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Abbreviations

Abbreviation Denotation

APR Average Power Rate

FDR False Discovery Rate

FWER Family-wise Error Rate
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Abstract

Interest in micro-RNAs (miRNAs) has been constantly growing in recent years. This

Thesis concentrated on two-group testing in high-throughput data, i. e. on the question

which miRNAs lead to or are part of differences between two groups. A straightforward

approach would be to test each miRNA on its own, for example with the well-known

t-test. However, if mRNA expression data is present as well, such analyses do not cover

all the information available and therefore unnecessarily lose power. The intention here

was to incorporate both the miRNAs’ as well as their target-mRNAs’ expression values.

p-values derived from miRNA-wise testing as well as by testing for differential expression

in the gene set lead to a statistic describing the overall probability that a miRNA or its

respective gene set change in their expression between two groups. Different algorithms

to achieve this were compared in simulations. The pipelines were used on real expression

data and their ability to refine the analysis was shown. The algorithms were implemented

in the publicly available ‘miRtest’ R package to allow further use.

Das Interesse an micro-RNAs (miRNAs) ist in den letzten Jahren rapide gewachsen. Diese

Arbeit behandelt den Vergleich zweier Gruppen, von welchen high-throughput-Daten vor-

liegen, um die Frage zu klären, welche miRNAs zwischen diesen in ihren Expressionwerten

differieren. Ein simples Verfahren wäre jede miRNA einzeln, etwa mit dem klassischen

t-Test, zu testen. Sofern auch mRNA-Expressionsdaten zur Verfügung stehen würde

dies jedoch nicht alle Informationen ausnutzen, die vorhanden ist. Somit würde beim

Testen unnötigerweise Macht verschenkt. Die hier verfolgte Strategie versucht, miRNA-

und mRNA-Expressionswerte zusammenzufassen und gemeinsam zu betrachten. p-Werte

aus miRNA-weisen Tests sowie aus gene set tests führen zu einer Statistik, welche die

Wahrscheinlichkeit, dass eine miRNA zu Effekten zwischen zwei Gruppen führt, besser

beschreibt. Verschieden Algorithmen dies zu bewerkstelligen wurden anhand synthetis-

cher Daten verglichen. Anhand eines microarray-Datensatzes wurde gezeigt, wie die Anal-

yse durch solcherart Algorithmen verfeinert wird. Letztere werden in einem öffentlich

zugänglichen Paket namens ‘miRtest’ zur Verfügung gestellt.
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1 INTRODUCTION

1 Introduction

1.1 Motivation

The discovery of miRNAs took place a little more than a decade ago. Since than, a

rapidly growing field has emerged which concentrates on their understanding. More and

more details of the pathway they trigger are being elucidated while a growing number of

their functions is being identified. Even though their role in mammalian cells is not yet

entirely understood, they appear to play a crucial role in development and cancer (Lu

et al., 2005; Volinia et al., 2006). Indeed, it was shown (Lu et al., 2005) that tumour

samples, for example, can be clustered better when the underlying miRNA expression

profile is known, than with a usual mRNA profile. Despite their importance in plant and

animal cells, it was not for methodology why they were discovered so late. Instead, it was

the idea that RNAs as short as miRNAs are more than just degraded mRNAs occurring

in an experiment.

The analysis of miRNA expression is rather straightforward: all the methodology

available for regular mRNAs just had to be adapted to allow miRNA purification. Still,

it is complicated and expensive in comparison to their messenger pendants. miRNAs can

be quantitatively analysed in RT-PCR. Alternatively, they are often quantified in a high-

throughput manner on special microarrays which are gaining popularity at the moment.

Finally, standard biostatistical methods, such as linear models in group comparison, can

be applied to their expression values. This, however, does not include all the informa-

tion we have on them. We know, for example, that they are part of special and simple

pathways: they lead to the down-regulation of their targets rather directly. Consequently,

inferring information from a-priori defined gene groups, or gene sets, that are supposed to

be influenced by a miRNA appear to be worthwhile. Methods to analyse gene sets have

been coming up in recent years as part of pathway analysis (see, for example Subramanian

et al., 2005).

Ideas to combine gene set testing with the miRNAs’ own expression profile have been

rare, however. See (Jayaswal et al., 2009) for an example. The intention of this Thesis
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1.2 miRNA 1 INTRODUCTION

is to combine all the information that is there. p-values from miRNA-wise two-group

comparisons shall be combined with p-values coming from their gene sets, which can

be defined from target prediction data. The idea is to provide a score or even p-value

which allows easy interpretation of whether a miRNAs affects a cell’s/tissue’s/organism’s

phenotype.

1.2 miRNA

The only about 20 nt long transcripts pose a comparatively new mode of gene regulation.

By down-regulation of their targets, which they recognise specifically by their sequence,

they can have a large impact on a cell’s gene expression pattern. In the following, miRNA

expression, maturation and its function shall be summarised.

1.2.1 Biogenesis

As every RNA, pri-miRNAs, the predecessors of mature miRNAs, are transcribed in the

nucleus. They can be located within introns of protein coding genes (Rodriguez et al.,

2004) or in intergenic region. Indeed, a primary transcript, which is capped and has

a poly-A-tail, can be coding (CAI et al., 2004). Their transcription is supposed to be

mediated by Pol II (Lee et al., 2004). This often happens in a polycistronic manner

(Chang and Mendell, 2007). A characteristic of the pri-miRNA are its stem loops, 60

to 80 nt long regions which fold back to themselves. They are the ones where the later

miRNAs are located. Already in the nucleus they are freed from the pri-miRNAs and

the parts in between are degraded quite efficiently (Chang and Mendell, 2007). The

abundance of pri-miRNA in cells is therefore usually quite low. This processing step is

mediated by the microprocessor complex (Seitz and Zamore, 2006). The main effector in it

is the endonuclease Drosha. The stem loops, also called pre-miRNAs, have a 3’ overhang

which allows them to be exported into the cytoplasm via exportin 5 (Bohnsack et al.,

2004). There, they encounter Dicer, an enzyme which removes the loop of the hairpin

turning it into a double stranded RNA (Ambros et al., 2003). This can be incorporated

into the RNA induced silencing complex RISC, the function of which is described in the
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1.2 miRNA 1 INTRODUCTION

next chapter. Here, one of the two strands need to be degraded to allow the remainder

to convey its function. Usually, one of the two strands is degraded more frequently than

the other. It is then denoted by a star (*) in its name.

1.2.2 Mode of Action

It is often said that a miRNA attacks or degrades its targeted mRNAs. However, this

is only partly true, as the role of the miRNA is rather to recognise the targets while

RISC is the one to lead them to their fate. Note that both are not consumed in the

reaction, explaining the catalytic behaviour of miRNAs and its great impact on its target’s

abundance. In plant cells, where miRNAs usually show a high sequence homology to their

targets RISC mainly degrades them itself. In mammalian cells, however, its mode of action

appears to be more complex, or at least to be understood in greater detail. Here, RISC

can also cleave mRNAs, mainly via one of the proteins it is composed of, Argonaute2 (Liu

et al., 2004; Meister et al., 2004). However, it can also do modifications which lead to

mRNA degradation later on, including decapping (Eulalio et al., 2007) and deadenylation

(Eulalio et al., 2009; Wu et al., 2006). Another mode of action is the transport of mRNAs

to P-bodies, where they can be degraded or stored (Cannell et al., 2008). Finally, RISC

can also just repress the translation of a mRNA. However, as the the last two points do

not affect total mRNA levels of a cell, they can only be measured using proteome-based

technologies. On a typical microarray platform, however, these effects are not detectable.

1.2.3 miRNA Target Prediction

As mentioned before, miRNA-mRNA interaction is sequence dependent. However, due to

mostly imperfect sequence homology between the two the in-silico identification of miRNA

targets is more challenging than just a search for matching sequences. Different methods

have been developed to allow target prediction. Examples for databases that provide such

information are ‘miRbase’ (Griffiths-Jones et al., 2006) or ‘TargetScan’ (Grimson et al.,

2007). Some features most of them have in common are:

In the 3’UTR, the 3’ untranslated region, of a mRNA a so called seed sequence needs
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1.3 High-Throughput Data Analysis 1 INTRODUCTION

to be located which is thought to have a great influence on the probability of a mRNA

being degraded (Brennecke et al., 2005). Another point for deciding in favour or against

a mRNA being a target is the expected stability of the interaction with a miRNA. The

longer a miRNA is able to keep a mRNA close to RISC, the higher the probability that

it will interact with it. Apart from that one can infer information from different species:

if, in general, sequences in a mRNA are conserved between related species one can expect

that they have a crucial role and their change in function or their lacking leads to an

evolutionary disadvantage. Accordingly, target sites of a mRNA that are more conserved

may be expected to have a higher importance for mRNA-miRNA pairing. Finally, other

points include the number of target sites that a mRNA has.

Despite all the information available from the sequence target prediction is still com-

plicated and the results from different algorithms can be quite different (Sethupathy et al.,

2006). This is one reason why it has been suggested by Sethupathy et al. (2006) to combine

different predictions and rather allow more false positives than false negatives. Another

disadvantage is that such algorithms cannot know whether a certain mRNA is present in

a cell at all so that it can indeed be attacked by a miRNA. Finally, target prediction algo-

rithms just return p-values describing the probability of a miRNA attacking an mRNA,

which not necessarily allows the deduction of how efficient that down-regulation is.

1.3 High-Throughput Data Analysis

1.3.1 Microarrays

The most popular high-throughput method to measure RNA abundance is the microarray

technology. Most often it is a slide of single stranded DNA spotted on it. To measure

RNA abundance in a biological sample, RNA is reverse transcribed into cDNA which

is labelled with a fluorescent marker. The resulting targets are hybridised on the array.

A scanner determines the strength of the fluorescence signal in every spot and therefore

allows the relative quantification of each spot.

In the optimal case, the sequence of each spot should be complementary to one tran-

script, or at least, one gene only. This, however, is often not the case. There are further
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1.3 High-Throughput Data Analysis 1 INTRODUCTION

methodological issues blurring microarray results (Nykter et al., 2006). The binding effi-

ciency of targets on the probes can vary. So can the size of the spots. The quality of some

spots may be poor, leading to spots suffering from a chord cut or being close to one or

more of their neighbours. Also, problems when scanning the microarray can occur (Nyk-

ter et al., 2006). All of this as well as further issues lead to a variance between technical

replicates, which adds up to the biological variance one sees when taking samples from

different individuals. Consequently, the distribution of fluorescence intensity differs for

every repetition of a microarray experiment, even if the same platforms are used. It has

therefore become a standard procedure to normalise microarray expression data, i. e. to

make the fluorescence values of all microarrays follow the same distribution. There exist

several methods to achieve this. The quantile normalisation which will be used in this

Thesis (see Material & Methods) normalises microarrays without changing gene ranks.

