability distributions, the overall
effect sizes, and the distribution of study sizes when comparing IV, GLMM, and sample-
size-based weighting methods. They showed that method performance is susceptible to
simulation set-up and that conclusions about estimator superiority may reverse under
alternative DGMs. Finally, van den Heuvel et al. (2024) contrasted simulations based on
aggregated summary statistics with those using individual participant data (IPD), fitting
DL, PET-PEESE, and Trim and Fill methods to explore small-study effects. They con-
cluded that aggregated simulation shortcuts may misrepresent true estimator properties
and that IPD-based designs are preferable for evaluating pooling strategies.
In summary, prior research has significantly advanced the understanding of estimator per-
formance in meta-analyses involving heterogeneity, imbalance, and sparse data. Neverthe-
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less, most studies address baseline-risk variability only implicitly, either as a consequence
of the data-generating process or as a covariate, rather than as a primary methodologi-
cal parameter. Comprehensive simulation studies are lacking to examine the interaction
between baseline variability and factors such as high heterogeneity, imbalanced randomisa-
tion, and small study numbers. Furthermore, the influence of correlation between baseline
risk and study size remains underexplored, representing a critical gap in understanding
the structural dependencies that affect the robustness of meta-analytic estimators.

3 Theoretical Background

Let us consider the case of k different studies, where the estimated effect size in each
study is denoted by yi where i = 1, ..., k. Each of those estimated study effect sizes has
an associated standard error si, which describes how the estimated study effect size varies
from the true study effect size θi. It is important to note here that the true study effect
size can be the same across all studies or different across all studies, depending on which
additional assumptions we make. We will talk about this more thoroughly in the following
sections. With these assumptions, we can write the distribution of the estimated effect
sizes yi as follows:

yi|θi, si ∼ N (θi, s2
i ) (1)

Furthermore, the standard error si is typically treated as a known and fixed parameter.
At the same time, let ζi denote the baseline risk probability, which can be drawn from
multiple different distributions, which we will elaborate further on in section 4.1. It is
important to note here that since the Odds-Ratio is defined as

yi = ptreatment

1 − ptreatment

− ζ

1 − ζ
(2)

where ptreatment denotes the event probability in the treatment group, the variance of ζ

contributes to the variance of yi. Therefore, an increased variance of ζ could influence the
reliability of estimates for the effect size in the context of meta-analyses.

3.1 Inverse-Variance Method

For our first considered model, the Inverse Variance Method (IV), we assume an equal
true effect size θi = ... = θk = θ so that the study-specific effect size is drawn from a
distribution yi ∼ N (θ, s2

i ). Thus, this model only considers the within-study variance s2
i

as a source of uncertainty. This leads to a closed-form estimator for the true effect size ŷ
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of the form:

ŷ(IV ) =
∑k

i=1 wiyi∑k
j=1 wj

with wi = 1
s2

i

(3)

and (4)

V ar(ŷ(IV )) = (
k∑

i=1
wi)−1 (5)

This closed-form estimate is unbiased as long as the normality assumption and the no-
heterogeneity assumption about the true study effect size is fulfilled since:

Bias(ŷ(IV )) = E(ŷ(IV )) − θ (6)

=
∑k

i=1 wiE(yi)∑k
j=1 wj

− θ (7)

for yi∼N (θ,∫∈
⟩ )

=
∑k

i=1 wi∑k
j=1 wj

θ − θ = 0 (8)

However, the assumption of no-heterogeneity is frequently questioned (Wolfgang Viecht-
bauer, 2005). Additionally, the IV method faces challenges when confronted with double-
zero and single-zero studies since the logORs are not defined in case of zero studies,
leading to the omission of these studies (Spittal et al., 2015; Jansen and Holling, 2023).
This leads to an increased bias of the estimates (Spittal et al., 2015). Besides the prob-
lems with heterogeneity assumptions and the treatment of zero studies regarding the IV
method, simulation studies have also shown that this method shows a very high bias in
the presence of imbalanced randomisation compared to other standard models (Sweeting
et al., 2004). Therefore, the Inverse Variance Method is only considered here to highlight
the potential problems of inappropriate pooling strategies compared with the other mod-
els. To address the IV Method’s issues with single-zero or double-zero studies, we have
decided to implement a variant of the IV method with continuity correction. Hereby,
0.5 gets added to each zero cell in the 2 × 2 contingency table. This enables the model
not to exclude studies where one cell is zero while still keeping the low event rate of the
study. However, studies have shown that continuity correction biases the estimate towards
zero (Jackson et al., 2018)). Also Sweeting et al. (2004) have demonstrated that the IV
method with continuity correction exhibits a very high bias in the presence of imbalanced
randomisation. Also, the coverage of the IV method with continuity correction has been
shown to be excessively high (Sweeting et al., 2004).

3.2 Mantel-Haenszel Estimator

The Mantel-Haenszel (MH) estimator is one of the most frequently applied methods for
pooling binary outcomes across studies, particularly in the presence of sparse data. In
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contrast to the inverse-variance method, which relies on normal approximations of the log
odds ratios and their variances, the MH method directly operates on each study’s 2 × 2
contingency tables. It provides an approximately unbiased estimate of the common odds
ratio even when individual studies contain few events (Bradburn et al., 2007; Sweeting
et al., 2004). Let ai and ci denote the number of events in the treatment and control
groups, and bi and di are the corresponding non-events in the study i. The total number
of participants in study i is ni = ai + bi + ci +di. The MH estimator for the common odds
ratio θ̂MH is then given by:

θ̂MH =
∑k

i=1
aidi

ni∑k
i=1

bici

ni

. (9)

In practice, working on the logarithmic scale is often more convenient. Thus, the log odds
ratio is obtained as ŷMH = log(θ̂MH) with corresponding variance

V ar(ŷMH) = 1
2

 1∑k
i=1

aidi

ni

+ 1∑k
i=1

bici

ni

 . (10)

The MH approach has been shown to provide robust estimates in balanced designs and
under moderate event sparsity. However, it may exhibit bias when a strong imbalance
between treatment and control group sizes occurs or when event rates are extremely low
(Bradburn et al., 2007; Piaget-Rossel and Taffé, 2019). Moreover, while the method
implicitly down-weights small studies with no events, it does not account for between-
study heterogeneity. It is therefore best interpreted as a fixed- or common-effect estimator
(Sweeting et al., 2004).

