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1 Introduction

In the clinical development of a new treatment, its safety and efficacy has to be assessed.
Thereto, a clinical trial, which compares the new treatment with an already established
treatment or a placebo, has to be performed. In this thesis, we denote the new treatment as
the experimental treatment and an already established treatment as the reference treatment.
Concerning these clinical trials, it is in general recommended to compare the experimental
treatment, if possible, with a reference treatment and not with a placebo due to ethical
concerns, confer point 32 in the declaration of Helsinki from the World Medical Association
WMA (2008) as well as D’Agostino et al. (2003). The aim of such a trial is to prove that
the experimental treatment is either superior or non-inferior to the reference treatment.
Superiority of the experimental treatment over the reference treatment means that the
experimental treatment is more effective than the reference treatment. The experimental
treatment is non-inferior to the reference treatment if the difference between the treatments
is negligible from a medical point of view, i.e. clinically not significant. For the principles
of superiority and non-inferiority trials confer ICH (2010). To illustrate the statistical
hypotheses for superiority and non-inferiority, let λE > 0 and λR > 0 be parameters
of a specific distribution which are associated with the efficacy of the experimental and
the reference treatment. If we assume that smaller values correspond to a more efficient
treatment, the statistical hypothesis for testing superiority of the experimental versus the
reference treatment is given by

H0 : λE ≥ λR versus H1 : λE < λR.

With δ being a prespecified, positive real number denoting the non-inferiority margin, the
statistical hypothesis testing whether the experimental treatment is non-inferior to the
reference treatment is given by

H0 : λE ≥ λR + δ versus H1 : λE < λR + δ.

Superiority and non-inferiority are shown if the corresponding hypothesis is rejected. The
hypotheses reveal the important difference between superiority and non-inferiority that
superiority does not include the possibility of experimental and reference treatment being
equally effective, i.e. λE = λR. Thus, superiority trials cannot determine whether the
experimental treatment is at least as effect as the reference treatment. Moreover, superiority
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trials have the disadvantage that if the efficacy difference of the treatments is small, many
patients are needed to prove superiority. Thus, such trials can get very cost-intensive and
take many years. Therefore, non-inferiority trials becoming increasingly popular, confer
Figure 1.1 in Mielke (2010) which shows the increasing number of publications and citations
for this topic up to 2009. However, non-inferiority trials have also several weaknesses, for
instance the difficulty of determining the non-inferiority margin δ. For further discussions
about non-inferiority trials we refer to Snapinn et al. (2000), Rothmann et al. (2003), and
Fleming (2008).
So far, we have only focused on trials with just an active control. However, just actively
controlled trials have several disadvantages which are addressed by various publications
including, among others, Hill (1994), Temple and Ellenberg (2000), D’Agostino et al. (2003),
and Koch and Röhmel (2004). In particular, Lewis et al. (2002) discusses why and when
trials with a placebo control are consistent with the declaration of Helsinki WMA (2008).
In the following, we discuss these disadvantages of trials and reason why a placebo should
be included. A disadvantage of trials with just an active control is that they do not prove
whether the experimental treatment is superior to placebo, which is crucial to guarantee the
efficacy of the treatment. The superiority of the reference treatment versus the placebo has
in general already been proved but for instance due to a different study design or a general
change in medical practice, this superiority has to be proved again. For instance, a different
study design results from a modification of the study duration, patient population, or doses.
In general, the property that historical evidence also holds in a new trial is called constancy
assumption, confer Section 3.2.1 in D’Agostino et al. (2003). Moreover, if the constancy
assumption holds for the superiority of the reference treatment over the placebo, including
placebo can still be necessary to prove that the experimental treatment is more effective
than the placebo which does not follow necessarily from the non-inferiority λE < λR + δ

and the superiority λR < λP . Therefore, including a placebo in a clinical study can be
necessary. Nevertheless, if a placebo is included, the reference treatment should still be
part of the study, since it might be well-established and the experimental treatment has
still to be compared with it. A study design including an experimental and a reference
treatment as well as a placebo is called gold standard design. Studies with this design will
hereinafter just be denoted as three-arm trials.
Due to their increasing importance, in this thesis we focus on trials testing non-inferiority
instead of superiority of the experimental versus the reference treatment. We define non-
inferiority through the so-called retention of effect hypothesis. The particularity of a
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retention of effect hypothesis is that non-inferiority of the experimental versus the reference
treatment is defined with respect to the placebo response, i.e. we study the hypothesis

HRET
0 : (λP − λE) ≤ ∆(λP − λR) versus HRET

1 : (λP − λE) > ∆(λP − λR)

with ∆ ∈ (0, 1) the prespecified clinical relevance, also called non-inferiority margin.
Analogously to Pigeot et al. (2003), we motivate the retention of effect hypothesis HRET

0 by
comparing the efficacies λE and λR with the non-inferiority hypothesis H0 : λE ≥ λR + δ.
Now, if the prespecified clinical relevance δ is defined by a fraction f ∈ (0, 1) of how much
more effective the reference is compared to placebo, i.e. δ = f(λP − λR), we obtain the
testing problem

H0 : λE ≥ fλP + (1− f)λR versus H1 : λE < fλP + (1− f)λR.