Recently, more and more companies also offer miRNA microarrays. They follow the

same principle as usual mRNA-arrays but are specialised for miRNA quantification.

1.3.2 Multiple Hypothesis Testing

A p-value is generated by transforming a given statistic to a uniform distribution between

0 and 1. It describes the probability of a statistic being as extreme as or more extreme

than observed. In microarray studies, however, where thousands of genes and hundreds

of gene sets are involved, the probability of observing extreme statistics just by chance

increases dramatically.

To deal with this problem one first has to define error rates. Most of the following

information is based on the review by Dudoit et al. (2003). For a single experiment, a

type I error is committed when a null hypothesis is rejected even though it is true. On

the contrary, a type II error means not declaring a test significant while the alternative

hypothesis is true. When one switches to more-dimensional experiments, as is the case

for high-throughput measurements, one defines rates. The most stringent of these is the

family-wise error rate FWER, i. e. the probability of having maximally one false positive

detection. The most famous method for FWER-control is the procedure described by

Stephan Artmann, Master Thesis 2011 Page 5 of 56



1.3 High-Throughput Data Analysis 1 INTRODUCTION

Bonferroni (Bland and Altman, 1995). It is very simple yet very conservative as well.

Bonferroni-adjustment works by multiplying every p-value pk of an experiment k, here

of a gene k, with the number n of genes tested. Other ideas which detect more alterna-

tive hypotheses exist, but generally FWER-control is unnecessarily conservative. When

conducting a microarray experiment, one is usually interested in controlling the propor-

tion of false positives among the positives, the false-discovery rate FDR (Benjamini and

Hochberg, 1995). It is important to differentiate between weak and strong control of an

error rate here. The latter refers to the case that a procedure controls an error rate for any

combination of true and false null hypotheses, while in the first case, it is only controlled

when all null hypotheses are true. A procedure that has strong control over the FDR has

a weak control over the FWER. Different procedures have been proposed that lead from

p-values to so called q-values (see below). In a list of genes ordered according to their

p-values, a q-value of a given gene i describes the expected FDR if one rejects the null

hypotheses of all the genes in the list from the first up to gene i.

The method of Benjamini and Hochberg (1995) is one of the most popular ones and it

will also be applied here. The idea is that if one has an ordered list of p-values, one does

not need to control all of them according to Bonferroni. This is sufficient for the lowest

one. For every following p-value pk, where k is its rank among the others, Benjamini and

Hochberg (1995) find K as the largest k which satisfies

pk ≤
k

n
· α,

where α is the threshold of significance applied and n = max(k). For the hypotheses

k ∈ {1, ..., K} the null is rejected. Additionally, one may be interested in the q-value,

that is the smallest FDR-threshold one has to assign to a gene to call it significant:

qk = min
(

min
(n
k
· pk, 1

)
, qk+1

)
for all k ∈ {1, ..., n− 1} and

qn = min
(n
n
· pn, 1

)
= min (pn, 1) .

Note that the order of genes is not changed by the recursive formula: the minimum of

each gene’s and its successor’s q-value is taken. This way the q-value becomes a monotone
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1.3 High-Throughput Data Analysis 1 INTRODUCTION

function of the p-value. Consequently, after the adjustment only the threshold below

which genes are declared significant is shifted towards the more significant genes. It

was shown by Benjamini and Yekutieli (2001) that this controls the expectation value of

the FDR under the assumption of positive regression dependency. This includes data

with positive covariance matrix, such as autoregressive covariance (see Section 2.6.1). A

method to adjust for any dependencies between the genes was proposed by Benjamini

and Yekutieli (2001) as well. It is a modification of the method above. As it has no

assumption whatsoever on the correlation structure it has to assume the worst case of

correlation which makes it a very conservative method.

While being in control of type I errors, one wishes to make as few errors of type II

as possible, i. e. to have a large power rate. Analogous to the different type I error

rates, different power rates have been defined. Three common ones are: The probability

of correctly rejecting at least one null hypothesis, the average power rate APR defined

as the average probability of rejecting a false null and the probability of rejecting all null

hypotheses that are false. It will be the APR that will be utilised here.

1.3.3 Important Distributions of Random Variables

In the following chapters different tests will be presented and used. To be able to generate

p-values they need to arrive at a statistic of known distribution. If assumptions on the

distribution of the original data are made (it is most often required to follow a normal

distribution then) a test is called parametric. Else, it is a non-parametric test. Most of

the following was gathered from Wei (2010). Whenever other sources were used they are

indicated.

The most famous distribution is the normal distribution Wei (2010). According to the

central limit theorem the mean of random variables, almost independently of their dis-

tribution, asymptotically (for more or less large numbers of repetitions) follows a normal

distribution. In the univariate case, its probability density function is given by

f(x) =
1

σ
√

2π
· e−1/2·(x−µ

σ
),
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1.3 High-Throughput Data Analysis 1 INTRODUCTION

where µ and σ are the two parameters of the function, the expectation and the variance,

respectively. Two or more normally distributed variables can, but not necessarily do, fol-

low a multivariate normal distribution. It is the generalisation of the normal distribution

to higher dimensions. Its expectation vector µ and the covariance matrix Σ parametrise

the density function:

f(x) =
1

(2π)k/2|Σ|1/2
· e−1/2·(x−µ)′Σ−1(x−µ).

The covariance matrix has the variance of each element of x on its main diagonal. The

covariance of the ith and the jth element of x is in elements (σi,j) and (σj,i) of Σ. If the

corresponding entry is 0, it means not only that the two variables are linearly uncorrelated,

but that they are indeed independent. Σ is a symmetric, positive definite matrix. The

covariance σx,y of two variables x and y is proportional to their correlation ρx,y according

to ρx,y = σx,y
σxσy

.

In its simplest form, a χ2-distribution describes the distribution of the square of a

standard normally distributed variable. However, also a sum of squares of independent

standard normally distributed variables follow a χ2-distribution. Its only parameter is the

number k of variables the square sum of which was summed up. The density function is

f(x; k) =
1

2k/2Γ(k/2)
· xk/2−1e−x/2 if x ≥ 0,

f(x; k) = 0 otherwise,

where Γ is the gamma distribution function. For a multivariate distribution the pendant

to the χ2-distribution is the Wishart-Distribution.

Some further distributions are necessary to entirely understand Section 2: One is

the Bernoulli distribution which can take either value 0, or value 1, the latter with a

certain probability p. It will be used in section 2 to randomly sample logical vectors. The

distribution of the number of Bernoulli trials necessary to get one success (one value 1)

follows a geometric distribution. It is the probability that the kth out of k trials is the

first success

Pr(X = k) = (1− p)1−kp,
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1.3 High-Throughput Data Analysis 1 INTRODUCTION

where X is the number of trials needed to get one success. The hypergeometric distribu-

tion is somewhat similarly motivated. It describes the probability that in an experiment

without replacement, the number of successes X is k for a given number n of trials out

of N possible trials:

P (X = k) =

(
m
k

)(
N−m
n−k

)(
N
n

) .

Finally, the t-distribution is of interest here. It occurs for a variable Z if a normally

distributed variable is divided by a variable following a χ2-distribution. The distribution

often occurs in two-group testing. The mean X of independent normally distributed

samples follows a normal distribution if X does. For a known variance σ one can therefore

construct the statistic

S =
X1 −X2

σ
·
√

(n),

where X1 and X2 are the mean of the first and the second group, respectively. S then

follows a standard normal distribution. However, as σ is often unknown it has to be

replaced by an estimator s which is generated from the data and follows a χ2-distribution.

In the case of equal variances in both groups the test statistic then becomes

Z =
X1 −X2

s
·
√

(n)

and follows a t distribution.

1.3.4 Gene Set Testing

Tests for differential expression have classically been applied in a gene-wise manner. How-

ever, lists of genes ordered according to the significance against the null hypothesis are

usually not very informative. Consequently, approaches that calculate statistics for pre-

specified sets of genes have been developed in recent years. They have been grouped into

self-contained and competitive tests by Goeman and Bühlmann (2007). The first build

a statistic based solely on the information present inside a given gene set. One of the

first to do so was the ‘globaltest’ by Goeman et al. (2004). They test against the null

hypothesis that no single gene in the set is differential. Competitive tests, on the contrary,

compare the differential expression of the genes inside the gene set with those outside of
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1.3 High-Throughput Data Analysis 1 INTRODUCTION

it. They help to make a decision whether the expression distribution of the gene set’s

genes is the same as of those outside the gene set. They are therefore more robust to

sporadic effects which are not restricted to the gene set, e. g. a change in expression

that occurs in all genes. For a given experiment, their p-values for the different miRNAs

can be expected to follow a somewhat two-tailed distribution under the alternative: the

genes of those gene sets which are significant lead to higher p-values of the gene sets that

do not. Nevertheless, for the false null hypotheses one might expect them to have lower

power than self-contained tests.
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2 MATERIAL AND METHODS

2 Material and Methods

2.1 miRNA-wise Testing using Linear Models

To calculate miRNA-wise p-values the popular linear models by Smyth (2004) were ap-

plied. They are implemented as a part of the ‘limma’ package, which is written in the R

statistical programming language (R Development Core Team, 2010). In the following,

the notation of Smyth (2004) will be a little adapted to explain their model.

Define a response vector y = (yi), where i = 1, .., n is the ith microarray replicate.

Here, it will be a vector of two factors k = 1, 2 indicating which group microarray i

belongs to. Let the matrix X of gene expression values consist of g row vectors αj, where

j = 1, ...g is the index corresponding to a certain gene. It is assumed that E(y) = D · α,

where D is a so called design matrix. Here, an element di,k of D will be 1 if microarray i

is in group k, and 0 otherwise. One is interested in the coefficients βj of the linear model

βj = C · α, where C is a contrast matrix. Here, it is simply designed in such a way that

each βj reflects the difference between the two groups. Assuming a normal distribution

of βj and a χ2 distribution of its variance vj a statistic tj is calculated by

tj =
β̂j

sj ·
√
vj
,

where s is the estimator of a gene’s variance. By assuming that the estimator of every

gene’s coefficient follows a normal and the estimator of a gene’s variance a scaled χ2-

distribution,

β̂j ∼ N(βj, vjs
2
j) and s2j ∼

σ2
j

dj
· χ2

dj
,

tj follows an approximate t-distribution with dj degrees of freedom. Smyth (2004) further

takes into account that the analysis of genes happens in a very parallel manner. This

is done by application of a hierarchical model. Essentially, prior distributions of the

unknown coefficients βj and σ2
j across genes are assumed:

1

σ2
j

∼ 1

d0s20
· χ2

d0
and βj|βj 6= 0 ∼ N(0, v0jσ

2
j ).
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Under the hierarchical model, a so called moderated t̃-statistic is defined where sj is

replaced by s̃j,

t̃j =
β̂

s̃j
√
vj

, s̃2j =
d0s

2
0 + djs

2
j

d0 + dj
.