3.3 Random-Effects Model

To solve the problem of heterogeneity between studies we decided also to assess the
performance of the Random-Effects Model (RE) which assumes that the different true
study effect sizes themselves are random realizations from a distribution θi ∼ N (µ, τ 2)
where µ describes the true effects size and τ the in-between study heterogeneity. This
changes the distributional assumption about our observed study-specific effect size yi as
follows:

yi|θi, si ∼ N (µ, τ 2 + s2
i ) (11)

The estimator for τ must be found by an iterative likelihood-based procedure. In our
case, we have decided on the REML approach since it has been shown that REML esti-
mates show more desirable statistical properties (e.g. a reduced bias) than the classical
Maximum Likelihood (ML) approach (Wolfgang Viechtbauer, 2005; Jackson et al., 2018).
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The modified log-likelihood

l = −k

2 ln(2π) − 1
2

k∑
i=k

ln(s2
i + τ 2) − 1

2

k∑
i=k

(yi − µ̂)
s2

i + τ 2 − 1
2 ln

(
k∑

i=k

1
s2

i + τ 2

)
(12)

with
µ̂ =

∑k
i=1 wiyi∑k
j=1 wj

and wi = 1
s2

i

yields

τ̂ 2
REML = max

0,

∑k
i=1 a2

i ((yi − µ̂)2 − ŝ2
i )∑k

i=1 a2
i

+ 1∑k
i=1 ai

 (13)

These estimates have shown desirable statistical properties (Wolfgang Viechtbauer, 2005;
Langan et al., 2019) but do struggle in the presence of zero studies and small sample
sizes. In case of zero studies the standard procedure is similar to the IV method since
zero studies are also excluded from the analysis leading to estimates that are biased away
from zero (Jackson et al., 2018). For small sample sizes (k < 10), the estimates are
often imprecise (Langan et al., 2019) or can struggle to converge at all, as Iaquinto et al.
(2025) have shown for k < 20. Additionally, Jackson et al. (2018) have noted that in case
of a violation of the normality assumption, the estimate for τ can exhibit positive bias,
especially for a moderate or no in-between study heterogeneity. Similar to the IV method,
we have also decided to implement the RE model with a continuity correction of 0.5 to
include the previously omitted studies with zero cells, leading to the same difficulties as
in the IV method (Sweeting et al., 2004).

3.4 Hartung-Knapp-Sidik-Jonkman (HKSJ) Adjustment

Hartung and Knapp (2001) and later Sidik and Jonkman (2002) proposed an alterna-
tive variance adjustment to improve inference in random-effects meta-analysis, espe-
cially when the number of studies is small. The Hartung-Knapp-Sidik-Jonkman (HKSJ)
method modifies the conventional normal-approximation confidence interval by incorpo-
rating uncertainty in the estimation of the between-study variance τ 2 (Partlett and Riley,
2017; Seide et al., 2019). Given a random-effects model with study-specific estimates
yi ∼ N (µ, τ 2 + s2

i ), the pooled estimator µ̂ is obtained as

µ̂ =
∑k

i=1 wiyi∑k
i=1 wi

, where wi = 1
s2

i + τ̂ 2 . (14)

The conventional DerSimonian-Laird or REML confidence interval for µ̂ assumes a normal
distribution. The HKSJ adjustment, in contrast, estimates the variance of µ̂ as

V̂ arHKSJ(µ̂) = 1
k − 1

k∑
i=1

wi(yi − µ̂)2
/(

k∑
i=1

wi

)2

, (15)
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and constructs confidence intervals based on the t-distribution with k − 1 degrees of
freedom:

µ̂ ± tk−1, 1−α/2

√
V̂ arHKSJ(µ̂). (16)

This approach provides more conservative confidence intervals with improved coverage,
particularly in small-sample settings or when heterogeneity is substantial. Simulation
studies have consistently shown that the HKSJ method outperforms conventional normal-
based intervals in maintaining nominal coverage, while retaining comparable bias proper-
ties ((Partlett and Riley, 2017; Seide et al., 2019; Mathes and Kuss, 2018).

4 Simulation Study

This simulation study aims to assess the performance of different meta-analysis models in
scenarios facing different variability or distributions for the baseline risk, combined with a
sparse data setting where single-zero and double-zero cells are common, and the number
of studies is small. Additionally, the models must deal with imbalanced randomisation
and correlation between the baseline risk and the study size.

4.1 Simulation Framework

For the data-generating mechanism we simulated data 10, 000 times over a design grid
with four different numbers of studies (k ∈ {3, 5, 10, 20}), four different baseline risk
variances on a logit scale (σlogit ∈ {0.0, 0.1, 0.2, 0.5, 1.0, 2.0}) (except for the Many Zeros
scenario see section 4.1.2) and four different between study heterogeneity parameters
(τlogit ∈ {0, 0.1, 0.5, 1) while ensuring that for each simulated scenario τ ≤ σ, the true
overall effect in the treatment arm is kept constant at θlogit = log(2). Firstly, we draw
the total study sizes, where we assume that the study sizes are correlated with each other
(except for the correlation between baseline risk and study size scenarios, see section 4.1.4)
to emulate the situation that meta-analyses from one field usually have similar trial sizes,
so that

log(Ni) = Xcommon + Yi, Xcommon ∼ N (µlog N , σ2
between), Yi ∼ N (0, σ2

within) (17)

where Xcommon describes the random effect for the study size between different meta-
analyses datasets and Yi the study-level deviation of the study size within a meta-analyses
dataset. We can then decompose the in-between and within variance of the study sizes
into a variance and correlation component:

σbetween = √
ρsize σlog N , σwithin =

√
1 − ρsize σlog N (18)
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For all scenarios we have decided to use σlog N = 1, ρsize = 0.75, µlog N = 5. After-
wards, we split the study sizes into a treatment (n1i) and control arm (n0i) based on
the randomisation ratio. The baseline logits are then sampled from either a log-normal
distribution with parameters µlogit = −4.184591 and variance σ2

logit or the baseline risk is
sampled from a uniform distribution with parameters baseline_min and baseline_max.
Afterwards we compute the true study level treatment effects δi by drawing values from
a uniform distribution so that δi ∼ U(θlogit − τlogit, θlogit + τlogit). These values are then
transformed to probability scale treatment and control effects to sample the numbers of
events in each arm from a binomial distribution.

4.1.1 Scenario: Standard

The standard scenario represents an idealised situation in which the data-generating pro-
cess follows a balanced and moderately heterogeneous design. The true treatment effect
is set to θlogit = log(2), corresponding to an odds ratio of 2, with control-arm event proba-
bilities drawn from a logit normal distribution with Lognormal(µlogit = −4.184591, σ2

logit)
so that we have a mean control event probability of ≃ 1.5% and our four different values
for the variance and between study heterogenity. Randomisation between treatment and
control arms is balanced (1:1), and no correlation between baseline event risk and study
size is assumed. This setting provides insights into the effect that varying variance of the
baseline can have under an otherwise very ideal scenario.
For the standard scenario, the simulated data show the intended characteristics of a real-
istic meta-analytic setting. The distribution of control and treatment risk is left-skewed,
producing many smaller probabilities and only a few larger ones (see figure 1a)). We can
also see that the increasing variance for the baseline directly influences the variability of
the treatment risk.

4.1.2 Scenario: Many Zeros

The many zeros scenario represents an extreme sparse-data situation designed to emulate
very low event probabilities and violated distributional assumptions of the baseline risk.
Here, the baseline event rate is drawn from a beta distribution with ζi ∼ Beta(α = 1, β =
7) to achieve a highly right skewed distribution (see figure 1b) producing an increased
number of single and double zero cells in our 2 × 2 contingency tables while keeping
the variance of the baseline constant. Under this configuration, both single-zero and
double-zero studies occur frequently (see figure 2b)), challenging standard meta-analytic
estimators that rely on continuity corrections or that exclude studies with zero cells. This
scenario is therefore used to examine estimator robustness under severe data sparsity.
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(a) Standard Scenario (b) Many Zeros Scenario

Figure 1: Control risk probability and treatment risk probability distribution for the
Standard and Many Zeros Scenario

(a) Standard Scenario (b) Many Zeros Scenario

Figure 2: Percentage and composition of zero studies for the standard and many zeros
scenario