Substituting ∆ := 1 − f and rearranging the hypothesis yield the retention of effect
hypothesis HRET

0 . Thus, the retention of effect hypothesis is basically a non-inferiority
hypothesis with clinical relevance defined by the efficacy difference of the reference treatment
and the placebo.
As mentioned above, the retention of effect hypothesis is only meaningful if the reference
treatment is more effective than the placebo, i.e. if λR < λP holds. Otherwise, we would
compare the experimental treatment with a reference treatment which is not even as effective
as the placebo. If the superiority of the reference treatment over the placebo has not been
established previously or the constancy assumption does not hold, the hypothesis

HRP
0 : λR ≥ λP versus HRP

1 : λR < λP

has to be tested additionally to the retention of effect hypothesis. Analogously to the
reference treatment, if the superiority of the experimental treatment over the placebo has
not been tested before, the hypothesis

HEP
0 : λE ≥ λP versus HEP

1 : λE < λP

has to be tested, too. The property of a clinical trial that active treatments are superior to
the placebo is called assay sensitivity. More precisely the ICH (2000) guideline E10 defines
assay sensitivity as “the ability to distinguish an effective treatment from a less effective or
ineffective treatment”. Thus, in the setting of a three-arm trial assay sensitivity corresponds
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to superiority of the experimental or the reference treatment over placebo.
Overall, the aim of a three-arm non-inferiority trial is to prove both non-inferiority of the
experimental versus the reference treatment and assay sensitivity. A trial is successful if all
hypotheses can be rejected. Hereafter, we refer to the test which aims to show both assay
sensitivity and non-inferiority as the test procedure. The level of significance is determined
for each test separately to control the rate of a false rejection for each of the hypotheses.
However, the level of significance for the test procedure is controlled, i.e. at most α, if each
hypothesis is tested with a level of significance α. The exact level of significance of the test
procedure depends on the correlation of the different tests. Even if the level of significance
is determined for each test, the power is reported for the test procedure.
In clinical trials, an endpoint denotes a specific characteristic which is measured for each
patient. We test the hypotheses stated above through these measurements. In this thesis, we
assume that the observations can be modelled as overdispersed count data. More precisely,
we consider the observations to be negative binomially distributed with the expectation,
which is denoted as the rate, indicating the active treatment efficacies λE and λR as well as
the placebo response λP . As the name implies, count data describes data where for each
patient the measurement of the endpoint is a natural number. Examples for such endpoints
are the number of exacerbations in trials with patients suffering from chronic obstructive
pulmonary disease (COPD) or the number of lesions in trials in (MS), confer Section 2.
Further, a random variable is called overdispersed if the variance exceeds the expectation.
For a general consideration of overdispersion models we refer to Hinde and Demétrio (1998)
and for modelling overdispersed count data see Chapters 2.3, 2.4, and 2.6 in Winkelmann
(2003). One reason for overdispersion is that patients which all receive the same treatment
respond to the treatment very differently. Besides, important predictors are not included in
the model, for instance because they are not known or cannot be measured.

1.1 State of research

In the following, we focus on the state of research on tests for non-inferiority and assay
sensitivity in three-arm trials. To our knowledge, there are no publications about tests for
the retention of effect hypothesis for overdispersed count data in general or for the negative
binomial distribution in particular. However, the theory of the retention of effect hypothesis
for other distributions has been subject of a number of recent publications. Pigeot et al.
(2003) studied the retention of effect hypothesis for normally distributed endpoints with
homogeneous variance. Regarding this setting, a sample size recalculation procedure has
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been introduced by Schwartz and Denne (2006). The case of normally distributed endpoints
with heterogeneous group variances has been studied by Hasler et al. (2008). The Wald-type
test theory for a generalized retention of effect hypothesis has been established by Mielke
(2010) for parametric families whose parameter has an asymptotic normally distributed
maximum-likelihood estimator and a non-singular covariance matrix. In Mielke (2010),
this theory has been applied to binary, Poisson, and censored, exponentially distributed
endpoints. The retention of effect hypothesis for binary distributed endpoints has been
studied by Kieser and Friede (2007) too. A nonparametric retention of effect hypothesis
defined through relative effects has been introduced by Munzel (2009).
Besides the retention of effect hypothesis, Kombrink et al. (2013) established a semipara-
metric analysis for censored time-to-event data in a three-arm trial. A general approach
for calculating the sample size of a three-arm trial where the active treatments and the
placebo are compared pairwise has been established by Stucke and Kieser (2012).
Since we assume that the treatment efficacies and the placebo response correspond to rates
of negative binomial distributions, testing superiority of the experimental or the reference
treatment over placebo corresponds to comparing rates of negative binomial distributions.
Thereto, Wald-type tests for the logarithmized rate are commonly used, confer Friede and
Schmidli (2010) and Zhu and Lakkis (2013). These publications, however, do not address
the actual level of significance of the test. Aban et al. (2009) introduced tests for the
equality of two negative binomial rates and compared their actual levels.