Clearly, values for the hyperparameters s0 and d0 are needed. Smyth (2004) estimates

them from the data. Under the null hypothesis that βj = 0, t̃j follows a t-distribution

with dj + d0 degrees of freedom.

2.2 Gene Set Tests

2.2.1 Global Tests

The three R packages applied here were ‘globaltest’ (Goeman et al., 2004), ‘GlobalAn-

cova’ (Mansmann and Meister, 2005; Hummel et al., 2008) and a test based on repeated

measures named ‘RepeatedHighDim’ (Brunner, 2009). They all implement what may be

called self-contained testing (Goeman and Bühlmann, 2007), i. e. that only data from in-

side the gene set is used for the test. The corresponding null hypothesis can be formulated

as that no single gene is differentially expressed in a gene set. All of them lose information

on directionality of the gene set’s differential expression when calculating their test statis-

tic. For miRNA testing, however, it is of interest to include this information as one knows

that miRNAs and their target mRNAs should act inversely when it comes to differential

expression. To avoid this drawback an approach of splitting the gene sets into up- and

down-regulated genes was followed.

‘globaltest’ implements a procedure based on the generalised linear model of McCul-

lagh and Nelder (1989). The authors look for a predictive effect of gene expression Y

on the group membership G. Their null can be formulated as P (G|Y ) = P (G). To test

it Goeman et al. (2004) ask whether the regression coefficients of their linear model are

zero. After assuming that the regression coefficients are sampled from a common distribu-

tion with expectation zero, they reformulate their null as to whether the variance of that

distribution is zero. For their test they arrive at a statistic Q approximately following a

scaled χ2-distribution, which can be reformulated as the mean of the squared covariances
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between each gene’s expression and the membership variable (the latter is a vector that

describes which sample belongs to which of the two groups). Consequently Q can lead to

two-sided p-values only.

While ‘globaltest’ tests how gene expression affects the group membership, (Mansmann

and Meister, 2005; Hummel et al., 2008) look at the role G has on gene expression. Their

null hypothesis may be formulated as P (Y |G = 1) = P (Y |G = 2). This is equivalent to

the one of Goeman et al. (2004), however, under the global null hypothesis. The test is

also based on the analysis of covariances. An observed expression value x is modelled as

being composed of a mean µ, a per-sample covariate z and an error e with expectation

E(e) = 0. The mean µ itself is split into a group effect α, a gene effect β and their

interaction, γ: µ = α + β + γ. The null hypothesis tested is that γ = 0. An F statistic

is derived reflecting this null which can be transformed into a p-value. Note, however,

that the test assumes independence of genes. To cope with that subject permutation was

proposed by Mansmann and Meister (2005). However, due to small sample sizes, the

approximative method of p-value calculation was used here.

The third approach of global testing is a general model for high-dimensional repeated

measures data (Brunner, 2009), in the following referred to as RepeatedHighDim or RHD.

This approach tests the same hypothesis as GlobalAncova.

2.2.2 Enrichment Tests

Enrichment tests work on what is regarded as a competitive null hypothesis by Goeman

and Bühlmann (2007). Originally, a running sum statistic was proposed, which turned

out to be a weighted Kolmogorov Smirnov (KS) statistic , under the name gene set en-

richment analysis (GSEA, Subramanian et al., 2005). The Kolmogorov Smirnov statistic,

however, had originally been designed for independent replicates of an experiment. As

this assumption usually does not hold for genes a resampling procedure was proposed (Shi,

2007), permuting the group label of a microarray experiment. This procedure is limited

by the sample size, though. A typical microarray experiment has three to four replicates

in each group. The lowest p-value which one could then show would be around 5% to
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1% (assuming equal sample sizes in both groups). Consequently, non-resampling-based

procedures were followed in this Thesis. For all genes gene-wise testing was applied as

implemented in ‘limma’ (see also 2.1). Genes were ranked according to their p-values.

Subsequently, three different non-parametric tests were applied. They are all based on

the assumption that inter-gene dependence is not negligible, a problem that is discussed

in Gatti et al. (2010), for example.

The Kolmogorov Smirnov test has the null hypothesis that a given sample comes

from a specified distribution . It compares the empirical distribution function Fn with a

pre-specified distribution F . The test is based on the statistic Dn for which

Dn = sup
x
|Fn(x)− F (x)| .

It follows a Kolmogorov distribution. To calculate Dn, the empirical distribution func-

tion S(xi) is taken for every observation xi. The maximal difference |S(xi)− F0(xi)| is

calculated. Its distribution is then supposed to follow a Kolmogorov distribution. Here,

it was the ranks of the genes inside the set that were tested against a uniform distribution

between rank one and the maximum rank. The test was applied in a one-sided manner

to reject the null only if the gene set tends to lower ranks.

The second test applied was a Mann-Whitney test. It is equivalent to the Wilcoxon

two-sample test and will therefore be abbreviated as ‘Wilcoxon test’ from now on. Given

the ranks of the genes inside and outside the gene set, it rejects the null if the two

distributions are different (Wei, 2010). Given a gene set, the ranks of the genes inside the

set are summarised to Rgs and the ranks of the remaining genes to Rrest. By subtracting

a value dependent on the number of genes ngs inside the set and the number nrest outside

of it a statistic U , called Mann-Whitney’s U, is generated:

Ugs = Rgs −
ngs · (ngs + 1)

2
, Urest = Rrest −

nrest · (nrest + 1)

2
,

U = min(Ugs, Urest).

For large enough ns U is approximately normally distributed with expectation ngs +

nrest/2. Again, it was applied in a one-sided manner to detect only gene sets deviating

towards lower ranks.
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Finally, Fisher’s exact test was used. In its simplest from it is a so called 2x2-table

method, meaning that the association of two factors is assessed. Here, these are the factor

indicating whether a gene is inside a gene set or not and the factor which describes the

significance of the p-value for the gene. For every gene set one can therefore construct

the following table:

Gene Set Rest

A C Significant

B D Not Significant

Again, a statistic of known distribution is then calculated:

φ =
(A+B)!(C +D)!(A+ C)!(B +D)!

(A+B + C +D)!A!B!C!D!
,

which follows a hypergeometric distribution under the null hypothesis (Wei, 2010). Here

as well a one-sided testing approach was applied.

2.2.3 Rotation Tests

Permutation of the group membership vector or of the expression matrix accordingly is

a well-known procedure to generate exact p-values. If a test results in a statistic the

distribution of which is unknown, it can be estimated via resampling. Such a statistic can

be a simple gene-wise one, but also a statistic describing the differential regulation of an

entire gene set.

The same applies to rotations, which are a generalisation of permutations for mul-

tivariate normal distributions. Consider the matrix representation of a gene expression

experiment with n samples in its columns and g genes in its rows. Permuting the columns

leaves the underlying gene distribution intact, yet generates ’random’ data. A large num-

ber of such permutations consequently leads to an estimate of the null distribution of a

given statistic. If we assume multivariate normal distribution of the independent microar-

ray replicates it is parametrised by its mean vector µ of gene expression and its covariance

matrix Σ. Using a rotation method, this structure remains constant yet again leads to

random expression data. Indeed, resampling functions represent a subset of rotations.
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The advantage of the latter is that their number is infinite, allowing one to show p-values

as small as one wants (and to invest as much time as one wants to compute them). In

the end, exact p-values pexact can be calculated by counting how many p-values p∗, that

occurred during the rotations, were smaller than the original p-value porig:

pexact =
I(p∗ ≤ porig) + 1

nrot + 1
,

where I is the indicator function which returns 1 if the condition in its parentheses are

true, and 0 otherwise, and nrot is the number of rotations applied.

The two methods applied here were both part of the ‘limma’ R package that was also

used for gene-wise testing (see section 2.1). The first is named ‘ROAST’ (Wu et al., 2010).

It is a self contained test which calculates the moderated t-statistic explained in section

2.1 for every miRNA inside the gene set. Different statistics can then be taken to reflect

the global effect. Here, the mean of the gene-wise statistics was chosen. ‘Romer’, on

the other hand, is a competitive test. It also computes a summary statistic for the gene

set. However, it is then compared with summary statistics of genes outside the gene set.

Again, the mean of the gene-wise statistics was chosen as the summary statistic.

2.3 p-value Combination

p-values are statistics that, under a given null hypothesis, follow an equal distribution

between 0 and 1. Based on this property different methods have been designed to calculate

a statistic summarising two or more p-values. Two ideas were followed in this Thesis and

shall be described in the following paragraphs.

Fisher’s method on p-value combination Fisher (1950) takes one-sided p-values and

turns them into a statistic following a χ2-distribution with two degrees of freedom. Here

it was used once to create a p-value pupcombined for miRNA up- and gene set down-regulation

and pdowncombined for miRNA down- and gene set up-regulation

pupcombined = Fχ2

(
−2 ·

(
ln(pupmicro) + ln(pdownmess)

))
,

pdowncombined = Fχ2

(
−2 ·

(
ln(pdownmicro) + ln(pupmess)

))
,
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where Fχ2 is the cumulative distribution function of a χ2 distribution with four degrees of

freedom and pmicro and pmess are the p-values of a miRNA and its gene set, respectively.

To get a final p-value pcombined, the smaller of the two was taken to reflect the overall

miRNA effect:

pcombined = min(2 ·min(pupcombined, p
down
combined), 1).

Note that min(pupcombined, p
down
combined) involves multiple tests and therefore may be skewed even

under the null hypothesis. Thus, the p-values were multiplied by two, which corresponds

to p-value correction according to Bonferroni (Bland and Altman, 1995). This allows

strong control over the FWER. Since the FWER is the probability to commit at least

one type I error, i. e. to call at least one of the up- or down-regulated gene set significant

even though it is not, the minimum of these two adjusted p-values is properly corrected

as well. pcombined might only be skewed towards larger values. Consequently, one might

expect this correction to keep the nominal level but to lead to light losses of power.

Therefore, another way to combine p-values was applied to the rotation tests.