4.1.3 Scenario: Imbalanced Randomisation

The randomisation 1:2 and randomisation 1:3 scenarios investigate the influence of un-
equal group sizes on model performance. The treatment-to-control ratio is set to 1:2 or
1:3, respectively, meaning the control arm receives twice or thrice as many participants
as the treatment arm (see figure 3). All other parameters are held constant at moder-
ate effect (θlogit = log(2)) and baseline risk drawn from a logit normal distribution with
Lognormal(µlogit = −4.184591, σ2

logit). Imbalanced randomisation ratios are common in
practice, especially in rare-event settings where ethical or logistical constraints limit treat-
ment allocation, and are known to induce bias in inverse-variance and continuity-corrected
estimators (Sweeting et al., 2004; Mathes and Kuss, 2018). Therefore, this scenario tests
the estimators’ sensitivity to allocation imbalance.
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(a) Standard Scenario (b) Randomisation 1:2 (c) Randomisation 1:3

Figure 3: Control and treatment arm partition for a random dataset from the simulated
datasets for the standard, randomisation 1:2 and 1:3 scenario

(a) Negative Correlation Scenario (b) Positive Correlation Scenario

Figure 4: Correlation between baseline risk and study size for the negative and positive
correlation scenario

4.1.4 Scenario: Correlation between baseline risk and study size

The positive correlation and negative correlation scenarios explore the effect of an associ-
ation (ρ = ±0.6) between baseline risk and study size. In this setup, the log study sizes
and logit baselines are drawn jointly from a multivariate normal distribution so that we
have αi

log(Ni)

 ∼ N

µlogit

µlog N

 ,

 σ2
logit ρ σlogit σlog N

ρ σlogit σlog N σ2
log N

 , αi = logit(pctrl,i) (19)

µlogit is the same as in the previous scenarios with normally distributed baselines and σlogit

is varied using our four different values. Larger/smaller studies tend to have higher base-
line event probabilities in this configuration. Smaller studies are likelier to have low/high
or zero events (see figure 4). The scenario thus assesses how sensitive standard pooling
methods are to correlated study characteristics.
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4.2 Results

4.2.1 Standard Scenario

In the standard scenario, we observe the performance of the different pooling strate-
gies under an idealized but realistic setup with balanced randomisation and moderate
heterogeneity. For the IV method, the estimated bias (see figure 5(a)) ranges between
approximately −0.1 for lower between-study heterogeneity values (τ) and 0.1 for higher
τ values. This pattern indicates that the IV estimator tends to underestimate the true
treatment effect when τ is small, while it overestimates it as heterogeneity increases. With
higher baseline variance (σlogit), the bias moves closer to zero, suggesting a slightly better
model fit as baseline variability increases. Introducing a continuity correction (CC) mod-
ifies the bias predictably: when the uncorrected model underestimates the effect, adding
a CC increases the bias, whereas in cases of overestimation, it pulls the bias closer to
zero. The number of studies (k) has only a minor effect but tends to increase bias slightly
in larger meta-analyses. Regarding the MSE (see figure 6(a)), the IV model exhibits
values between 0 and 0.6, increasing with higher τ but decreasing with both larger σlogit

and greater k. Models with continuity correction generally yield lower MSE values than
the uncorrected IV model. Coverage (see figure 7(a)) remains satisfactory overall but
decreases modestly with increasing k and more sharply under higher σlogit or τ .
The MH estimator consistently produces positive bias across all conditions (see figure
5(b)), thus overestimating the true effect size. This bias increases with higher τ , but,
in contrast to the IV method, it tends to decrease as σlogit grows—except in very small
meta-analyses (k = 3), where a slight bias increase is observed. The MSE (see figure 6(b))
lies between 0 and 0.5 and decreases with larger k and σlogit, while it increases with τ ,
following a similar trend as the IV model. Coverage (see figure 7(b)) is comparable to the
IV estimator and remains generally acceptable, though it declines for larger heterogeneity
and variance levels.
For the RE estimator, bias (see figure 5(c)) increases with the baseline variance but re-
mains within a narrow range of approximately ±0.1. The continuity-corrected version
(CC = 0.5) exhibits slightly higher bias when the uncorrected model underestimates the
effect and slightly lower bias when it overestimates it—mirroring the behaviour seen in the
IV model. With increasing τ , bias tends to rise, and for τ = 1, the estimator shifts from
underestimation to overestimation, indicating a sensitivity to considerable between-study
heterogeneity. The number of studies has a negligible influence on the bias magnitude.
The MSE (see figure 6(c))follows the same general trend as IV and MH but is system-
atically lower, suggesting a more stable estimator. Regarding coverage (see figure 7(c)),
the RE model outperforms the IV and MH estimators, showing stable coverage across all
settings. Applying the Hartung-Knapp-Sidik-Jonkman (HKSJ) adjustment further im-
proves coverage (see figure 7(d)) substantially while preserving the same bias and MSE
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patterns as the classical RE model.
The observed results align closely with the theoretical properties discussed in Section 3.
As expected, the IV method exhibits bias under heterogeneity and sparse-data conditions
due to its assumption of a common effect and exclusion or distortion of zero-event stud-
ies. This behaviour is consistent with previous findings by Sweeting et al. (2004), who
demonstrated that continuity corrections can induce bias towards the null, and by Brad-
burn et al. (2007), who observed poor IV performance in rare-event contexts. Similarly,
the MH estimator’s systematic overestimation of the effect agrees with earlier studies
reporting robustness under moderate sparsity but bias in the presence of imbalance or
considerable heterogeneity (Piaget-Rossel and Taffé, 2019). The superior performance of
the RE approach in terms of both bias and MSE confirms its theoretical advantage as out-
lined in the random-effects formulation (Section 3.3) and corroborates simulation-based
evidence by Langan et al. (2019) and Jackson et al. (2018), who showed that the RE
model yields more accurate estimates of τ 2 and improved inference compared with Der-
Simonian–Laird or IV estimators. Finally, the enhanced coverage of the HKSJ-adjusted
RE estimator aligns with the theoretical expectations from Partlett and Riley (2017) and
Mathes and Kuss (2018), who demonstrated that this adjustment corrects undercoverage
in small-sample settings while maintaining low bias.
In summary, the standard scenario confirms the theoretical predictions that (i) fixed-effect
estimators such as IV and MH are sensitive to heterogeneity and baseline variability, (ii)
the RE model provides the most balanced trade-off between bias and efficiency, and (iii)
the HKSJ adjustment yields the most reliable coverage among the evaluated methods.

4.2.2 Many Zeros Scenario

The many zeros scenario represents an extreme sparse-data situation, characterised by a
high proportion of single- and double-zero studies and a highly right-skewed baseline risk
distribution. This setting poses a particular challenge to classical pooling estimators, as
continuity corrections and the treatment of zero cells can substantially influence bias and
coverage.
For the IV method, the estimated bias (see figure 8(a)) ranges from approximately −0.2
for small τ values to 0.2 for larger τ values. As in the standard scenario, a continu-
ity correction (CC = 0.5) consistently pulls the bias towards zero, reducing under- and
overestimation. The magnitude of this correction effect becomes more pronounced with
increasing τ , particularly beyond τ = 0.1. Moreover, larger study numbers (k) slightly
increase the bias, indicating that additional studies with zero events may not necessarily
stabilise the estimator in sparse-data contexts. The MSE (see figure 9(a))is markedly
higher than in the standard scenario but decreases substantially with increasing study
size. Higher τ values lead to higher MSE, reflecting the increased variability of the true
effects. Applying a continuity correction reduces the MSE and bias, particularly in sce-
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 5: Mean Bias (log-OR) vs. σlogit for the standard scenario