1.2 Content and Organization

In this thesis we study three-arm non-inferiority trials with negative binomially distributed
endpoints. To assess non-inferiority of the experimental versus the reference treatment, we
have to choose how the retention of effect hypothesis as well as assay sensitivity should
be tested. Additionally, the sample size as well as its allocation have to be determined.
In Section 2, we motivate and specify the statistical model. We start this section by
introducing mixed Poisson distributions as one possibility to model overdispersed count
data and establishing the negative binomial distribution as a mixed Poisson distribution.
Subsequently, to motivate the statistical model, we discuss examples of endpoints in clinical
trials in chronic obstructive pulmonary disease (COPD) and multiple sclerosis (MS) which
are commonly modelled as overdispersed count data. Finally, we define the statistical
model for this thesis through negative binomially distributed endpoints in Section 2.3.
Sections 3 and 4 are about the statistical results and concepts we apply when deducing
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tests for assay sensitivity and the retention of effect hypothesis. More precisely, in Section
3, we establish the maximum-likelihood estimators for the parameters of the negative
binomial model as well as describe the concept of restricted maximum-likelihood estimation.
Afterwards, in Section 4, we introduce the types of statistical tests which we will be applied
to the hypotheses defined above. Firstly, we describe Wald-type tests as tests whose
test statistics are asymptotically standard normally distributed at the boundary of the
hypothesis. Secondly, we focus on exact as well as asymptotic permutation tests.
With the knowledge of Sections 3 and 4, we establish different Wald-type tests as well as an
exact permutation test for the assay sensitivity and compare the actual level of significance
of these tests by Monte-Carlo simulations in Section 5. We will see that the actual level
of significance of the Wald-type tests depend among others on the sample size allocation
and that not all Wald-type tests are appropriate to test assay sensitivity. Especially, the
permutation test outperforms the Wald-type tests concerning being neither liberal nor
conservative.
Section 6 deals with testing the retention of effect hypothesis for negative binomially
distributed endpoints and planning the sample size for these tests. To test the retention of
effect hypothesis, we introduce different Wald-type tests using results from Mielke (2010)
in Section 6.1. The Wald-type tests differ in how the variance for the test statistic is
estimated. Thereto, we describe an unrestricted and a restricted maximum-likelihood as
well as a sample variance estimator. Additionally, in Section 6.2, we establish an asymptotic
permutation test by the central limit theorem for conditional permutation distributions
from Janssen (1997). After establishing the tests, in Section 6.3 we focus on planning
a trial which aims to test the retention of effect hypothesis with a certain power for a
fixed alternative. Thereto, we state sample size formulas and as well as the sample size
allocation maximizing the power which has been established by Mielke (2010). Additionally,
we introduce different restrictions for the sample size and extend the theory of power
maximizing allocation with respect to these restrictions. We extend the theory of allocating
the sample size by maximizing the power with respect to restrictions about the sample size
allocation. Since the properties of the tests and the results for planning the sample size only
hold asymptotically, we study the finite sample size properties with Monte-Carlo simulations
in Section 6.4. Firstly, we study the actual level of significance and the power of the different
tests. These simulations show that the Wald-type test with a restricted maximum-likelihood
variance estimator performs best for the considered scenarios. Since the Wald-type tests
with a maximum-likelihood variance estimator is based on the assumption of negative
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binomially distributed observations, we study how robust the test are concerning differently
distributed observations. We see that the mentioned Wald-type tests are not robust and
become liberal if the distribution changes. Most of the publications about the retention of
effect hypothesis claim that the power of the test procedure is approximately the power of
the retention of effect hypothesis. We verify the assertion in the case of negative binomially
distributed endpoints in the end of Section 6.4. We conclude this thesis with discussing
the key results and giving an outlook for further research on this topic in Section 7. In
Appendix A we state the technical proofs of this thesis.

7



2 Three-arm Trials and Overdispersed Count Data

In this section, we introduce mixed Poisson distributions as one possibility to model
overdispersed count data. Especially, we define three mixed Poisson distributions: the
negative binomial distribution, the Poisson–lognormal distribution, and the Poisson–inverse-
Gaussian distribution. Subsequently, we consider clinical trials in multiple sclerosis and
chronic obstructive pulmonary disease as examples of trials with endpoints commonly
modelled as overdispersed count data. Taking these examples into account, we specify the
statistical model as three-armed trials with negative binomially distributed observations.

2.1 Mixed Poisson Distributions

The Poisson distribution is a discrete single–parameter distribution with probability mass
function

Pλ(X = x) = λx exp(−λ)
x! 1N0(x),

with rate λ > 0 and 1N0(·) the indicator function on the natural numbers N0. The
expectation as well as the variance of X are equal to the rate λ. However, if data from an
overdispersed distribution, i.e. data from a distribution with variance exceeding expectation,
is modelled as Poisson distributed, a too small variance is assumed. As a consequence,
if statistical tests for Poisson distributed data are applied to overdispersed count data,
the actual level of significance of these tests may be larger than the nominal level. The
problem of wrongly modelled count data in clinical trials is addressed in several publications.
For instance, Keene et al. (2008b) showed that the analysis of count data in Calverley
et al. (2003) with a Poisson regression does not take the overdispersion of the data into
account. As a consequence, in this thesis we focus on overdispersed count data. Different
approaches of modelling overdispersed count have been suggested by Chapter 2.3, 2.4, and
2.6 of Winkelmann (2003). In this thesis, we consider mixed Poisson distributions as one
possibility to model overdispersed count data. Mixed Poisson distributions are Poisson
distributions whose rates are assumed to be random, i.e. different observed values of a mixed
Poisson distributed random variable are basically observations of Poisson distributed random
variables with different rates. Depending on the distribution of the rate, we obtain different
mixed Poisson distributions but, as we will see in the next subsection, all mixed Poisson
distributions are overdispersed. For further information about mixed Poisson distribution,
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we refer to Karlis and Xekalaki (2005) who reviewed mixed Poisson distributions, especially,
summarized properties and listed publications about different choices for the distribution
of the Poisson rate. Here, we regard three different mixed Poisson distributions, namely a
Poisson–gamma mixture, which is commonly known as the negative binomial distribution,
a Poisson–inverse-Gaussian mixture, and a Poisson–lognormal mixture distribution. The
choice of the different mixed Poisson distributions are motivated by clinical trials in multiple
sclerosis (MS) and chronic obstructive pulmonary disease (COPD), confer Sections 2.2.1
and 2.2.2.
As mention above, mixed Poisson distributions assume the rate of a Poisson distribution to
be random. We start by stating this definition more precisely and proving some properties
of mixed Poisson distributions.

Definition 2.1 (Mixed Poisson distribution). A random variable X is distributed according
to a mixed Poisson distribution if a random variable Z > 0 exists, such that the conditional
random variable X|Z is Poisson distributed with rate Z, i.e.

X|Z ∼ Pois(Z).

We denote the random variable Z as the mixing variable and its distribution as the mixing
distribution.

Lemma 2.2. Let X be a mixed Poisson distribution, and be fZ(·) the density of the mixing
variable Z > 0 with respect to a probability measure µ. Then, the probability mass function
of X is given by

P(X = x) =
∫
R

P(X = x|Z = z)fZ(z)µ(dz) = 1N0(x)
∫
R

zx

x! e
−zfZ(z)µ(dz).

To show that mixed Poisson distributions are always overdispersed, we calculate their
expectation and variance by means of the laws of total expectation and total variance.