For these, one can make use of their property returning one-sided p-values which

approximately sum up to 1 for larger numbers of rotations. As the miRNA-wise p-values

returned from ‘limma’ do the same, one can apply a combining method based on Stouffer’s

method (Stouffer et al., 1949; Marot and Mayer, 2009) to generate

pr,upcombined = 2 ·
(

1−
∣∣∣∣Φ(Φ−1(pupmicro) + Φ−1(pdownmess)√

2

)∣∣∣∣)
and

pr,downcombined = 2 ·
(

1−
∣∣∣∣Φ(Φ−1(pdownmicro) + Φ−1(pupmess)√

2

)∣∣∣∣) .
Note that here Φ is the cumulative distribution function of the standard normal distri-

bution. For tests whose one-sided p-values exactly sum up to one, the overall two-sided

p-value is simply pr,upcombined (or pr,downcombined, as they are equal) without the need for any fur-

ther adjustment. To be completely rigorous, however, one needs to take into account

that rotation p-values, because they are generated by resampling, do not follow a real

continuous distribution but are always a little too large. When they become 1, Stouffer’s

method would lead to a combined p-value of zero. However, due to the way they are
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calculated (see Section 2.2.3) they cannot become zero. Consequently, if one one-sided

rotation p-value is 1, the other reaches the minimal p-value that can be shown given the

number of rotations. One can assure that always the latter is used by calculating the

overall two-sided p-value as

prcombined = max
(
r,up
combined, p

r,down
combined

)
.

Finally, in both approaches the combined p-values for all miRNAs were adjusted for

multiple hypothesis testing using the method from (Benjamini and Hochberg, 1995, see

also section 1.3.2).

2.4 Target Prediction Data

The ‘microCosm’ online database (Griffiths-Jones et al., 2008) provides tables for different

species of miRNA-mRNA pairs. To each a p-value is assigned reflecting the probability

that the miRNA binds to the mRNA. Parameters of the simulation study (see section

2.6) where chosen to more or less resemble the number of gene sets, distribution of gene

set size, gene set overlaps, etc. in the database.

‘microCosm’ is based on miRNA sequences from the ‘miRbase’ sequence database

(Griffiths-Jones et al., 2006) and the ‘miRanda’ algorithm (Enright et al., 2003) for target

site prediction. Briefly, ‘miRanda’ takes UTRs of different vertebrate species and scans

them for potential target sites. This is, as already mentioned in the introduction, primarily

based on sequence homology: The first is sequence complementarity in the 3’-UTRs in

vertebrate genomes. Additionally, all protein-coding regions are scanned for high-scoring

miRNA target sites as well. Further factors that are considered to generate a final score

are the binding energy of the miRNA-mRNA-complex and evolutionary conservation of

probable target sites between species. The cut-off parameters are chosen to reflect current

knowledge on experimentally validated target sites concerning target site distributions,

position of the pairing regions and others.

As the authors of the data example analysed (Nielsen et al., 2009) based their analysis

on the ‘TargetScan’ database (Grimson et al., 2007), ‘TargetScan v. 4.1’ was also used for
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the re-analysis. ‘TargetScan’ is also based on the ‘miRbase’ database. The analysis starts

with ‘miRbase’ entries which are modified and to which sequences are added. The target

prediction algorithm follows a similar idea as ‘miRanda’, namely to include sequence

homology information and conservation across genomes of different species.

2.5 Algorithms

This short chapter intends to summarise the algorithms that were applied in the end. For

an overview of them see the flowchart in Fig. 1.

Database

on miRNA

Gene Sets

mRNA

Expression

Data

miRNA

Expression

Data

mRNA

Expression

Data

grouped in

Gene Sets

Testing for

Differential

Expression

Testing for

Differential

Expression

p-value

Combination

Figure 1: Flow chart of the combined testing approach. Different methods for
testing for differential expression of gene sets (grey) were applied. See text for details.
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The input for all of them are two miRNA expression matrices X1 and X2 with expres-

sion values of groups 1 and 2, respectively. They have m1 and m2 independent replicates

in their columns and dmiR miRNAs in their rows. Additionally, define by Y 1, Y 2 two

corresponding mRNA expression matrices, with n1, n2 replicates in their columns and the

dmess mRNAs in their rows. Finally, the algorithm needs information on which miRNA

targets which mRNAs. In the following, this shall be coded in an allocation matrix A of

dmiR columns representing the miRNAs and dmess rows for the mRNAs. Every element

aij of A, i ∈ {1, ..., dmiR} and j ∈ {1, , , , , dmess}, takes the value 1 if miRNA i leads to

the down-regulation of mRNA j, and 0 otherwise.

For X1, X2 the miRNA-wise testing described in chapter 2.1 was applied in all

pipelines. The pipelines that were compared only differed in the way gene set testing

was done. The gene set tests applied were the ones described above: the Global Tests im-

plemented in the R packages ‘globaltest’, ‘GlobalAncova’ and ‘RepeatedHighDim’, the en-

richment procedures with the non-parametric Kolmogorov Smirnov, two-sample Wilcoxon

and Fisher’s exact test, as well as the rotation tests ‘ROAST’ and ‘romer’. In each pipeline

the corresponding gene set test returned a list of dmiR p-values.

Finally, in each procedure the p-value of gene set i was combined with the correspond-

ing ith miRNA. For all but the rotation test-based procedures Fisher’s method for p-value

combination (see section 2.3) was applied. For the rotation-based tests Stouffer’s method

was used. As quite many miRNAs were tested simultaneously, the p-values generated in

this manner were adjusted for multiple hypothesis testing according to Benjamini and

Hochberg (1995).

2.6 Microarray Simulation

It is impossible to decide on which pipeline works best without knowing the true null and

alternative hypotheses. For a given experiment one has to know which miRNAs truly have

an effect between two groups. Unfortunately, such knowledge is usually not present when

dealing with real experiments. In such cases synthetic data which has effects modelled into

it is often used. Such a simulation study was also applied on the pipelines presented above.
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Different data structures were created. The first simulation was designed to be rather

simple, evaluating the general performance of the tests. In the second, the assumption of

non-overlapping gene sets was dropped to a certain degree to see how robust the methods

are to that. The performance of the tests regarding the false discovery rate FDR and the

average power rate APR (see Section 1.3.2 for their definitions) was evaluated. Details

on how the synthetic data was generated shall be given in the following chapters. For an

overview of parameters in all the simulation studies applied see Table 1.

2.6.1 Non-overlapping gene sets

The first simulation round intended to investigate the procedures’ performance on rather

simple data. The expression matrices X1 and X2 of miRNAs in group 1 and group 2,

respectively, were drawn from a multivariate normal distribution, X1 ∼ N(µ1,Σ) and

X2 ∼ N(µ2,Σ). The mean vector µ1 was chosen to follow a log-normal distribution with

an offset, µ1 ∼ logN(0, 0.1) + 5. In order to model an effect, i. e. a difference in means,

of miRNA expression into the data, µ2 was equal to µ1 with the exception of a certain

proportion of differentially expressed miRNAs. To one half of these, the effect strength δ

was added, from the other it was subtracted. The covariance matrix in both groups was

equal. X1 and X2 had four columns, representing four independent replicates in group 1

and four in group 2. The number of rows, dmiR, was 100, corresponding to 100 miRNAs

simulated.

Next, the expression matrices Y 1 and Y 2 of mRNAs in group 1 and group 2 were

created. Again, both followed a multivariate normal distribution, Y 1 ∼ N(ν1,Ψ) and

Y 2 ∼ N(ν2,Ψ). To generate the mean vectors, an uninfluenced raw vector νorig1 ∼

logN(1, 0.1) was created. As a kind of noise, miRNA-independent group effects were

modelled into νorig2 . Therefore, although most entries in νorig2 were equal to those of νorig1 ,

a proportion of randomly sampled differential mRNAs differed by δmess. Again, to half of

them this value was added while from the other it was subtracted.

To each miRNA one gene set of 50 mRNAs, which did not overlap with other gene

sets, was assigned via the allocation matrix A. To model the influence of µi on the
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corresponding νk, k ∈ {1, 2}, a linear effect was used:

νk,j = νorigk,j +

dmiR∑
i=1

aj,i · βj,i · µk,i,

where βj,i denotes the strength (slope) of the influence of the ith miRNA on the jth

mRNA in group k and aj,i is the corresponding entry of A. βj,i was drawn from a normal

distribution with negative mean m. In one simulation a weak effect was modelled with

m = −1, in a second m was set to −10 to see whether the combination tests can control

the FDR even under such strong effects. Note that since the it was the mean vectors µk of

miRNAs influenced the mean vectors νk of mRNAs, and only then the expression matrices

were drawn from the multivariate normal distribution, miRNA and mRNA replicates were

modelled to be independent.

Three different types of covariance matrices were compared. In each simulation run, Σ

and Ψ were of the same structure. The first was an autoregressive structure , meaning that

the further apart two genes were, the smaller was their covariance. The main diagonal

of A was set to a value constantly increasing from 1 for the first mRNA to 2 for the

last. The secondary diagonals had values of 0.7 which were then constantly decreasing

for every further diagonal. The second covariance structure was a block structure. This

is very similar to the autoregressive structure, only that blocks in the covariance matrix

behave as entries do: the farther a block of a size of 5 is away from the main diagonal, the

smaller are its entries (which are all equal). The main diagonal itself was again chosen to

vary from 1 to 2. Finally, an unstructured matrix was applied. The main diagonal was

the same as before, but apart from that the other entries were random, so long as the

matrix’ positive definite character remained.

In each simulation run, the differentially expressed miRNAs and mRNAs were ran-

domly sampled. In the simulations with non-overlapping gene sets effects caused by

the position of miRNAs or mRNAs in A were avoided by randomly resampling first its

columns, then its rows, thus leaving its structure intact.
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Table 1: Simulation parameters. Four simulation studies were conducted: Two with
overlapping Gene Sets (GS), two with non-overlapping Gene Sets. Each of the two had
either a strong or a weak effect in the gene sets.

Parameter Non-Overlapping GS Overlapping GS
Strong Weak Strong Weak

Number of Simulation Runs 1000 1000 1000 1000
Number of miRNAs 100 100 100 100
Number of mRNAs 5000 5000 5000 5000
Replicates per Group 4 4 4 4
Size of Gene Sets 50 50 variable variable
miRNA Effect Strength δ {0, 1, 2, 3, 4, 6} {0, 1, 2, 3, 4, 6}
mRNA δmess 1 1 1 1
Portion of diff. miRNAs 10 % 10 % 10 % 10 %
Portion of diff. mRNAs 5 % 5 % 5 % 5 %
Expectation vectors ∼ logN(1,0.1) ∼ logN(1,0.1)
Cov. structures of autoregressive autoregressive
miRNAs and mRNAs block block

unstructured unstructured
Mean m of miRNA Effect
Strength β ∼ N(m, 0.1) -1 -10 -1 -10

2.6.2 Overlapping gene sets

In the second simulation round the intention was to drop the assumption that gene sets

do not overlap, which indeed is a very unrealistic one. This is not what the gene set tests

had been designed, however, so that only robustness against such occurrences could be

regarded.