(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 6: Mean MSE (log-OR) vs. σlogit for the standard scenario
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 7: Mean Coverage vs. σlogit for the standard scenario

narios with large heterogeneity. Coverage (see figure 10(a)) remains high overall (mostly
above 0.95) but decreases with increasing numbers of studies and higher τ values. This
decline is less severe when CC = 0.5 is applied, suggesting that the correction stabilises
inference under extreme sparsity.
For the MH estimator, bias (see figure 8(b)) remains close to zero for τ < 0.5, but for
τ ≥ 0.5 the model increasingly overestimates the true effect size. When the number of
studies is very small (k < 5), the MH method underestimates the effect. The MSE (see
figure 9(b)) is generally higher than for the IV model but follows a similar trend: it de-
creases markedly with larger k and increases with higher τ . The MH estimator’s coverage
(see figure 10(b)) shows the same general pattern as that of the IV method, though it
appears more sensitive to changes in τ . This suggests that while MH performs robustly
under moderate sparsity, it becomes unstable when heterogeneity and data sparsity are
high.
The RE model and the corresponding Hartung-Knapp-Sidik-Jonkman (HKSJ) adjustment
display similar trends to the previous methods in terms of bias (see figure 8(c), 8(d)) and
MSE (see figure 9(c),9(d)). However, the RE model consistently handles different τ val-
ues, producing more stable coverage (see figure 10(c)) across varying heterogeneity levels.
Nevertheless, it tends over-coverage, consistent with findings from Langan et al. (2019)
and Jackson et al. (2018), who showed that RE-based confidence intervals may be overly
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conservative in small-sample or sparse-data settings. In contrast, the HKSJ-adjusted ver-
sion produces slight undercoverage, in line with Partlett and Riley (2017) and Mathes
and Kuss (2018), who reported that the HKSJ adjustment can be overly liberal under
extreme data sparsity, particularly when the number of studies is very small.
The results observed here align with the theoretical expectations outlined in Section 3.
As anticipated, both the IV and MH estimators perform poorly in the presence of many
zero-event studies due to their reliance on normal approximations and the instability of
variance estimates when event counts are low (Sweeting et al., 2004; Bradburn et al.,
2007). The bias reduction achieved through continuity correction is consistent with ear-
lier work by Sweeting et al. (2004), who found that a fixed 0.5 correction can counteract
numerical instability but often at the expense of interpretability. The strong dependence
of bias and MSE on τ reflects the expected sensitivity of two-stage estimators to between-
study heterogeneity. The RE estimator behaves largely as predicted by the random-effects
theory (Section 3.3), offering better control of heterogeneity but showing inflated coverage
under extreme sparsity, a phenomenon also discussed by Langan et al. (2019). Finally,
the tendency of the HKSJ adjustment to yield under-coverage under such sparse condi-
tions confirms previous simulation findings that this approach, while robust for small k,
may not adequately compensate for high zero-cell proportions (Mathes and Kuss, 2018;
Partlett and Riley, 2017).
Overall, the many zeros scenario confirms that sparse-data situations amplify the weak-
nesses of fixed-effect estimators and continuity corrections, while random-effects methods
provide more reliable inference at the cost of overconservative coverage. The HKSJ ad-
justment mitigates some of these limitations but can itself become unstable when event
rates are extremely low.

4.2.3 Randomisation 1:2 Scenario

The randomisation 1:2 scenario represents an unbalanced allocation setting where the
control arm includes twice as many participants as the treatment arm. This configura-
tion is particularly relevant in rare-event contexts, where unequal group sizes can amplify
estimation bias and distort variance estimation, as shown in previous simulation studies
by Sweeting et al. (2004) and Mathes and Kuss (2018).
For the IV method (see figure 11(a)), the bias is higher in absolute terms compared with
the standard scenario, ranging from approximately −0.3 for lower τ values to around −0.1
for higher τ . Hence, the IV estimator consistently underestimates the true effect size and
rarely crosses into overestimation. The application of a continuity correction (CC = 0.5)
again pulls the bias towards zero, although this corrective effect weakens with increasing
baseline variance (σlogit). In general, larger baseline variance increases the bias magnitude,
and higher τ values also contribute to more pronounced underestimation. The MSE (see
figure 12(a)) decreases with both higher σlogit and larger k, while it increases with τ . The
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 8: Mean Bias (log-OR) vs. number of studies for the many zeros scenario

(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 9: Mean MSE (log-OR) vs. number of studies for the many zeros scenario
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 10: Mean Coverage vs. number of studies for the many zeros scenario

continuity-corrected model (CC = 0.5) produces consistently lower MSE values than the
uncorrected IV model. Coverage (see figure 13(a)) remains generally good but declines
for larger τ and k, resulting in undercoverage particularly for k = 10 and k = 20.
The MH estimator shows the expected opposite behaviour, with a strictly positive bias
(see figure 11(b)) across all parameter combinations, indicating systematic overestimating
the true effect size. The magnitude of overestimation increases with the number of studies
(k) but decreases with higher baseline variance (σlogit). Larger τ values lead to stronger
bias. The MSE (see figure 12(b)) of the MH estimator follows the same general pattern
as the IV method—decreasing with higher σlogit and larger k, but increasing with τ . The
coverage performance of the MH model (see figure 13(b)) is somewhat better than that of
the IV method for τ < 0.5, but still declines as τ and k increase, showing undercoverage
in large, heterogeneous meta-analyses.
The RE model estimator consistently underestimates the true effect size, but the bias (see
figure 11(c)) magnitude diminishes (moves closer to zero) as σlogit and τ increase. The in-
fluence of the continuity correction decreases with increasing σlogit, causing the corrected
and uncorrected models to converge in bias. This same pattern is observed for the HKSJ
adjustment (see figure 11(d)), where the bias difference between CC and no-CC versions
becomes negligible for higher σlogit values. The MSE (see figure 12(c)) decreases with
higher σlogit and k, while CC = 0.5 again provides the lowest MSE. Increasing τ inflates
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the MSE, but this effect becomes less pronounced as k increases. The HKSJ-adjusted
model follows the same trend (see figure 12(d)), indicating that both random-effects ap-
proaches benefit from larger study numbers regarding estimation stability. Regarding
coverage, the RE model (see figure 13(c)) estimator remains comparatively robust under
increasing τ , but coverage collectively decreases for higher k, especially at low σlogit. This
decline is even more pronounced for the HKSJ adjustment (see figure 13(d)), which shows
slight undercoverage under these extreme settings.
The observed results are consistent with the theoretical expectations outlined in Section 3,
particularly concerning the sensitivity of two-stage estimators to imbalanced randomisa-
tion. As predicted, the IV method performs poorly when treatment and control group
sizes differ substantially, leading to systematic underestimation of the pooled effect due
to the biased weighting of smaller treatment arms. This finding aligns closely with the
empirical results of Sweeting et al. (2004) and Bradburn et al. (2007), who reported that
continuity-corrected IV estimators underestimate treatment effects in unbalanced sparse-
data settings. The MH estimator, by contrast, exhibits positive bias under imbalance,
consistent with Piaget-Rossel and Taffé (2019), who observed overestimation when control
arms dominate the study population.
The improved stability of the RE model estimator, particularly under increased τ , reflects
its theoretical advantage as a variance-based random-effects model (Section 3.3). Given
the reduced influence of large imbalances under variance-based weighting, its slight under-
estimation of the effect size is expected. The observed over-coverage of the RE model and
under-coverage of the HKSJ adjustment confirm findings from Partlett and Riley (2017)
and Mathes and Kuss (2018), who showed that while HKSJ improves small-sample cov-
erage, it may over-correct in sparse or highly imbalanced data.
Overall, the randomisation 1:2 scenario confirms that unequal group sizes exacerbate the
weaknesses of fixed-effect estimators, while the RE Model provides a more balanced bias-
coverage trade-off. However, both RE Model and HKSJ adjustment remain sensitive to
increasing study numbers and baseline variability, underscoring the need for caution when
analysing unbalanced rare-event data.