Theorem 2.3. Let Z be an arbitrary mixing distribution with existing first and second
moment. Furthermore, let X be a mixed Poisson distributed random variable with mixing
variable Z. Then, the expectation and variance of X are

E[X] = E[Z],

Var[X] = E[Z] + Var[Z].
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Proof. The assertions follows immediately from the laws of total expectation and total
variance as well as from property that the expectation and variance of a Poisson distributed
random variable are equal to the rate.

Hence, the expectation and the variance of a mixed Poisson distribution are determined by
the expectation and the variance of the mixing distribution. Furthermore, a mixed Poisson
distribution is always overdispersed.
In the following, we introduce three different mixed Poisson distributions.

Definition 2.4 (Negative binomial distribution). A random variable X is called negative
binomially distributed with parameters λ, φ > 0 if it has the probability mass function

P(X = x) = Γ(x+ 1/φ)
Γ(1/φ)x!

(
1

1 + φλ

)1/φ (
λφ

λφ+ 1

)x
1N0(x).

The next theorem proves that a negative binomial distribution is a Poisson–gamma mixture.
Thereto, a random variable Z is said to be gamma distributed with parameters α, β > 0, if
it has the probability density function

fZ(z) = βα

Γ(α)z
α−1e−βz1(0,∞)(z)

with Γ(x) =
∫∞
0 tx−1e−tdt the gamma function.

Theorem 2.5. Let Z be gamma distributed with parameters α = 1/φ and β = 1/(λφ). In
addition, let the random variable X|Z be Poisson distributed with rate Z. Then, the random
variable X is negative binomially distributed with rate λ and shape parameter φ.

Proof. The assertion has been proved with shape parameter α = 1/φ on pages 35 and 36
in Winkelmann (2003).

According to 26.1.31 in Abramowitz and Stegun (1970), the expectation and the variance
of a gamma distributed random variable Z are α/β and α/β2, respectively. Hence, from
Theorem 2.3 we obtain immediately the expectation and the variance of a negative binomially
distributed random variable.

Corollary 2.6. The expectation and the variance of the negative binomially distributed
random variable X with rate λ and shape parameter φ are given by E[X] = λ and Var[X] =
λ(1 + λφ), respectively.
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In addition to being a mixed Poisson distribution, the negative binomial distribution can
also be motivated by means of a Bernoulli process.

Remark 2.7. Let Y1, Y2, . . . be independent and identically Bernoulli distributed random
variables with success probability p ∈ (0, 1), i.e. P(Y1 = 1) = p and P(Y1 = 0) = 1 − p.
Furthermore, let k, r ∈ N be a natural numbers. Then, the random variable X which
describes the number of failures k until the r-th success of the Bernoulli process occurred is
called negative binomially distributed and its probability mass function is given by

P(X = k) =
(
k + r − 1
r − 1

)
pr(1− p)k.

The negative binomial distribution as in Definition 2.4 is obtained by the property Γ(n) =
(n− 1)! as well as the substitutions r = φ and p = λ/(r + λ).

After describing the negative binomial distribution, we introduce two additional mixed
Poisson distributions. As mentioned above, the choice of these distributions is motivated
by the examples in Section 2.2.1 and 2.2.2.

Definition 2.8 (Poisson–inverse-Gaussian distribution). A random variable X is dis-
tributed according to a Poisson–inverse-Gaussian distribution with parameters λ, θ > 0 if
its probability mass function is given by

P(X = x) =
(

2θ
π

)1/2 1
x!e

θ
λ

 θ

2
(
1 + θ

2λ2

)


2x−1
4

Kx−1/2


√√√√2θ

(
1 + θ

2λ2

) 1N0(x)

with Kν(x) defined as

Kν(x) := π

2
I−ν(x)− Iν(x)

sin(νπ)

and

Iν(x) :=
∞∑
m=0

(x/2)ν+2m

m!Γ(m+ ν + 1) .

the modified Bessel-function of the first kind.

The next theorem states that the Poisson–inverse-Gaussian distribution is a mixed Poisson
distribution.
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Theorem 2.9. Let Z be an inverse-Gaussian distributed random variable with parameters
λ, θ > 0, i.e. Z has the probability density function

fZ(z) =
(

θ

2πz3

)1/2

exp
(
−θ(z − λ)2

2λ2z

)
1(0,∞)(z).

Furthermore, let X|Z be Poisson distributed with rate Z. Then, X is Poisson–inverse-
gaussian distributed with parameters λ, θ > 0.

Proof. The assertion has been proved by Holla (1967).

According to equation (7) in Holla (1967), the expectation and the variance of a Poisson–
inverse-Gaussian distribution are given by λ and λ(1 + λ2/θ), respectively.
Last but not least, we define the Poisson–lognormal distribution.

Definition 2.10 (Poisson–lognormal distribution). The distribution of a random variable
X is called Poisson–lognormal distribution with parameters µ and σ2 if its probability mass
function is given by

P(X = x) = 1N0(x)√
2πσ2x!

∫ ∞
0

zx−1 exp
(
−(ln(z)− µ)2

2σ2 − z
)

dz.

For the integral no closed-form expression is known.

Bulmer (1974) proves that the Poisson–lognormal distribution is a mixed Poisson distribution
with a lognormally distributed mixing distribution.

Theorem 2.11. Let Z be a lognormally distributed random variable with parameters µ ∈ R
and σ2 > 0, i.e. Z has the density function

fZ(z) = 1√
2πσ2z

exp
(
−(ln(z)− µ)2

2σ2

)
1(0,∞)(z).

If X|Z is Poisson distributed with rate Z, X is Poisson–lognormally distributed with
parameters µ and σ2.