The entries in A were drawn in each run from a Bernoulli distribution so that gene

set sizes varied around 100 to 120 genes per gene set and so that for a given gene set

around 10 % of genes were shared with another given gene set. These parameters were

chosen as they resembled the miRNA-mRNA network available on ‘microCosm’. The

other parameters were as described for the simulation with non-overlapping gene sets.

Here as well, m was once set to −1 and in a second simulation to −10.
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2.7 Data Example: Rat Neurogenesis

To see how the tests performed on biological data, an examplatory data set was retrieved

from the public microarray repositories ‘GEO’ (Gene Expression Omnibus, Edgar et al.,

2002) and ‘ArrayExpress’ (Brazma et al., 2003).

In their analysis, Nielsen et al. (2009) had purified rat neuronal progenitors and did

miRNA and mRNA microarrays. Here, their data on cells from embryonic day 11 (E11)

shall be compared to that of day 13 (E13). Nielsen et al. (2009) had done three replicates

in each group for miRNAs and four for mRNAs. One of their intentions was to identify

miRNAs differentially regulated between these two stages. Additionally, they regarded

gene sets which they had identified using the ‘TargetScan’ (Grimson et al., 2007) database,

version 4.0. They then separated the gene sets into up- and down-regulated mRNAs and

did a Fisher-test on them to seek out subsets of genes more differentially regulated than

expected by chance.

As ‘TargetScan’ v. 4.0 was not available any longer, ‘TargetScan’ v. 4.1 was used

to create the allocation matrix A. Note that some discrepancies might therefore occur

between the miRNA-mRNA network in the original publication and in the re-analysis.

Expression data for miRNAs was retrieved from ‘ArrayExpress’ and for mRNAs from

‘GEO’. Data was subsequently normalised using the quantile method (Bolstad et al.,

2003) and the algorithms detailed above were applied.
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3 Results

3.1 Simulation Results

In the following the results for the simulation shall be summarised. Where necessary, fig-

ures are given for illustration. Due to the large number of simulations conducted, however,

the reader shall be referred to the Appendix for a complete list of figures. Additionally,

the main results and most important findings are summarised in Section 3.1.5 as well as

in Tab. 2 and Tab. 3.

3.1.1 Non-Overlapping Gene Sets and weak Gene Set Effect

This simulation round was very idealised. All gene sets had the same size and did not

overlap. At first the results for the autoregressive covariance structure shall be regarded.

As far as FDR control is concerned, the miRNA-wise approach always stayed con-

siderably close to the level of 5 %. This result was confirmed under all circumstances

and in all simulations conducted and will therefore not be mentioned in the following.
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Figure 2: Simulation performance of ‘globaltest’. Against the effect size δ FDR
on the left and APR on the right are plotted. The 5 % FDR threshold is indicated by
a horizontal line. Dashed and pointed line for miRNA-wise testing, dashed line for Gene
Set Test and solid line for combination.
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An example for this can be seen in Fig. 2, where the performance of the ‘globaltest’

and the combination procedure based on it is depicted. While the first is a little liberal,

the latter at least compensates for this behaviour and is closer to the 5 % threshold.

Still, it is not able to entirely control the FDR. As far as the APR is concerned, it is

greatly improved by the combination approach. However, regarding power ‘globaltest’

alone performs best. Consequently, combined testing gains power via the information

present in the gene set while it gains ‘security’ (fewer false positives) by incorporation of

miRNA-expression. Often it will even outperform both with regards to APR. This is

a recurring result of this simulation which will reappear often. Concerning the more or

less acceptable FDR control and the power gain, the ‘GlobalAncova’ and ‘ROAST’-based

procedures yielded a very similar result. For the first, however, strange effect occurred

regarding the power of the gene set test alone. After rising monotonously with the effect

applied, for higher values of δ the power of the gene set test appears to decline again.

Under this respect, it is interesting to see that the combination approach does not suffer

from this problem. This example for a situation where a gene set test is outperformed
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Figure 3: Simulation performance of ‘GlobalAncova’. Against the effect size δ
FDR on the left and APR on the right are plotted. The 5 % FDR threshold is indicated
by a horizontal line. Dashed and pointed line for miRNA-wise testing, dashed line for
Gene Set Test and solid line for combination.
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by the combination approach is depicted in Fig. 3. Only ‘RepeatedHighDim’, as the final

self-contained test investigated, also failed to control the FDR level, especially under

the null hypothesis. The combined test, yet performing slightly better, mostly ranged at

FDR values of around 18 %. As far as the APR is concerned, however, it was quite high

for the gene set test.

For the block covariance structure, the global tests kept their FDR level better. The

‘globaltest’ was even a bit conservative before the combination. ‘RepeatedHighDim’,

however, failed again to control the FDR. As an example regard the ‘GlobalAncova’

simulation results in Fig. 4. Under this covariance structure again the ‘GlobalAncova’ on

its own had a very low APR. This is the same effect as under autoregressive covariance and

is again compensated after the combination. Apart from that, similar results regarding

power can be seen as in the case of autoregressive covariance structure.

Finally, the self-contained tests were applied on data with undefined covariance struc-

ture. Here the FDR was controlled by the ‘globaltest’ and ‘ROAST’ and the combination

approaches based on them. For ‘GlobalAncova’, FDR was not controlled by the test on
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Figure 4: Simulation performance of the ‘GlobalAncova’-test for block covari-
ance structure. Against the effect size δ FDR on the left and APR on the right are
plotted. The 5 % FDR threshold is indicated by a horizontal line. Dashed and pointed
line for miRNA-wise testing, dashed line for Gene Set Test and solid line for combination.
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its own, but by the combined approach. ‘RepeatedHighDim’ did not control it, neither on

its own, nor after the combination with miRNA-wise information. As far as power rates

are concerned, they were, as described for other covariance structures, acceptable for all

tests but ‘GlobalAncova’ before the combination.

The FDR was controlled by all competitive gene set tests. Their FDR even tended

to be too low so that one can expect them to lose power by that. This was, apart

for the Fisher-test-based procedure, lessened by the combination. For an example see

the Kolm. Smirnov test in Fig. 5. Regarding the APR, both the gene set tests as well as

miRNA-wise testing were outperformed by the combination approach. The only exception

is ‘Romer’, where combined testing yielded approximately the same power as the gene set

test. Both had a higher APR than miRNA-wise testing, however.

In the block structure case the competitive tests showed a similar behaviour as for data

with autoregressive covariance. The Kolm. Smirnov and the Wilcoxon-test controlled the

FDR and had an acceptable power. Again the APR of the Fisher-test was rather low, yet

it was improved by the combination. For ‘Romer’, interestingly, the power was worsened
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Figure 5: Simulation performance of the Kolm. Smirnov-test. Against the effect
size δ FDR on the left and APR on the right are plotted. The 5 % FDR threshold is
indicated by a horizontal line. Dashed and pointed line for miRNA-wise testing, dashed
line for Gene Set Test and solid line for combination.
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by its application on data with a covariance matrix with block structure (see Fig. 6).

Similarly to the case of ‘GlobalAncova’ described above, this was compensated by the

combination approach which again had an acceptable power rate.

When the competitive tests were applied on data with unstructured covariance similar

results were yielded as described for the block structure above.

The power rates of the tests applied on autoregressive data are compared in Fig. 7.

For other covariance structures see Section 1.3.2 in the Appendix.

All in all, power rates of the different tests on data with autoregressive covariance

structure were rather comparable. For the self-contained tests using ‘RepeatedHighDim’

performed best, ‘globaltest’ and ‘GlobalAncova’ did slightly worse and ‘Romer’ showed

a comparatively conservative behaviour. For the competitive tests, Kolm. Smirnov and

Fisher had a very high power, while for ‘Romer’ it was already lower and for the Fisher-

test already quite low. Comparing all tests applied, ‘KS’ and Wilcoxon performed slightly

better than ‘RepeatedHighDim’. Next came the ‘globaltest’ and ‘GlobalAncova’-based

0 1 2 3 4 5 6

0.
00

0.
04

0.
08

δ

F
D
R

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

δ

A
P
R

Figure 6: Simulation performance of the ‘Romer’-test under block structure
covariance of mRNAs and miRNAs. Against the effect size δ FDR on the left and
APR on the right are plotted. The 5 % FDR threshold is indicated by a horizontal line.
Dashed and pointed line for miRNA-wise testing, dashed line for Gene Set Test and solid
line for combination.
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procedures and finally the rotation tests, where ‘Romer’ was clearly the most conservative

one.

For block covariance structure and data with an unstructured covariance matrix most

tests performed worse, as is exemplified in Fig. 8. While the APR of the competitive
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Figure 7: Simulation performance regarding average power rate under autore-
gressive covariance of mRNAs and miRNAs. On the left self-contained tests are
depicted in black, competitive ones in grey, on the right vice versa. All rates depicted
after combination. Solid lines ‘globaltest’- and Kolm. Smirnov, solid lines with circles
‘GlobalAncova’- and Wilcoxon-, dashed lines ‘RepeatedHighDim’ and Fisher-, dashed
and pointed lines ‘ROAST’- and ‘Romer’-based procedures.
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tests remained mostly unharmed, the power of the self-contained tests was significantly

lower. The results for block covariance structure and unstructured covariance were mostly

identical.
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Figure 8: Simulation performance regarding average power rate under block
covariance of mRNAs and miRNAs. On the left self-contained tests are depicted in
black, competitive ones in grey, on the right vice versa. All rates depicted after combina-
tion. Solid lines ‘globaltest’- and Kolm. Smirnov, solid lines with circles ‘GlobalAncova’-
and Wilcoxon-, dashed lines ‘RepeatedHighDim’ and Fisher-, dashed and pointed lines
‘ROAST’- and ‘Romer’-based procedures.
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3.1.2 Non-overlapping Gene Sets and strong Gene Set Effect

In the second simulation conducted the effect of miRNAs on Gene Sets was stronger. This

intended to test which combination tests can withstand extreme differential regulation.

For the global tests under autoregressive covariance, the result here was similar to

that in the simulation before. They did not really control the FDR, even though the

situation was improved after the combination. Despite the strong effect put on the gene

sets, ‘GlobalAncova’ had practically no power, as can be seen in Fig. 9. Interestingly, this

is worse than in the simulation before. For a possible explanation of this behaviour, see

Section 4.1, page 52 in the Discussion. Nevertheless, the effect was again compensated

by the combination approach. For the other self-contained tests the APR was maximal.

After the combination power losses were to be seen for ‘ROAST’.