4.2.4 Randomisation 1:3 Scenario

The randomisation 1:3 scenario represents a setting with pronounced imbalance between
treatment and control arms, where the control group contains three times as many par-
ticipants as the treatment group. Such strong allocation asymmetry is common in clinical
research with rare events, where ethical or logistical constraints lead to a preference for
larger control groups. However, this imbalance is expected to increase bias and reduce
coverage for classical two-stage estimators, as highlighted by Sweeting et al. (2004) and
Bradburn et al. (2007).
For the IV method, the bias (see figure 14(a)) is considerably larger in absolute terms than
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 11: Mean Bias (log-OR) vs. σlogit for the randomisation 1:2 scenario

(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 12: Mean MSE (log-OR) vs. σlogit for the randomisation 1:2 scenario
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 13: Mean Coverage vs. σlogit for the randomisation 1:2 scenario

in the randomisation 1:2 scenario, with the IV estimator strictly underestimating the true
treatment effect across all conditions. The bias decreases in magnitude (moves towards
zero) with increasing baseline variance (σlogit) and heterogeneity (τ), while the difference
between the continuity-corrected (CC = 0.5) and uncorrected models becomes smaller
as σlogit increases. The MSE (see figure 15(a)) is also higher than in the randomisation
1:2 scenario but decreases substantially with increasing σlogit. The continuity-corrected
version yields consistently lower MSE than the uncorrected model. MSE increases with
larger τ but decreases with higher numbers of studies (k), confirming that the estimator
benefits from more data despite persistent underestimation. The coverage pattern under
the IV model (see figure 16(a)) is similar to that in the previous scenario. Still, the overall
under-coverage is more severe, particularly for higher k and τ , indicating that imbalanced
allocation exacerbates the loss of nominal coverage in large meta-analyses.
For the MH estimator, the bias (see figure 14(b)) remains strictly positive, again reflect-
ing systematic overestimation of the true effect size. As in the IV model, bias increases
with higher τ and decreases with higher σlogit and k. The MSE pattern (see figure 15(b))
mirrors that of the IV method, showing a decrease with larger σlogit and k, but an increase
with higher τ . The coverage behaviour (see figure 16(b)) is also consistent with the ran-
domisation 1:2 scenario, showing adequate performance for low τ values but substantial
under-coverage when τ or k increase. Overall, both fixed-effect estimators confirm the
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expected sensitivity to imbalance and heterogeneity.
The RE model estimator displays a higher absolute bias (see figure 14(c)) than the pre-
vious randomisation scenario, indicating stronger underestimation of the true effect. The
qualitative pattern of the bias remains the same: bias decreases (moves towards zero)
with increasing σlogit and τ , and the effect of the continuity correction diminishes as σlogit

increases, leading to convergence between the corrected and uncorrected versions. The
MSE (see figure 15(c)) behaves similarly to the previous scenario, decreasing with in-
creasing σlogit and k, while τ leads to higher MSE, though this effect weakens as k grows.
Coverage under the RE model (see figure 16(c)) estimator follows the same trend. Still,
it exhibits slightly stronger under-coverage for large k, particularly when σlogit is small or
heterogeneity is large.
Applying the HKSJ adjustment leaves the bias (see figure 14(d)) and MSE (see figure
15(d)) virtually unchanged compared to the classical RE model, but coverage (see figure
16(d)) declines markedly for higher k. This drop in coverage is more pronounced than
in the previous scenario, suggesting that the adjustment, while beneficial in small meta-
analyses, becomes overly liberal when sample size and heterogeneity increase under strong
randomisation imbalance.
The observed results align with the theoretical considerations presented in Section 3 and
confirm empirical findings from previous simulation studies. As anticipated, the IV esti-
mator performs poorly under severe imbalance, systematically underestimating the treat-
ment effect due to the disproportionate weighting of smaller treatment arms and the
instability of variance estimates in sparse-event settings (Sweeting et al., 2004; Bradburn
et al., 2007). The continuity correction attenuates this bias but does not fully eliminate
it, especially when σlogit and τ are large. The MH estimator’s consistent positive bias
corresponds to previous findings by Piaget-Rossel and Taffé (2019), who reported overes-
timation in unbalanced datasets where control arms dominate.
The RE model estimator shows better control over heterogeneity and lower MSE, as
expected from the random-effects formulation (Section 3.3). However, its tendency to
underestimate the effect under strong imbalance highlights the limits of variance-based
pooling in sparse data situations, confirming the conclusions of Langan et al. (2019) and
Jackson et al. (2018). The observed over-coverage of the RE Model and pronounced
under-coverage of the HKSJ-adjusted model mirror earlier findings by Partlett and Riley
(2017) and Mathes and Kuss (2018), who showed that the HKSJ method, although ben-
eficial for small k, can produce overly narrow intervals when study numbers increase or
when heterogeneity is high.
Overall, the randomisation 1:3 scenario amplifies the weaknesses already visible under 1:2
imbalance: both IV and MH estimators suffer from directional bias, while the RE model
offers a more stable but slightly conservative inference. The HKSJ adjustment, although
effective in small-sample conditions, becomes unreliable for larger meta-analyses under
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 14: Mean Bias (log-OR) vs. σlogit for the randomisation 1:3 scenario

extreme randomisation imbalance.

4.2.5 Negative Correlation Scenario

The negative correlation scenario explores how smaller studies exhibit higher baseline
risks, while larger studies show lower baseline risks. This configuration introduces a de-
pendence structure between study size and baseline event probability.
For the IV method, the bias (see figure 17(a)) ranges from approximately −0.2 for low τ to
around 0.1 for high τ values. With increasing baseline variance (σlogit) and between-study
heterogeneity (τ), the bias moves towards zero, while for τ = 1 the model begins to over-
estimate the true effect size. A continuity correction (CC = 0.5) effectively pulls the bias
closer to zero across all parameter settings. Differences across the number of studies (k)
are negligible, indicating that additional information from more studies does not improve
the bias when the baselines are correlated. The MSE (see figure 18(a)) slightly increases
with σlogit, especially for small k, and grows with higher τ , while larger k values reduce the
MSE. For small meta-analyses, the continuity-corrected estimator shows slightly higher
MSE than the uncorrected version, but this relationship inverts for larger k, where the
CC = 0.5 version performs better. The coverage of the IV estimator (see figure 19(a))
remains generally good but decreases with increasing τ , leading to mild under-coverage
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 15: Mean MSE (log-OR) vs. σlogit for the randomisation 1:3 scenario