Furthermore, the expectation and variance of a Poisson-lognormally distributed random
variable are given by exp(µ + σ2/2) and exp(µ + σ2/2) + (exp(σ2) − 1) exp(2µ + σ2),
respectively.
After describing mixed Poisson distributions as one possibility to model overdispersed count
data, we motivate the choices of the introduced mixed Poisson distributions in the next
subsection.
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2.2 Motivational examples

In the following, we cite clinical trials with patients suffering from chronic obstructive
pulmonary disease (COPD) as well as multiple sclerosis (MS) as examples for clinical trials
with endpoints commonly modeled as overdispersed count data. The subsection is split into
two parts, one for each disease, starting with COPD. Both parts start with a description of
the symptoms and relevant endpoints in clinical trials. Then, publications modelling the
introduced endpoints as mixed Poisson and in particular as negative binomially distributed
are cited. By taking several other publications into account, we demonstrate that three-arm
trials matter as a design for these diseases. Last but not least, to get an impression about
the expectation, the variance as well as the amount of overdispersion commonly observed, we
have a closer look at the results of Calverley et al. (2003) and Fox et al. (2012). Within the
framework of this thesis, the examples are important, since they motivate the parameters,
such as expectation and variance, for which we compare the statistical methods. Hence,
the results from Calverley et al. (2003) and Fox et al. (2012) will be analyzed as detailed as
possible.

2.2.1 Chronic obstructive pulmonary disease

COPD denotes several lung diseases and frequent symptoms are coughing, sputum pro-
duction and shortness of breath. Furthermore, common causes of COPD are smoking, air
pollution, and occupational exposure. The progress of COPD is characterized by exacer-
bations, an sudden worsening and lasting of the symptoms (confer Boehringer Ingelheim
Pharma GmbH & Co. KG (2013)). Therefore, an important part of COPD therapy is the
prevention of exacerbations and in clinical trials exacerbation are an widely used endpoint.
The distribution of the number of exacerbations per patient and year has been subject
of various publications, confer Suissa (2006), Keene et al. (2007), Keene et al. (2008a),
Keene et al. (2008b), and Aaron et al. (2008). Summarized, these publications reveal that
the number of exacerbation per patient are overdispersed and in the cases considered the
negative binomial distribution was recommended to model the number of exacerbations. In
addition, the fact that the design with an experimental treatment as well as an active and
a placebo control matters as a design for clinical trials in COPD is affirmed by the number
of publications with this particular design, for instance Donohue et al. (2002), Celli et al.
(2003), and Brusasco et al. (2006).
As an example for a placebo controlled study in COPD with active control groups, we regard
the so-called TRISTAN study published by Calverley et al. (2003). The TRISTAN study
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is a large clinical study including 1465 patients which compares the effects of salmeterol,
fluticasone, a combination of both, and a placebo in treating COPD patients. Even if this
trial is not three-armed but four-armed, it is chosen as an example for a trial with endpoints
commonly modelled as overdispersed count data, since the distribution of the data was
analysed in detail by Keene et al. (2007). They recommended to use a negative binomial
distribution to model the exacerbation counts. Assuming negative binomially distributed
observations, Table 1 states the exacerbation rates for the different groups of the TRISTAN
study. The source for this table is Table II in Keene et al. (2007).

Table 1: Exacerbation rates and number of recruited patients per group of the TRISTAN
study.

Placebo Salmeterol Fluticasone Combination
N 361 371 374 356
Exacerbation rate 1.71 1.28 1.25 1.16

Tables 1 states that between 356 and 374 patients per group had been recruited for the
TRISTAN study. In addition, the rates are between 1.16 and 1.71. The placebo group has
the largest rate and the group treated with the combination of Solmeterol and Fluticasone
has the smallest rate, i.e. the combinational treatment is the most effective one.
Furthermore, when fitting the negative binomial distribution to the data of the TRISTAN
study, Keene et al. (2007) assumed that the shape parameter φ is equal among the groups.
The shape parameter was estimated as φ̂ = 0.46 and a 95%-confidence interval is given by
[0.34, 0.60]. In particular, the confidence interval for the shape parameter states that, if the
assumption of negative binomially distributed observations is true, the observations are
overdispersed with a confidence of at least 95%. However, it has not been analysed whether
the assumption of the shape parameter being equal in all groups is appropriate. We will
discuss this assumption and possible model extension in Section 7.
We conclude this example by comparing the negative binomial, the Poisson–inverse-Gaussian
and the Poisson–lognormal distribution for expectations and variances motivated by Table
1. To this, we choose the rate of the negative binomial distribution to be λ = 1.3 and
the corresponding shape parameter φ to be either 0.3 or 0.7. The parameters for the
Poisson–inverse-Gaussian as well as the Poisson–lognormal distribution are defined such
that the distributions have the same expectation and variance as the negative binomial
distribution.
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Figure 1: Probability mass functions of the negative binomial, the Poisson–inverse-Gaussian
and the Poisson–lognormal distribution with expectation 1.3 and variance 1.807
(black) and 2.483 (red).

Figure 1 shows that for both variances, the probability mass functions decrease in x. First of
all, we focus on the distributions with variance 1.807 represented by the black symbols. For
a fixed x, the probabilities of the different distributions are nearly the same. The maximal
absolute difference between the probabilities for a fixed x is less than 0.08%. However, the
negative binomial distribution differs slightly but not more than 0.9% and 0.8% from the
Poisson-lognormal and the Poisson-inverse-Gaussian distribution, respectively. Qualitatively,
for the distributions with variance 2.483, i.e. the distributions displayed by the red symbols,
almost the same holds. However, in this case the Poisson–lognormal and the Poisson–
inverse-Gaussian distribution differ more (< 0.4%). In addition, the probability of the
negative binomial distribution differs approximately 2.33% and 2.56% from the probabilities
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of the Poisson–inverse-Gaussian and the Poisson–lognormal distribution, respectively. The
largest difference between the probabilities occur at x = 0 and x = 1 characterized by the
negative binomial distribution having more mass at x = 0, but lesser mass at x = 1. For
the other x-values, the negative binomial and the other two mixed Poisson distributions
differ by less than 0.8%. Summarizing, for an expectation of 1.3 and variances of 1.807
and 2.483 the probability mass functions have the same decreasing shape. In particular
for a fixed variance, the distributions only differ slightly and, therefore, we expect that
for these parameters the statistical tests we establish for negative binomially distributed
observations are robust concerning a change of the distribution to a Poisson–lognomal or a
Poisson–inverse-Gaussian distribution.