For data with unstructured- or block structured covariance self-contained test perfor-

mance was similar. Combined testing, however, now enabled the ‘globaltest’ and ‘Glob-

alAncova’ test, after incorporation of miRNA expression, to control the FDR.
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Figure 9: Simulation performance of the ‘GlobalAncova’-test under autore-
gressive structure covariance of mRNAs and miRNAs. Against the effect size δ
FDR on the left and APR on the right are plotted. The 5 % FDR threshold is indicated
by a horizontal line. Dashed and pointed line for miRNA-wise testing, dashed line for
Gene Set Test and solid line for combination.
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As far as the competitive tests are concerned, they all controlled the FDR under

autoregressive covariance. They all were rather conservative. The most extreme example

is the Fisher Test depicted in Fig. 10. After the combination the behaviour was less

conservative. For the enrichment tests, however, this does not lead to an increased APR.

Indeed, this was impossible as it jumped to 1 immediately once δ > 0. On the contrary,

for ‘Romer’ the combination approach had a higher FDR (which was still under control,

however) yet also a lower power than the gene set test on its own.

As far as other covariance structures are concerned, the enrichment tests’ performance

very much resembled the autoregressive case. As far as ‘Romer’ is concerned, however, a

power loss was found for larger values of δ which was compensated by the combination.

When comparing the power rates of the combination tests, most achieve the maximal

power, i. e. have an APR of 0 under the complete null, and and APR of 1 otherwise.

As can be seen in Fig. 11, only the rotation tests and ‘GlobalAncova’ do not reach such

a high power rate.
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Figure 10: Simulation performance of the Fisher-test under autoregressive
structure covariance of mRNAs and miRNAs. Against the effect size δ FDR on
the left and APR on the right are plotted. The 5 % FDR threshold is indicated by a
horizontal line. Dashed and pointed line for miRNA-wise testing, dashed line for Gene
Set Test and solid line for combination.
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For the other two covariance structures similar results were found, with the exception

of ‘Romer’ which, as mentioned above, lost much power on its own. This, however,

was compensated in the combined testing (see Fig. 12). Nevertheless, it dragged the

combination approach as well, especially for larger values of δ, as can be seen in Fig. 12.
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Figure 11: Simulation performance regarding average power rate under au-
toregressive structure covariance of mRNAs and miRNAs. On the left self-
contained tests are depicted in black, competitive ones in grey, on the right vice versa.
All rates depicted after combination. Solid lines ‘globaltest’- and Kolm. Smirnov, solid
lines with circles ‘GlobalAncova’- and Wilcoxon-, dashed lines ‘RepeatedHighDim’ and
Fisher-, dashed and pointed lines ‘ROAST’- and ‘Romer’-based procedures.
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See Section 4.1, page 52 for possible explanations of this behaviour of the gene set test.
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Figure 12: Simulation performance of the ‘Romer’-test under autoregressive
structure covariance of mRNAs and miRNAs. Against the effect size δ FDR on
the left and APR on the right are plotted. The 5 % FDR threshold is indicated by a
horizontal line. Dashed and pointed line for miRNA-wise testing, dashed line for Gene
Set Test and solid line for combination.
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3.1.3 Overlapping Gene Sets and Weak Gene Set Effect

Here, the more realistic assumptions of randomly overlapping gene sets was introduced.

The expectation and variance of gene set size and overlap were chosen in such a way as to

reflect empirical data taken from the ‘microCosm’ database. There, around 700 miRNAs

were present with overlaps of about 10 % between two given miRNAs. The simulation

parameters resembled these parameters on a smaller scale (see Section 2.6).

Under the strong dependence introduced between the gene set statistics by the overlaps

the already liberal global tests did not nearly control the FDR, especially when the

effect δ > 0. The combination approach could not lessen this problem (see Fig. 13 for

an example). The same is true for ‘ROAST’ which displays an FDR proportional to

the effect δ applied. The FDR control of ‘ROAST’, yet still way too liberal, might be

considered best of the self-contained tests applied.

A similar result was obtained for data with block covariance structure. Surprisingly,

however, the FDR of ‘ROAST’ is controlled by the combination approach, the power of
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Figure 13: Simulation performance of the ‘ROAST’-test under block structure
covariance of mRNAs and miRNAs. Against the effect size δ FDR on the left and
APR on the right are plotted. The 5 % FDR threshold is indicated by a horizontal line.
Dashed and pointed line for miRNA-wise testing, dashed line for Gene Set Test and solid
line for combination.
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which still ranges close to the one of the gene set test alone. After application on data

with unstructured covariance matrix the self-contained tests performed comparably to the

case with block covariance.

The competitive tests, on the contrary, were, as in the simulations before, able to

control the FDR. All but the Wilcoxon test even had an a little too low FDR, while all

of them had a rather large power. The combination tests based on the Kolm. Smirnov

and the Wilcoxon test had the same power as their respective gene set tests. It was 0 for

the null and 1 for the alternative. The remaining two tests also had high APRs, which,

however, were a little lower than those of the corresponding gene set tests.

As far as the power rate is concerned, it was extremely high for the self-contained tests

apart from ‘ROAST’ reaching the maximum value immediately under the alternative. For

‘ROAST’ the power curve was a little lower, yet it was still absolutely acceptable.

Also when the synthetic data followed a normal distribution with a covariance matrix

of block structure, the competitive tests were able to control the false discovery rate. The
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Figure 14: Simulation performance of the Wilcoxon-test under unstructured
covariance of mRNAs and miRNAs. Against the effect size δ FDR on the left and
APR on the right are plotted. The 5 % FDR threshold is indicated by a horizontal line.
Dashed and pointed line for miRNA-wise testing, dashed line for Gene Set Test and solid
line for combination.

Stephan Artmann, Master Thesis 2011 Page 37 of 56



3.1 Simulation Results 3 RESULTS

power rate soon reached its maximal value for the gene set tests alone and with a little

higher values of δ the power rate of the combined tests did the same. The only exception

was once more the ‘Romer’ test which had a very low APR before the combination which

was shifted to quite acceptable values afterwards. Similar results were obtained with
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Figure 15: Simulation performance regarding average power rate under au-
toregressive covariance of mRNAs and miRNAs. On the left self-contained tests
are depicted in black, competitive ones in grey, on the right vice versa. All rates depicted
after combination. Solid lines ‘globaltest’- and Kolm. Smirnov, solid lines with circles
‘GlobalAncova’- and Wilcoxon-, dashed lines ‘RepeatedHighDim’ and Fisher-, dashed
and pointed lines ‘ROAST’- and ‘Romer’-based procedures.
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data of unstructured covariance. As an example, regard the FDR and APR for the

Wilcoxon-based test on data of unstructured covariance in Fig. 14.

The performance regarding power of the different combined tests is depicted in Fig. 15.

The APR of most of the global tests reaches the maximum value of 1 once δ > 0. The
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Figure 16: Simulation performance regarding average power rate under block
structure covariance of mRNAs and miRNAs. On the left self-contained tests are
depicted in black, competitive ones in grey, on the right vice versa. All rates depicted
after combination. Solid lines ‘globaltest’- and Kolm. Smirnov, solid lines with circles
‘GlobalAncova’- and Wilcoxon-, dashed lines ‘RepeatedHighDim’ and Fisher-, dashed
and pointed lines ‘ROAST’- and ‘Romer’-based procedures.
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same was observed for the non-rotating enrichment tests. Only the Fisher test-based

procedure has a slightly lower APR for δ = 1. The power rate of‘ROAST’ and ‘Romer’,

however, was acceptable yet considerably smaller than for the other tests. Only for δ ≥ 3

it reached the maximum value. This is approximately the same power curve as it was

observed in the first simulation with independent gene sets and a weak gene set effect (see

Section 3.1.1).

The tests led to quite different results on the other two covariance structures than

described above. As an example regard the power curves for the block covariance structure

in Fig. 16. The plot for unstructured data is given in Section 4.3 of the Appendix.

The power rates of all self-contained tests declined, most drastically for ‘globaltest’

and ‘GlobalAncova’ which were overtaken by ‘RepeatedHighDim’. ‘ROAST’ remained to

be the worst test concerning power. For the competitive tests the effect was less dramatic.

The Kolm. Smirnov, Wilcoxon and ‘Romer’-based procedures kept their high power, while

for the Fisher Test-based one it decreased. Nevertheless, basing the combination approach

on ‘Romer’ led to the worst result in competitive testing as far as the power rate is

concerned. Apart from ‘Romer’ the competitive tests had a higher power than all the

self-contained ones applied. For data with unstructured covariance a very similar result

was gained.
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3.1.4 Overlapping Gene Sets and Strong Gene Set Effect

The intention of this simulation was to test the procedures’ FDR control under very

harsh conditions. Both challenges from the two simulation before were combined here: a

very strong gene set effect and gene set overlaps.

As can be expected, FDR control for the self-contained tests worsened here as com-

pared to the simulations before. Therefore, the results of these tests shall not be detailed

further. For the plots of their performance see Section 4.3 in the Appendix.

Emphasis, on the other hand, shall be put on the competitive tests. They performed

quite well throughout the simulations before and the interest is to see whether this was

still the case here.

For data with autoregressive covariance structure, the FDR was maintained by all

four combination approaches that were based on a competitive gene set test. This was

also the case for the Kolm. Smirnov, Wilcoxon and Fisher gene set test. ‘Romer’ did not

maintain the 5 % level, as can be seen in Fig. 17. The APR was maximal for the three
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Figure 17: Simulation performance of the ‘Romer’-based test under autore-
gressive covariance of mRNAs and miRNAs. Against the effect size δ FDR on
the left and APR on the right are plotted. The 5 % FDR threshold is indicated by a
horizontal line. Dashed and pointed line for miRNA-wise testing, dashed line for Gene
Set Test and solid line for combination.
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aforementioned tests, while for ‘Romer’ it was worse after the combination, rendering it

a rather conservative test under autoregressive covariance.

When applied on expression data of block structured covariance, a similar result ap-

peared. ‘Romer’, however, had a much worse power, also dragging the APR of the com-
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Figure 18: Simulation performance regarding average power rate under au-
toregressive structure covariance of mRNAs and miRNAs. On the left self-
contained tests are depicted in black, competitive ones in grey, on the right vice versa.
All rates depicted after combination. Solid lines ‘globaltest’- and Kolm. Smirnov, solid
lines with circles ‘GlobalAncova’- and Wilcoxon-, dashed lines ‘RepeatedHighDim’ and
Fisher-, dashed and pointed lines ‘ROAST’- and ‘Romer’-based procedures.
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bination approach a little. Nevertheless, combining miRNA- and mRNA-data allowed to

compensate for this. For data having an unstructured covariance matrix practically the

same result was found.

A comparison of the average power rates of all procedures applied under autoregressive

covariance structure is given in Fig. 18. It was merely the same for other covariance

structures. All tests had the maximally achievable APR apart from the rotation tests.

These, however, also had considerably high power rates.