(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 16: Mean Coverage vs. σlogit for the randomisation 1:3 scenario
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at high heterogeneity levels.
The MH estimator again shows a strictly positive bias (see figure 17(b)), indicating overes-
timation of the true effect size. While the bias remains near zero for smaller τ , it increases
substantially for τ = 1. The bias appears largely unaffected by σlogit or k. The MSE for
the MH estimator (see figure 18(b)) is higher than that of the IV model for smaller meta-
analyses but converges to similar values as k increases. The overall MSE pattern follows
the same direction as the IV model—rising with τ and decreasing with σlogit and k. The
coverage behaviour (see figure 19(b)) mirrors the IV method’s. However, under-coverage
begins to appear at τ = 0.5, suggesting that the MH estimator is slightly more sensitive
to heterogeneity in the presence of negative correlation between study size and baseline
risk.
The RE model and HKSJ adjustment estimators display a similar bias (see figure 17(c),
17(d)) pattern to the IV model but show less variability across τ values, indicating better
control of heterogeneity. Both estimators keep the bias close to zero across all σlogit and
k levels. The MSE of the RE Model and HKSJ adjustment (see figure 18(c), 18(d)) is
nearly identical to that of the IV estimator, suggesting comparable efficiency. In terms
of coverage, the RE Model (see figure 19(c)) estimator performs better than both the IV
and MH models, eliminating the under-coverage at higher τ values that was observed in
the previous methods. However, the HKSJ adjustment (see figure 19(d)) shows collective
under-coverage for large k, consistent with earlier observations in other scenarios where
the adjustment becomes overly liberal as the number of studies increases.

4.2.6 Positive Correlation Scenario

The positive correlation scenario investigates the case where larger studies are associated
with higher baseline event probabilities, while smaller studies tend to have lower baseline
risks. This configuration reverses the dependency structure of the negative correlation
scenario and represents situations where study size may act as a proxy for higher event
exposure or broader inclusion criteria.
For the IV estimator, the bias (see figure 20(a)) ranges between approximately −0.1 for
smaller τ and 0.1 for larger τ values, representing a smaller variance in the bias compared
with the negative correlation scenario. The difference between the continuity-corrected
(CC = 0.5) and uncorrected estimates is smaller, and the corrective effect of the CC
pulling estimates towards zero is less pronounced. As σlogit and τ increase, the bias moves
closer to zero, and for τ = 1, the estimator slightly overestimates the true effect size. The
influence of the number of studies (k) remains negligible. The MSE (see figure 21(a))
behaves similarly to the previous scenario—slightly increasing with τ and decreasing with
both σlogit and k. However, in contrast to the negative correlation case, the coverage of
the IV estimator (see figure 22(a)) is worse overall, as under-coverage now occurs already
at τ = 0.5 instead of τ = 1, and this effect becomes more pronounced as k increases.
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 17: Mean Bias (log-OR) vs. σlogit for the negative correlation scenario

(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 18: Mean MSE (log-OR) vs. σlogit for the negative correlation scenario
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 19: Mean Coverage vs. σlogit for the negative correlation scenario

The MH estimator behaves analogously to the IV estimator in terms of bias (see figure
20(b)) and MSE (see figure 21(b)). The bias remains positive across all conditions and
increases with higher τ , decreasing with larger σlogit and k. The MSE follows the same di-
rectional pattern as in the IV model, and the coverage (see figure 22(b)) exhibits the same
trend of earlier onset under-coverage with increasing τ and k. Compared with the nega-
tive correlation scenario, the MH model displays similar magnitudes of bias and MSE but
overall slightly poorer coverage, indicating that positive correlation between baseline risk
and study size amplifies the effect of heterogeneity on confidence interval performance.
The RE model estimator and its HKSJ adjustment exhibit less bias (see figure 20(c),
20(d)) and smaller variability in estimates than in the negative correlation scenario, sug-
gesting better control of correlation-induced heterogeneity. The bias remains within a
narrow range across σlogit and k, and the overall pattern mirrors the IV estimator’s. The
MSE (see figure 21(c), 21(d)) also behaves similarly to the IV estimator but shows im-
proved robustness to increasing τ , particularly for larger k, indicating that the RE model
benefits more from additional studies than the fixed-effect estimators. The coverage of the
RE model (see figure 22(c)) is again more stable under increasing τ compared with the IV
and MH estimators. However, the improvement is less pronounced than in the negative
correlation scenario. The HKSJ adjustment maintains similar bias and MSE levels but
shows slight under-coverage (see figure 22(d)), especially for large k values.
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 20: Mean Bias (log-OR) vs. σlogit for the positive correlation scenario

(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 21: Mean MSE (log-OR) vs. σlogit for the positive correlation scenario
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(a) IV-Estimator (b) MH-Estimator

(c) RE Model (d) HKSJ-Adjustment

Figure 22: Mean Coverage vs. σlogit for the positive correlation scenario

4.3 Implications

The results across all scenarios provide several important implications for researchers
conducting meta-analyses of rare events or datasets characterised by small study numbers,
heterogeneity, or imbalance. Overall, the findings emphasise that the choice of pooling
method and the treatment of sparse and correlated data structures can substantially
influence both the magnitude and reliability of pooled estimates.
The RE model estimator generally demonstrated the most stable performance across all
investigated settings. It consistently provided a balanced trade-off between bias, efficiency,
and coverage, representing the most reliable default option for rare-event meta-analyses.
The IV and MH estimators exhibited systematic, directionally opposing biases. The IV
method underestimated the pooled effect under most conditions, particularly when data
were unbalanced or sparse. At the same time, the MH method tended to overestimate
the effect in the same situations. These results confirm earlier findings by Sweeting et al.
(2004) and Bradburn et al. (2007), who reported that two-stage estimators relying on
large-sample approximations perform poorly when event counts are low. Applying a fixed
continuity correction, such as adding 0.5 to each cell, reduced bias and mean squared
error in many situations, particularly when zero-event studies were present. However,
the correction also introduced distortions in several scenarios and its influence varied
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with heterogeneity and allocation imbalance. Therefore, continuity corrections should be
applied with caution.
The simulations also confirmed that increasing heterogeneity (τ) amplifies both bias and
under-coverage for fixed-effect estimators. At the same time, baseline variability (σlogit)
only marginally improves the bias of IV models without fully resolving coverage problems.
Practitioners should thus quantify heterogeneity carefully and avoid relying on fixed-effect
estimators when between-study variation is substantial. In such cases, random-effects
estimators provide more credible inference, though they still require careful interpretation
when k is large.
The number of included studies (k) is central in determining estimator performance. In
this simulation study, we have seen that a higher heterogeneity paired with more studies
(k = 20) can lead to overly conservative confidence intervals, which can be corrected by
using a random effects model for inference. Also, it is important to note that in the
case of small k, e.g. k = 3, even the random-effects models can have issues mitigating
the effect a high heterogeneity has on the confidence intervals (see figure 22(c)). Sparse-
data situations, such as the many-zeros scenario, presented a particular challenge. IV
and MH estimators displayed strong bias and unstable variance estimations when many
studies contained no events. In contrast, the RE model provided more reliable inference,
but with slightly inflated coverage. The HKSJ-adjusted variant partially mitigated this
overcoverage but tended to produce overly narrow intervals when sparsity was extreme.
Researchers confronted with many zero-event studies should rely on RE models as the
main analysis method. Reporting results with and without continuity correction may help
illustrate the sensitivity of estimates to sparse-data handling.
Scenarios with unbalanced randomisation, such as 1:2 or 1:3 allocation ratios, showed
that unequal group sizes accentuate the weaknesses of fixed-effect estimators. The IV
estimator consistently underestimated the effect, while MH consistently overestimated it.
The RE model again demonstrated the most balanced behaviour, though underestimation
increased slightly under severe imbalance. In such settings, RE models should be preferred
as the primary analysis approach.. The HKSJ correction, though helpful for small meta-
analyses, showed a tendency toward under-coverage in large, highly imbalanced datasets
and should therefore be applied cautiously in these contexts.
The correlation scenarios highlighted an additional and often overlooked source of bias in
meta-analysis. When baseline risk and study size were negatively correlated—meaning
smaller studies had higher event rates—fixed-effect estimators showed systematic bias and
early onset under-coverage in the case of the HKSJ adjustment, especially for k = 20.
A positive correlation leads to early undercoverage in the case of small k and higher τ ,
even for the random effect models, showing that under positive baseline correlation, all
models become less reliable in the presence of heterogeneity. The RE model was again less
affected by such correlation, offering more consistent bias control and coverage stability,
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though not eliminating the problem. Practitioners should therefore routinely explore the
relationship between baseline risk and study size before analysis and interpret pooled
estimates with caution when a strong correlation is detected.