2.2.2 Multiple sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system with many
different symptoms, for instance cognitive impairment, loss of vision, problems with mobility
and balance, as well as muscle weakness and stiffness, confer Compston and Coles (2008).
For phase II clinical trials in relapse-remitting MS an important endpoint is the number of
new or enlarging T2-weighted hyperintense lesions. Here, T2-weighted denotes the type of
magnetic resonance imaging (MRI) used. Hyperintense lesions are the damaged parts of
the brain and spinal cord and therefore, small numbers of lesions are desirable. Comparing
the mean number of new and enhancing lesions of two groups of patients on different
treatments gives information about the efficacy differences of the treatments. Concerning
the mentioned and further information about the use of MRI in MS trials, we refer to
Chapter 16 in Cohen and Rudick (2003).
Modeling the lesion counts has been part of several publications, confer Sormani et al.
(1999), Sormani et al. (2001), Van den Elskamp et al. (2009), Francois et al. (2012). The
mentioned publications compare the goodness-of-fit of several distributions for given data
sets of lesions counts, especially the fit of the negative binomial distribution is analysed. The
data sets differ in number of patients and in particular in the patients disease progression.
Summarizing, in most cases the negative binomial distribution has the best goodness-
of-fit among the considered distributions and is therefore appropriate to model lesion
counts of patients suffering from MS. However, Van den Elskamp et al. (2009) stated that
under certain study conditions such as a short follow-up time or activity at baseline, the
lesions counts could be modeled using a Poisson–inverse-Gaussian or a Poisson–lognormal
distribution. Especially, nearly all of the overdispersed distributions outperform the Poisson
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distribution. After clarifying that methods for analysing mixed Poisson distributed and in
particular negative binomially distributed data are of importance, we expose the need for
methods to analyse observations of these distributions within a three-armed trial. Box 1
in Nicholas and Friede (2012) stated that one option for trials in MS are three-arm trials
including both an active and a placebo control group. Furthermore, even in future only
actively controlled trials to show non-inferiority and superiority are difficult due to the
"lack of clear evidence of an effect on a progressive outcome" according to page 1080 in
Nicholas and Friede (2012). Therefore, clinical trials in MS are one motivation to study
three-arm trials with overdispersed count data.
To receive an impression about the scale of the lesion count means for the different groups
within a clinical trial, we consider Fox et al. (2012) as an example. Fox et al. (2012) compare
the efficacy and safety of the active agent BG-12 at two different doses with placebo but
also includes glatiramer acetate as an active control, i.e. the trial includes three different
substances. Even though the trial was not designed to compare the active groups concerning
non-inferiority or superiority, it indicates the scale of the lesion counts. Hereinafter, we
refer to this study by its name CONFIRM. The following table cites the results for the
endpoint new or enlarging T2-weighted hyperintense lesions at 2 years from Table 2 in Fox
et al. (2012).

Table 2: Adjusted mean number of new or enlarging T2-weighted hyperintense lesions at two
years, a 95%-confidence interval for the adjusted mean and the corresponding number
of patients N of the different treatment groups.

Placebo Twice-Daily
BG-12

Thrice-Daily
BG-12

Glatiramer
Acetate

N 139 140 140 153
Adjusted mean
no. of lesions

17.4 5.1 4.7 8.0

95% confidence
interval

[13.5-22.4] [3.9-6.6] [3.6-6.2] [6.3-10.2]

Compared to the rates in the example motivated by the TRISTAN study stated in Table 1,
the adjusted means, which can be interpreted as rates of negative binomial distributions,
are much larger, in particular the rate for the placebo group. However, the number of
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patients in the different groups is less than half of the group sample sizes of the TRISTAN
study.
The adjusted means and the confidence intervals have been calculated by a negative binomial
regression. Unfortunately, Fox et al. (2012) do not state estimators for the shape parameter
neither whether the negative binomial regression assumed the same shape parameter for the
different groups. However, to get an impression about the quantity of the shape parameter,
we approximate the confidence intervals by

[λLCL, λUCL] :=
exp

log(λ̂)− q0.975

√
φ̂+ 1/λ̂

n

 , exp
log(λ̂) + q0.975

√
φ̂+ 1/λ̂

n


with n the number of observations, λ̂ the adjusted mean number of lesions, and q0.975 the
97.5%-quantile of a standard normal distribution. This method of calculating the confidence
interval is a transformed confidence interval for the logarithmized rate log(λ) calculated
through a normal approximation. To obtain the magnitude for the shape parameter φ, we
equate the boundaries of the confidence intervals for the adjusted rate from Table 2 with
the formula for λLCL and λUCL, respectively. Subsequently, we solve the resulting equation
with respect to φ̂. Therefore, we obtain two approximative values for the shape parameter
for each treatment.

Table 3: Approximations of the shape parameter φ for the different groups of the CONFIRM
study.

Placebo Twice-Daily
BG-12

Thrice-Daily
BG-12

Glatiramer
Acetate

φ̂1 2.273 2.427 2.378 2.148
φ̂2 2.251 2.227 2.583 2.226

The approximations of the negative binomial shape parameter for the different treatments
are between 2.148 and 2.583. Of course, there is some degree of uncertainty in the approxi-
mations, nevertheless, Table 3 indicates at least the magnitude of the shape parameters.
Compared to the exacerbations in COPD, the lesions counts in Phase II trials with patients
suffering from MS are much more overdispersed.
Motivated by the means from Table 2, we compare the mixed Poisson distributions intro-
duced in Section 2.1. Thereto, we choose the expectation to be 8. Motivated by Table
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3, the shape parameter φ is determined as 2.5 which results in a variance of 168. We
do not compare different shape parameters because the effect of the shape parameter is
qualitatively the same as in Figure 1.
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Figure 2: Probability mass functions for the negative binomial, the Poisson–inverse-Gaussian
and the Poisson–lognormal distribution with expectation 8 and variance 168.