3.1.5 Summary

To help the reader to cope with the many simulation results acquired, this chapter intends

to briefly sum up the findings of the simulations elaborated above. An interpretation and

discussion will be given in Section 4.1.

First, it was shown that FDR control depends on the gene set test, as the linear

models of Smyth (2004) always do so. It was not guaranteed when self-contained tests

were used. As can be seen in Tab. 2, they exceeded the level sought to be controlled

quite often. The combination approach managed to alleviate this behaviour but could

not remedy it entirely. This is especially evident in the case that gene sets were modelled

to be overlapping and/or strong gene set effects were applied. Indeed, once gene sets

overlapped only the combination approaches based on the ‘ROAST’ rotation test were

able to maintain the FDR level, and this just so long as the gene set effect was weak.

Second, competitive gene set tests controlled the FDR under all circumstances. Many

competitive tests were rather conservative with unnecessarily few type I errors. The only

exception to that is ‘Romer’, which under overlapping gene sets and a strong gene set

effect exceeded the 5% FDR threshold. The combination approaches, however, alleviated

both problems: They always were in control if the FDR. Additionally, the combination

also lessened the conservativeness of many tests.

Next, it was of interest to see how the combination influenced the APR of the tests.

Under all simulations performed the power of miRNA-wise testing was outperformed by

the combination approach. In many situations this was also true for the corresponding
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gene set test on its own, leading to the combined testing approach to outperform both

tests. Under non-overlapping gene sets combination testing almost always had the highest

APR. Under a strong gene set effect, the rotation tests gained in power and overtook the

combination approach.

As far as the simulations with overlapping gene sets are concerned, for the weak effect

the combination approach outperformed almost always the tests it is based upon for the

competitive tests. For the self-contained tests this was only the case for RepeatedHighDim

and ‘ROAST’. Finally, under a strong effect again only the rotation tests outperformed

their combined counterparts.
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Table 3: APR in Simulations. Simulations had non-overlapping or overlapping Gene
Sets (GS) and strong or weak gene set effects. Results are grouped according to the
gene set test applied (self-contained above, competitive below) and the data’s covariance
structure. Powers are compared of miRNA-wise (m), gene set (s) and combined (C)
testing. <, ≤, ∼ stand for lower, lower to equal and comparable power, respectively.

GS Test in Cov. Struc. Non-o. GS Overl. GS
comb. Testing Weak Strong Weak Strong
globaltest Autoregr. m < s ≤ C m < s ∼ C m < s ∼ C m < s ∼ C

Block m < s < C m < s ∼ C m < C ∼ s m < s ∼ C
Unstruc. m < s < C m < s ∼ C m < C ∼ s m < s ∼ C

GlobalAncova Autoregr. s < m < C s < m < C m < s ∼ C m < s ∼ C
Block s < m < C s < m < C m < C ∼ s m < s ∼ C
Unstruc. s < m < C s < m < C m < C < s m < s ∼ C

RepHighDim Autoregr. m < s ≤ C m < s ∼ C m < s ∼ C m < s ∼ C
Block m < s ≤ C m < s ∼ C m < s ∼ C m < s ∼ C
Unstruc. m < s ≤ C m < s ∼ C m < s ∼ C m < s ∼ C

ROAST Autoregr. m < C < s m < C < s m < C < s m < C < s
Block m ≤ s < C m < C < s m < s ∼ C m < C < s
Unstruc. m ≤ s < C m < C < s m < s ∼ C m < C < s

Kolm. Smirnov Autoregr. m < s < C m < s ∼ C m < s ∼ C m < s ∼ C
Block m < s < C m < s ∼ C m < s < C m < s ∼ C
Unstruc. m < s < C m < s ∼ C m < s < C m < s ∼ C

Wilcoxon Autoregr. m < s < C m < s ∼ C m < s ∼ C m < s ∼ C
Block m < s < C m < s ∼ C m < s < C m < s ∼ C
Unstruc. m < s < C m < s ∼ C m < s < C m < s ∼ C

Fisher Autoregr. m < s ∼ C m < s ∼ C m < s < C m < s ∼ C
Block m < s ≤ C m < s ∼ C m < s < C m < s ∼ C
Unstruc. m < s ≤ C m < s ∼ C m < s < C m < s ∼ C

Romer Autoregr. m < s ≤ C m < C < s m < C < s m < C < s
Block s < m < C s < m ≤C s < m < C s ≤ m < C
Unstruc. s < m < C s < m ≤C s < m < C s ≤ m < C

3.2 Rat Neurogenesis Data

The analysis of the data of Nielsen et al. (2009) will be described in the following. Focus

will be put on the comparison of the authors’ original analysis and the application of

the combination approaches described above. This chapter will therefore start with the

miRNAs that in the original publication by Nielsen et al. (2009) had been found to be

significantly differentially regulated with a fold change larger than two. These include

31 miRNAs, 20 of which were down-regulated in E13. All of the up-regulated ones had
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been validated in RT-PCR by Nielsen et al. (2009). In a final chapter the miRNAs not

mentioned in the original publication but detected by some or all combination approaches

will be discussed.

3.2.1 Originally detected miRNAs

If the 31 miRNAs are subdivided into groups according to their results in the original

and in the re-analysis, one arrives at Tab. 4. 22 miRNAs were detected by all of the

combination tests (uppermost group in Tab. 4). The first six had already been described

by Nielsen et al. (2009) as being up-regulated with inversely correlated target genes. Note

that their definition of inverse correlation was that the subset of target genes regulated in

the inverse direction of the miRNA was significant according to their two-sided Fisher test.

Five miRNAs that were detected by all combination tests applied were down-regulated

and had been mentioned as having inversely regulated gene sets. Apart from that, six

other down-regulated miRNAs had not had any of their two subsets called significant,

but for them the p-value for the up-regulated subset was lower than that for the down-

regulated one. Of the remaining five miRNAs, two were down-regulated with a stronger

indication of target set down-regulation but without significance in the target subsets, one

was down-regulated but had both target subsets significant with the lower p-value in the

up-regulated one, and two were up-regulated without significant gene sets but stronger

significance in the up-regulated subsets.

Furthermore, there were 5 miRNAs which were detected by all procedures but those

based on rotation tests. Out of these, miR-218, which showed an increase in its fold

change, had already been described by the authors as having a differential up-regulated

subset of target genes. The down-regulated one, on the other hand, was not significant.

For miR-7, which was also among these five miRNAs, Nielsen et al. (2009) had found

neither subset of the target genes to be differential. miR-199a was down-regulated and

had a differential up-regulated target set. However, as the authors mention this miRNA

had far fewer up-regulated targets than expected and was therefore already by them not

counted as having an inversely correlated target set. Another down-regulated miRNA
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not detected by the rotation tests, miR-214, had no differentially expressed target gene

subsets. It was not detected even though its up-regulated targets were more significant

than its down-regulated ones. Finally, miR-124a falls into this group. It is an example of

the rotation tests’ conservative behaviour: even though it was differentially up-regulated

and had been shown to have an inversely correlated gene set, it was not detected by them.

Three more miRNAs that had been found by Nielsen et al. (2009) were detected by

all test but one of the rotation tests. One of them, the down-regulated miR-126, was not

significant in ‘ROAST’-based testing. Its gene set was not significant in either direction,

but its down-regulated subset had been assigned a lower p-value by Nielsen et al. (2009).

miR-210 and miR-19a were not detected by the ‘romer’-based procedure. miR-210 was

another down-regulated miRNA whose target set was not significant in either direction,

but with a lower p-value for the up-regulated subset. miR-19a was down-regulated as well.

However, in the original publication it had been found to have a gene set just reaching the

threshold of being inversely regulated. miR-290, finally, was a down-regulated miRNA

whose down-regulated subset was significant in Nielsen et al. (2009).

3.2.2 Additionally detected miRNAs

Further miRNAs were detected by all or some of the combined testing procedures which

had not been described in Nielsen et al. (2009). For their complete list see Section 4.3 in

the Appendix. Here, just their numbers shall be listed, which already allows an estimation

of the liberality of the tests applied.

There were eighteen further miRNAs that were significant in miRNA-wise testing as

well as in all combined tests applied. Apart from these, further miRNAs had strong

enough effects in their target sets so that they were detected even though miRNA-wise

testing did not call their expression significantly differential.

The ‘Romer’-based procedure, as the most conservative one, detected three further

miRNAs. Next came the test based on the second rotation test, ‘ROAST’. It already

detected 25 further miRNAs (additionally to the eighteen described above).

The tests based on the enrichment tests, the Kolmogorov Smirnov, Wilcoxon and
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Table 4: Comparison of Results from Nielsen et al. (2009) and re-Analysis.
For each of the miRNAs identified by Nielsen et al. (2009), the regulation in E13 (Reg. In
E13), the originally published result for the up- and down-regulated subsets of the gene
sets (Original Gene Set) and the results of the re-analysis based on Global Tests (GTs),
enrichment tests (ETs) and rotation tests (RTs) are given. A test was result was called
significant (sign.) with a q < 5%, else it was not significant (n. s.). miRNAs are grouped
according to result in re-analysis.

miRNA Reg. In Orig. GS Res. Re-Analysis
E13 Up Down GTs ETs RTs

miR-99a/b up n. s. sig. sig. sig. sig.
miR-9 up n. s. sig. sig. sig. sig.
miR-100 up n. s. sig. sig. sig. sig.
miR-181b/c up n. s. sig. sig. sig. sig.
miR-125a/b up n. s., up > down sig. sig. sig.
miR-222 down sig. n. s. sig. sig. sig.
miR-291-3p down sig. n. s. sig. sig. sig.
miR-92 down sig. n. s. sig. sig. sig.
miR-145 down sig. n. s. sig. sig. sig.
miR-183 down sig. n. s. sig. sig. sig.
miR-363-3p down sig., up > down sig. sig. sig.
miR-143 down n. s., up > down sig. sig. sig.
miR-200b/c down n. s., up > down sig. sig. sig.
miR-20b down n. s., up > down sig. sig. sig.
miR-219 down n. s., up > down sig. sig. sig.
miR-18 down n. s., up >> down sig. sig. sig.
miR-205 down n. s., up < down sig. sig. sig.
miR-292-3p down n. s., up < down sig. sig. sig.
miR-218 up sig. n. s. sig. sig. n. s.
miR-7 up n. s. n. s. sig. sig. n. s.
miR-124a slightly up n. s. sig. sig. sig. n. s.
miR-214 down n. s., up > down sig. sig. n. s.
miR-199a down few target mRNAs sig. sig. n. s.
miR-19a down slightly sig. n. s. sig. sig. sig. (ROAST))

n. s. (Romer)
miR-210 down n. s. n. s. sig. sig. sig. (ROAST))

n. s. (Romer)
miR-126 down n. s., up < down sig. sig. sig. (Romer)

n. s. (ROAST)
miR-290 down n. s. sig. sig. sig. n. s.