5 Application

For the application example, we are using the Rosiglitazone dataset (Nissen and Wol-
ski, 2007), which is a frequently cited real-world example in meta-analytic research on
rare adverse events. It compiles data from 42 randomised controlled trials evaluating
rosiglitazone, a thiazolidinedione used for type 2 diabetes, compared with control treat-
ments. The outcomes of interest are binary—occurrence of myocardial infarction and
cardiovascular death—and the dataset is characterised by low event rates, unbalanced
treatment-to-control ratios, and study-level heterogeneity. Because some trials contain
few or no cardiovascular events, the dataset provides a realistic test case for assessing how
different meta-analytic models handle sparse and zero-event data, making it a suitable
empirical illustration for the methodological evaluation in the application section of this
thesis (Rücker and Schumacher, 2008; Nissen and Wolski, 2007). For this application
example, we will fit the models used in the simulation study to examine the estimated
effect sizes for the risk of death and the risk of infarction separately. From the descriptive
plots for both outcomes, we can see that the distribution of the study sizes reveals very
heterogeneous study sizes with strong imbalance where the treatment groups are often
more than double the control group (see figure 23(a)). The percentage of zero studies
lies at almost 80% for the death events and at nearly 70% for the infarction events, while
half of the zero studies in the death event case consist of double zero studies. The frac-
tion of double-zero studies for the infarction events is much lower (see figure 23(b)). The
risk distribution for the death events reveals a strongly right-skewed distribution of the
risk in the control group with moderate variance in the baseline risk (see figure 23(c)).
The treatment risk of the death events follows a similar pattern but is slightly less right-
skewed and slightly more heterogeneous (see figure 23(c). Regarding the risk distribution
for infarction events (see figure 23(d)), we can observe a strongly right-skewed control
risk distribution with again moderate variance in the baseline. Still, the treatment risk
distribution shows a considerably higher heterogeneity and less right-skewness. When
looking at the relationship between the baseline risk and the study size, we cannot ob-
serve sufficient evidence for correlation for both event types (see figure 24(a), 24(b)).
Therefore, for synthesizing the finding regarding the death events we would choose the
MH-estimator with 0.5 continuity correction since in cases of low heterogeneity and ex-
treme data sparsity (see figure 8(b), 10(b)), as well as unbalanced randomisation it has
proven to deliver consistent almost unbiased results while providing sufficient coverage
(see figure 14(b), 16(b)). The resulting model fits for the death events (see figure 25(a)
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show the expected very narrow CIs for the HKSJ adjusted random effects model, espe-
cially with continuity correction. In contrast, the classic random effects model shows
wider confidence intervals, indicating the expected possible over-coverage in the presence
of imbalanced randomisation and sparse data. The MH estimator is the only one that is
clear about the direction of the treatment effect size. All other CIs include values < 1
and > 1, indicating uncertainty about the direction of the treatment effect size. It is
important to note here that we have shown that all models except the MH model tend
to underestimate the true effect size, while the MH estimator has the opposite tendency.
However, in case of extreme data sparsity and imbalanced randomisation, the bias was
closest to zero for the MH estimator.
Thus, we would strongly recommend the MH estimator in this context since it has proven
to produce reliable results in scenarios with extreme data sparsity, moderate heterogene-
ity and unbalanced randomisation.
In case of the infarction events, we would choose a different approach. Since we face higher
heterogeneity and less data sparsity, but still unbalanced randomisation, choosing one of
our models becomes quite difficult. The fixed effect models have been shown to perform
worse under higher heterogeneity, leading to significant under-coverage in all scenarios.
At the same time, for the imbalanced randomisation scenarios (especially in case of a 1:3
randomisation ratio, see figure 16(c)), the random effects models have shown significant
under-coverage, while showing over-coverage in scenarios with extreme data sparsity (see
figure 10(c)). Therefore, we recommend the random effects model with cc 0.5 since it has
proven to be a robust all-around model that performs best for all scenarios. The fitted
models show that the estimates and CIs are very similar across all models, while again the
MH model shows its tendency to overestimate, and the HKSJ adjusted model provides
overly conservative CIs.
Overall, this application example shows that modelling choice in the context of meta-
analysis remains challenging, especially for scenarios with varying heterogeneity, data
sparsity, and imbalanced randomisation. The combination of extreme data sparsity, high
heterogeneity, and imbalanced randomisation remains an important subject for further
research.

6 Discussion

In this thesis, we examined how different variants of baseline pooling in classical meta-
analysis models influence model performance under varying baseline risk variability, dis-
tributional form, and data imbalance. Specifically, we assessed how the IV method, MH
estimator, RE models, and HKSJ estimators perform when confronted with different
baseline-risk variances, heterogeneity levels of the true effects, imbalanced randomisation,
small numbers of studies, and rare event probabilities. By incorporating both normally
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(a) Distribution and partition of the study size (b) Percentage and partition of zero studies

(c) Death (d) Infarction

Figure 23: Risk distribution in control and treatment arm

(a) Death (b) Infarction

Figure 24: Study size vs. baseline risk
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Model CC k τ̂ 2 log(OR) SE OR [95% CI]
IV No CC 6 0.000 0.181 0.319 1.20 [0.64, 2.24]
MH No CC 42 0.000 0.529 0.278 1.70 [0.98, 2.93]
RE No CC 6 0.000 0.181 0.319 1.20 [0.64, 2.24]
RE + HKSJ No CC 6 0.000 0.181 0.144 1.20 [0.83, 1.73]
IV CC 0.5 42 0.000 0.128 0.218 1.14 [0.74, 1.74]
MH CC 0.5 42 0.000 0.529 0.278 1.70 [0.98, 2.93]
RE CC 0.5 42 0.000 0.128 0.218 1.14 [0.74, 1.74]
RE + HKSJ CC 0.5 42 0.000 0.128 0.092 1.14 [0.94, 1.37]

Table 1: Pooled Odds Ratios (OR) for Death Outcome under Different Meta-Analytic
Models

Model CC k τ̂ 2 log(OR) SE OR [95% CI]
IV No CC 12 0.000 0.252 0.185 1.29 [0.90, 1.85]
MH No CC 42 0.000 0.356 0.167 1.43 [1.03, 1.98]
RE No CC 12 0.000 0.252 0.185 1.29 [0.90, 1.85]
RE + HKSJ No CC 12 0.000 0.252 0.133 1.29 [0.96, 1.72]
IV CC 0.5 42 0.000 0.232 0.158 1.26 [0.93, 1.72]
MH CC 0.5 42 0.000 0.356 0.167 1.43 [1.03, 1.98]
RE CC 0.5 42 0.000 0.232 0.158 1.26 [0.93, 1.72]
RE + HKSJ CC 0.5 42 0.000 0.232 0.101 1.26 [1.03, 1.55]