Figure 2 shows the probability mass functions of the negative binomial, the Poisson-
lognormal and the Poisson–inverse-Gaussian distribution with expectation 8 and variance 168
for a range of x = 1, . . . , 18. The probability for x > 18 are summed up and P (X = x) < 1%
holds for all x larger than 18 and for the different distributions. The probability mass
function for the negative binomial distribution is decreasing with a maximum at x = 0
and in contrast, the Poisson–lognormal and the Poisson–inverse-Gaussian distribution are
unimodal with modus at x = 1. In comparison to the other two mixed Poisson distributions,
the negative binomial distribution has more mass on x = 0. However, the negative binomial
distribution has fewer mass on the intervals {1, 2, . . . , 12} and {1, 2, . . . , 16} compared
to the Poisson–inverse-Gaussian and Poisson-lognormal distribution, respectively. The
negative binomial distribution has more mass on x > 18, but the mass is distributed such
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that the other two distributions have more mass on the tail. More precisely, the Poisson–
inverse-Gaussian and the Poisson–lognormal distribution have more mass on a single x
than the negative binomial distribution for x ≥ 76 and x ≥ 95, respectively. In particular,
the mass on x ≥ 95 is 0.29% (Poisson–lognormal), 0.30% (Poisson–inverse-Gaussian), and
0.15% (negative binomial). Summarizing, for the current setting, the three mixed Poisson
distributions differ much more than for the parameters motivated by the TRISTAN study.
Particularly, all three distributions have a very long tails. Due to the difference of the
distributions, we do not expect that parametric tests established for the negative binomial
distribution are robust concerning the corresponding distribution of the Poisson mixing
variable.

Concluding, we considered two examples of clinical trials where endpoints are commonly
modelled as overdispersed count data and revealed the need of statistical methods for
planning and analyzing three-arm clinical trials with overdispersed count data. Especially,
for the lesions counts in clinical trials with MS and the exacerbations in trials with COPD,
the negative binomial distribution is recommended to model these outcomes. Furthermore,
it is a common assumption in publications about the statistical planning and analysis of
trials with these endpoints that the shape parameter is the same for all groups, confer Aban
et al. (2009), Friede and Schmidli (2010), and Zhu and Lakkis (2013).

2.3 Statistical Model

Motivated by the examples for clinical trials in COPD and MS, we develop in this thesis
the theory of three-arm trials for negative binomially distributed observations and take the
other mixed Poisson distributions only into account to study how sensitive the tests based
on negative binomially distributed observations are.
For k = E,R, P and i = 1, . . . , nk, let Xk,i be the observations within the experimental
treatment (E), reference treatment (R), or placebo (P) group. We assume that the
observations are independent and distributed according a negative binomial distribution
with different rates but an identical shape parameter, i.e.

Xk,i ∼ NegBin(λk, φ)

with λk > 0 and φ ≥ 0. Initially, we defined a negative binomial distribution only for a
shape parameter φ larger than zero but hereafter, we allow the case φ = 0 as an extension of
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the negative binomial distribution by the Poisson distribution. This extension is well-defined
because a negative binomial distribution converges in probability to a Poisson distribution
for φ→ 0.
The expectation and the variance of the negative binomially distributed random variable
Xk,i are given by λk and λk(1 + λkφ) =: σ2

k, respectively. Furthermore, the parameter space
of our statistical model is given by

Θ := {(λE, λR, λP , φ) : λE, λR, λP ∈ R+, φ ∈ R≥0} ⊂ R
4.

With the random variables of the different groups, we define the random vectors

Xk,nk := (Xk,1, . . . , Xk,nk), k = E,R, P,

Xn := (XE,nE ,XR,nR ,XP,nP) .

In this thesis, we consider that the expectations λk denote the treatment efficacies and the
placebo response as well as that smaller values are desirable. Hence, the hypothesis for
assay sensitivity and the retention of effect hypothesis are defined as stated in Section 1.
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3 Parameter Estimation

In this subsection, we study different methods of estimating the rates, the shape parameter
and the variances σ2

k, k = E,R, P , under the model introduced in Section 2.3. Firstly, we
establish the maximum-likelihood estimators for the parameters and show their consistency
as well as their asymptotic normality. Secondly, we introduce the idea of restricted maximum-
likelihood estimation. For the restricted estimator we only prove the consistency but do not
calculate any asymptotic distribution because this estimator is used exclusively to estimate
the variance of a test statistic. The estimators and their properties are taken into account
when deducing different hypothesis tests in Sections 5 and 6.

3.1 Maximum-Likelihood Estimation

We now establish the maximum-likelihood estimators of the rates and the shape parameters
as well as their basic properties. One characteristic of the model introduced in Section 2.3
is that the shape parameter φ is equal for the different groups and in consequence, the
shape parameter is estimated using the observations from all groups.
For the sake of readability, in what follows, we denote ζ := (λE, λR, λP , φ). The log-likelihood
function log l(ζ|Xn) is given by

∑
k∈{E,R,P}

nk∑
i=1

[
log Γ

(
Xk,i + 1

φ

)
−
(

1
φ

+Xk,i

)
log (1 + φλk) +Xk,i log (φλk)

− log(Xk,i!)− log Γ
(

1
φ

)]
.

Noting Γ(z) = (z − 1)Γ(z − 1), we obtain the equality

log
(

Γ
(
x+ 1

φ

))
= log Γ

(
1
φ

)
+

x−1∑
i=0

log
(
i+ 1

φ

)
, x ≥ 0.