(KS, F)
n. s. (W)
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Fisher Test, further detected 36 miRNAs, 45 miRNAs and 76 miRNAs, respectively.

Finally, procedures based on the global tests ‘globaltest’, ‘GlobalAncova’ and ‘Repeat-

edHighDim’ assigned significant q-values to nearly all of the miRNAs. They detected all

but 31 miRNAs, 34 miRNAs or 35 miRNAs, respectively.
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4 Discussion

4.1 Improvements over miRNA-wise and Gene Set Testing in

Simulations

The combination approach decreased the error rate of many gene set tests in the simu-

lations. On the one hand, this is just to be expected considering that more information

is provided to the combination test than to gene set testing alone. On the other, it is

probably also caused by the well defined character of miRNA-wise testing. Testing genes

side by side has been done for many years now and the empirical Bayes method of Smyth

(2004) has been successfully applied to many microarray data sets already. The multi-

variate normally distributed data it was applied on in the simulations can be efficiently

analysed by the moderated t-statistics. It is therefore not surprising that it led to less false

positives than testing gene sets. The latter have to cope with many challenges that do not

exist in miRNA-wise testing: correlation of genes, which cannot always be compensated

by subsequent multiple testing correction, for example. Gene set overlaps, as has been

shown in the simulations, is another major issue. Finally, incomplete target annotation

or incorrect target prediction comes into play.

Combining miRNA and gene set information did not only result in better FDR control,

but often also in higher averagepowerrates. Again, this can be explained with the fact

that for this test the most information is present. This led to a good detection rate also

when small effects were present. However, the relatively strong effect (even when it was

designated as ‘weak’ to distinguish it from the even stronger effect) put on gene sets needs

to be taken into consideration. The miRNA effect on its targets was more or less equal to

the effect of the miRNA itself. Naturally, in reality one might not expect every predicted

target to be truly influenced in its expression by a miRNA. On the other hand, as miRNAs

have catalytic activity, the subset of true targets can be expected to show much stronger

differential expression. This may especially influence the result for the rotation tests,

as they construct mean statistics for every gene set which probably detect small effects

in the entire gene set better than strong ones in selected genes. Consequently, further
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simulations might be worthwhile here to investigate their behaviour in such cases.

Another finding was that competitive gene set tests generally performed better than

self-contained ones as they were able to control the FDR in almost all situations. Nat-

urally, as more conservative tests they can cope with too strong gene set effects which

may be introduced by gene set overlaps or inter-gene correlation better. Additionally, as

they compare gene sets with their complement they also ‘punish’ sets of less significant

genes, leading to a list of p values that might sometimes have a bimodal character. This

effect, however, is rather small for real microarray data with its large amount of genes

and comparably small gene sets.

Note, however, that apart from the rotation tests competitive gene set testing as per-

formed here ignores gene-wise correlation structures. This assumption was not necessarily

met in the simulations. That the competitive tests still controlled FDR and had a large

power might therefore change with stronger covariance between a larger number of genes

than been modelled here. That this might be the case is also indicated by the dependence

of the test result on the correlation structure applied. Since allocation of genes to gene

sets was resampled in every simulation repetition, the question whether the true cause

for the influence the covariance structure had on the results were the different numbers of

genes that had a covariance other than zero remains. Again, this leaves room for further

simulation studies. They then might also include a logical feature of gene sets that was

omitted here, namely that indeed the genes inside a miRNA gene set show a certain grade

of correlation.

Interestingly, ‘GlobalAncova’ lost power in the non-overlapping simulations with larger

effects δ or even had none for all δ. For the simulations with overlapping gene sets, were

gene sets varied around 120 genes in size, the effect had not been observed. This effect

most probably was caused by the fact that the gene sets there contained just 50 mRNAs

and therefore were rather small. For ‘romer’, however, a similar result was obtained for

simulations depending on the type of the correlation matrix. It was seen in both the

context of non- and of overlapping gene sets. Probably this was the price one has to pay

for a test that considers gene-wise correlations, namely that it can get quite conservative
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under certain circumstances. Fortunately, on both cases the combination approach had

an acceptable power, most often still outperforming miRNA-wise testing.

4.2 Application on real Data

The advantage of a simulation is that one knows which miRNAs really had an effect, so

that one can exactly calculate FDR and APR. However, for the reasons mentioned above

and because a simulation can never fully model reality, it is important to test procedures

on real data sets. This was done here with the data of Nielsen et al. (2009). Even though

their results have often been taken as a reference when describing the re-analysis of their

data one must not forget that they cannot be treated as a gold standard. Indeed, their

way of detecting significant gene sets is intuitive but may be flawed as it performs two

tests for each miRNA. Nevertheless, most of their results were confirmed in the reanalysis.

Besides, they have validated their up-regulated miRNAs.

Quite a lot of miRNAs which one would wish to find were indeed detected. This can

be especially said for a subset of miRNAs that had been described and validated by the

authors before. It is striking, for example, that most of the miRNAs whose differential

regulation was confirmed in PCR (the up-regulated ones mentioned by the authors) were

also detected in the re-analysis.

Besides, Nielsen et al. (2009) had to focus on miRNAs they had found to be differen-

tially expressed. Only for those with a large enough fold change they regarded the gene

sets. Requiring that a miRNA needs to be significantly differentially expressed leads to

a quite strict procedure, however. miRNAs which are just slightly differential or whose

fold change is rather low may have the strongest imaginable impact on their targets -

one would still miss them. Consequently, it is not surprising that more miRNAs were

detected in the re-analysis, also such which would not have been detected by miRNA-

wise testing without a fold change threshold. Depending on the gene set test applied this

was a reasonable number of miRNAs (for enrichment and rotation tests) or nearly all of

them (for the global tests). The rotation tests, as the most conservative ones, detected

the smallest number of miRNAs that had not been previously mentioned by Nielsen et al.
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(2009). This may be a general property. However, even though it does not seem likely, it

is also possible that they were limited to show low p-values because of the limited amount

of random rotations applied.

Interestingly, unlike in the simulations, here it was primarily the rotation tests which

were able not to detect miRNAs one may not wish to find. One of these was especially

miR-290, which was down-regulated and had been shown by Nielsen et al. (2009) to

have a target set differential in the same direction. This result was confirmed by the

fact that it was also not detected by the Wilcoxon-based procedure. Additionally, miR-

218 shall be named, for which the gene set displayed the same non-inverse regulation

and which was only not detected by the rotation tests. Their comparably conservative

behaviour regarding the two miRNAs might be caused by their compensation for inter-

gene correlation. However, they also missed miRNAs that may have been of interest or

for which at least no obvious reason not to detect them existed, as for example miR-124a

which was up-regulated and had had a significantly down-regulated subset of target-

mRNAs according to Nielsen et al. (2009).

4.3 Conclusion and Outlook

To conclude, the idea of joining miRNA and mRNA expression as well as miRNA target

annotation data to create a procedure for two-groups comparisons seems to work. Gener-

ally, it performed well both on synthetic and on real data. It was implemented in the R

statistical programming language (R Development Core Team, 2010) under the package

name ‘miRtest’. The can be found on the CD attached. In its newest version, it is also

downloadable from CRAN (http://cran.r-project.org/ R Development Core Team, 2010).

As mentioned before the idea can be further investigated when it comes to the tests’

behaviour under different simulation settings than the ones applied above. For the prob-

lem of correlating genes one might try an approach that includes permutation of the group

membership of each microarray and an enrichment test. Even though this would solve the

problem of dependent statistics, it would be time consuming. Furthermore, to show low

p- or even low q-values it would depend on much larger numbers of microarray replicates
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than usually exist in a typical data set.

This work concentrated on two-group testing. However, the test can easily be gener-

alised to any linear model, as both the methodology of Smyth (2004), as well as of the

gene set tests allow for more groups or continuous variables. An example of the latter

would be quantitative measures such as survival times or body mass index associated with

each microarray replicate. This is already implemented in ‘miRtest’ to a certain degree.

Another point that was not dealt with here are covariables. They include additional

information one has on the data set, such as age or gender of the animals sacrificed for

the microarray experiments. To neglect their influence means to lose power. They are

also partly implemented in the ‘miRtest’ package already, but only for enrichment and

rotation tests. Their full incorporation and application on synthetic data might be of

interest for future work as well.

Apart from that matched data is a major issue. Many experiments are designed in

such a way that miRNA and mRNA samples come from the same origin, be it two samples

of the same cancerous tissue or the same animal sacrificed. However, both combination

methodologies applied, Fisher’s and Stouffer’s method, depend strictly speaking on two

independent p-values. If this is not the case the p-values they generate can become

skewed. The solution for such a problem was presented above numerous times: resampling.

Consequently, an idea would be to, given matched data, jointly permute the columns of

the expression matrices of miRNAs and mRNAs. If the number of possible permutations

does not suffice, one could think of joint rotating. This would be more sophisticated,

however, as the assumption of a joint multivariate normal distribution of both expression

matrices would have to be made. That would have at least implications on the way data

needs to be normalised beforehand.

A final suggestion for improvement of the algorithm shall be made concerning the

miRNA-mRNA network itself. So far, the graph is used for testing for significance but

hardly integrated into multiple testing correction. Approaches to do so exist, however.

See Goeman and Mansmann (2008) or Bauer et al. (2010) for examples on the graph of

gene ontology. To include such approaches into miRNA testing might be another goal of
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future work.
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APPENDIX

Appendix

Media Content

On the Compact Disc (CD) attached this work can be found in .pdf format as well as

the package ‘miRtest’ written in the R statistical programming language R Development

Core Team (2010) that implements the algorithms described above. Furthermore, as they

are too many to be put in the appendix, the Figures which show FDR and APR of

all simulations performed and a table with the q-values of all the miRNAs of the data

example can be found on the disc as well.

The CD’s directory structure is as follows: The main directory contains

• the Thesis as a file named ‘thesis.pdf’,

• the subdirectory ‘dataExample’ which contains the miRNA lists of the data example

in .pdf and .csv format,

• a subdirectory named ‘figures’ with the plots of the simulations. It has four subdi-

rectories corresponding to the four simulations performed, namely

‘noOverlapWeak’ (no overlaps, weak gene set effect),

‘noOverlapStrong’ (no overlaps, strong gene set effect),

‘OverlapWeak’ (overlaps, weak gene set effect) and

‘OverlapStrong’ (overlaps, strong gene set effect).

The plots in the subdirectories of ‘figures’ are in .pdf file format. Each file contains

one plot. The name of each file is structured as follows:

rate.test.cov.pdf, which stand for

rate FDR or APR

test Procedure (dep. on which Gene Set Test)

cov Covariance Structure of the Synthetic Data tested
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