Table 2: Pooled Odds Ratios (OR) for Myocardial Infarction under Different Meta-
Analytic Models

distributed and beta-distributed baselines, the simulations covered a range of realistic
meta-analytic conditions while enabling the comparison of common pooling strategies.
Across all scenarios, a higher variance of the baseline risk showed a slight positive effect on
estimator performance regarding bias reduction, particularly for the IV and RE models.
However, this effect was small and not practically relevant in most situations, suggesting
that moderate baseline variability does not substantially alter the statistical properties
of classical meta-analysis estimators. In contrast, the correlation between baseline risk
and study size—especially the positive correlation scenario—had a pronounced impact on
model performance. Under high between-study heterogeneity (τ), all models exhibited a
considerable loss in coverage and increased bias, including the RE model based estima-
tors that otherwise performed most robustly. This finding is particularly interesting as
it highlights that even random-effects models are sensitive to structural correlations in
the data-generating process, potentially leading to biased inference when large studies are
systematically associated with higher baseline risks. Despite the systematic design of the
simulation study, several limitations must be acknowledged. First, only two distributions
for the baseline risk were considered—normal and beta—limiting the generalisability of
the findings to other plausible baseline structures. The variance of the beta distribu-
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(a) Death (b) Infarction

Figure 25: Forest plots of the fitted models

tion was kept constant for simplicity, which may have constrained the observed effects of
baseline heterogeneity. Second, the examined range of baseline variances (σlogit ∈ [0.1, 1])
was restricted to avoid unrealistic event probabilities, particularly in the correlation sce-
narios where very high variance would have produced implausibly large baseline risks of
up to 50%. Future research might address this limitation by exploring alternative data-
generating mechanisms beyond the multivariate normal framework. Third, the scope
of models fitted to the simulated data was limited to frequentist two-stage estimators.
More advanced approaches were not included, such as generalised linear mixed models
(GLMMs) or Bayesian binomial–normal models. These methods provide improved stabil-
ity and inference under sparse-event or highly heterogeneous conditions (Günhan et al.,
2020; Jackson et al., 2018) and could serve as valuable extensions to the present study.
The limitations of the simulation framework became evident in the application section,
where recommendations could be made for models performing reliably for scenarios in-
volving moderate heterogeneity and imbalanced randomisation. Still, recommendations
for higher heterogeneity scenarios were difficult to make. This issue is apparent in the
simulation findings, which showed that none of the classical estimators achieved adequate
coverage or unbiased estimation when heterogeneity and data imbalance were pronounced.
Consequently, the recommendations derived from this work are most applicable to meta-
analyses with moderate between-study variability. In contrast, situations characterised
by strong heterogeneity or correlation structures may require alternative modelling ap-
proaches.

7 Conclusion

This thesis aimed to investigate how different baseline pooling strategies influence the
performance of classical meta-analytic models under varying baseline-risk variances, dis-
tributions, and structural data characteristics. Building upon the gap identified in the
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literature, namely that baseline variability is often treated implicitly rather than as a
parameter of interest, this work systematically evaluated the role of explicit baseline
modelling within realistic simulation settings. By varying heterogeneity, randomisation
imbalance, rare-event occurrence, and the correlation between baseline risk and study
size, this study sought to provide a comprehensive assessment of estimator robustness
across practical meta-analytic conditions.
The results demonstrated that moderate increases in baseline variance have a negligible
impact on estimator performance. Across both normal and beta-distributed baselines,
all models IV, MH, RE, and the Hartung–Knapp–Sidik–Jonkman (HKSJ) adjustment
showed minimal bias or coverage changes when the baseline variance increased. This
finding suggests that the omission of explicit baseline modelling is unlikely to distort in-
ference within realistic parameter ranges substantially.
In contrast, the introduction of a correlation between baseline risk and study size, particu-
larly a positive correlation, strongly affected model performance. Under these conditions,
all estimators, including the RE model, showed marked decreases in coverage and in-
creased bias at higher levels of heterogeneity. This indicates that dependencies between
design-level characteristics can compromise even variance-based random-effects estima-
tors that are otherwise robust under standard assumptions.
Together, these results clarify the contexts where baseline pooling matters for inference.
While baseline variance is a minor determinant of estimator behaviour, the structural
relationships between baseline risk and other study-level quantities—such as sample size
or allocation ratio—play a far more critical role. This insight contributes to ongoing
discussions in the meta-analytic literature (Jackson et al., 2018; Günhan et al., 2020) con-
cerning how data-generating mechanisms interact with estimator assumptions and may
help explain the divergent performance of classical and hierarchical models observed in
prior simulation studies.
From a methodological perspective, the present work advances the current research land-
scape by explicitly incorporating baseline variability and correlation structures into the
simulation design—features that have largely been ignored in previous studies focusing
solely on heterogeneity, randomisation, and zero-event prevalence. The results therefore
bridge the gap between theoretical considerations of baseline risk variability and practical
concerns about estimator robustness in small, sparse, or imbalanced meta-analyses.
Nevertheless, the findings should be interpreted within the constraints of the study design.
Only two baseline distributions were evaluated, and the variance range was restricted to
avoid implausible event probabilities. Moreover, the focus on frequentist two-stage estima-
tors excluded other important modelling paradigms, such as Bayesian hierarchical models
or generalised linear mixed models (GLMMs), which may exhibit different behaviour in
similar conditions. As such, the conclusions primarily apply to classical frequentist frame-
works.
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Future research should extend this work in three directions. First, incorporating Bayesian
and GLMM-based approaches would enable direct comparison with modern hierarchical
methods that explicitly model baseline parameters. Second, alternative data-generating
distributions could be explored to represent skewed or multimodal baseline structures
more realistically. Third, a deeper theoretical investigation into how the correlation be-
tween baseline risk and study size propagates through estimator weighting schemes could
yield a more formal understanding of the performance degradation observed in this the-
sis.
In conclusion, this thesis provides new empirical evidence that while baseline pooling
and variance have limited effects under standard conditions, structural dependencies par-
ticularly correlations between baseline risk and study size pose a substantial challenge
to conventional meta-analytic estimators. Addressing these complexities requires more
flexible, model-based frameworks that explicitly account for baseline variation. In doing
so, future research can contribute to a more comprehensive understanding of estimator
behaviour in meta-analysis and strengthen the methodological foundations of evidence
synthesis in medical research.
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A Appendix

A.1 Simulated Data

Figure 26: Risk Distribution (Negative Correlation Scenario)
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Figure 27: Risk Distribution (Positive Correlation Scenario)

Figure 28: Risk Distribution (Randomisation 1:2 Scenario)
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Figure 29: Risk Distribution (Randomisation 1:3 Scenario)

(a) Randomisation 1:2 (b) Randomisation 1:3

Figure 30: Zero percentages for the randomisation 1:2 and 1:3 Scenario
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(a) Positive correlation (b) Negative correlation

Figure 31: Zero percentages for the positive and negative correlation Scenario

(a) Randomisation 1:2 (b) Randomisation 1:3

Figure 32: Study size vs. baseline risk for randomisation 1:2 and 1:3 scenario

(a) Standard (b) Many zeros

Figure 33: Study size vs. baseline risk for standard and many zeros scenario
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