With k = E,R, P , the last equation and the definition Xk,· := ∑nk
i=1Xk,i yield the following

representation of the log-likelihood function log l(ζ|Xn)

∑
k∈{E,R,P}

Xk,· log(φλk)−
(
nk
φ

+Xk,·

)
log(1 + φλk) +

nk∑
i=1

Xk,i−1∑
j=0

log
(
j + 1

φ

)
− log(Xk,i!).
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The maximum-likelihood estimator η̂ of the parameter η is defined as the maximizer of the
log-likelihood function, i.e.

ζ̂ :=
(
λ̂E, λ̂R, λ̂P , φ̂

)
:= arg max

ζ∈Θ
log l (ζ|Xn) .

By differentiating the log-likelihood function with respect to the parameter λk, equating
the resulting derivation to zero, and solving the equation with respect to λk, we obtain that
the group mean is the unique maximum-likelihood estimator λ̂k for the rate λk, i.e.

λ̂k = 1
nk

nk∑
i=1

Xk,i.

Due to the independence and identical distribution of the entries of Xk,nk , the maximum-
likelihood estimator λ̂k is an unbiased estimator for the rate λk. The maximum-likelihood
estimator φ̂ is a solution of the equation

G(φ) :=
∑

k∈{E,R,P}
nk log(φλ̂k + 1)−

nk∑
i=1

Xk,i−1∑
j=0

φ

1 + jφ
!= 0

with respect to φ. Since there is no closed form expression known for the solution, the
estimator φ̂ has to be calculated iteratively. The Theorem 3.1 makes a point about the
existence of the estimator φ̂.

Theorem 3.1. The maximum-likelihood estimator φ̂ for the shape parameter φ exists and
is larger than zero if the inequality

∑
k=E,R,P

1
nk

nk∑
i=1

(Xk,i − λ̂k)2 − λ̂k > 0

holds.

Proof. We prove the sufficient condition for the existence of the maximum-likelihood
estimator φ̂, which is the solution of the equation G(φ) = 0, analogously to the proof of
the existence of the maximum-likelihood estimator for the shape parameter in the case of
independent and identically distributed random variables by Aragón et al. (1992). The idea
is to extend the input of G(·) to negative values. In doing so we obtain a function which is
continuous in a small neighborhood of zero and for all positive inputs. Then, we show that
φ = 0 is a local minimum of G(φ) with G(0) = 0 and that for large φ the value of G(φ) is
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smaller than zero. Hence, the function G(φ) has to be zero at least once for φ > 0. The
first and second derivation of G(·) are given by

G′(φ) =
∑

k=E,R,P

nk∑
i=1

− xk,i−1∑
j=0

1
(jφ+ 1)2

+ λ̂k

1 + φλ̂k
,

G′′(φ) =
∑

k=E,R,P

nk∑
i=1

2
xk,i−1∑
j=0

j

(jφ+ 1)3

− λ̂2
k

(1 + φλ̂k)2
.

It holds that G(0) = G′(0) = 0 as well as

G′′(0) =
∑

k=E,R,P

1
nk

nk∑
i=1

(Xk,i − λ̂k)2 − λ̂k.

As assumed, G′′(0) is larger than 0 and therefore, G(·) has a local minimum at zero. Last
but not least, for large values of φ the values of G(φ) is smaller than zero because

lim
φ→∞

G(φ)
φ

=
∑

k=E,R,P

#
{
i|Xk,i > 0

}
nk

< 0

holds.

Theorem 3.1 states that the estimator φ̂ exists if the sum of the sample variances from the
different groups is larger than the sum of the group means. Such a statement was expected
because the shape parameter determines the amount of overdispersion and overall, the data
is overdispersed if the sum of the sample variances if larger than the sum of the means. For
the case of independent and identically negative binomially distributed random variables,
Aragón et al. (1992) proves that a sample variance larger than the mean is both a sufficient
and necessary condition for the existence and the uniqueness of the maximum-likelihood
estimator for the shape parameter. The proof explicitly takes advantage of that only one
mean exists and therefore, the same approach does not work in our setting. Furthermore,
our setting is a special case of the negative binomial regression in Lawless (1987) but
even if the maximum-likelihood estimator for the shape parameter is established, to our
knowledge, the uniqueness has not been proven, yet. However, for the cases considered, the
maximum-likelihood estimator φ̂ has always been unique and the shape of the log-likelihood
function log l(η|Xn) in φ has the same shape as the log-likelihood function for independent
and identically negative binomially distributed random variables in φ.
As mentioned above, the maximum-likelihood estimator λ̂k for the rate λk is unbiased.
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However, we do not expect the maximum-likelihood estimator φ̂ for the shape parameter to
be unbiased because the maximum-likelihood estimator for the shape parameter is even in
the case of independent and identically distributed random variables not unbiased, confer
Saha and Paul (2005) who calculated the bias of the maximum-likelihood estimator for the
shape parameter of independent and identically negative binomially distributed random
variables.
The next theorem states the consistency and asymptotic normality of the maximum-
likelihood estimator ζ̂.

Theorem 3.2. The maximum-likelihood estimator ζ̂ is a consistent estimator for the
parameter vector ζ and it is asymptotically normal distributed in the sense of:

√
n
(
ζ̂ − ζ

) D−−−→
n→∞

N




0
0
0
0

 ,


σ2
E

wE
0 0 0

0 σ2
R

wR
0 0

0 0 σ2
P

wP
0

0 0 0 Σ4,4




with D denoting convergence in distribution and

Σ4,4 = φ4

 ∑
k=E,R,P

wk

 ∞∑
j=0

(φ−1 + j)−2
P(Yk,1 ≥ j)− φλk

λk + φ−1

−1

.

Proof. Lawless (1987) proved the asymptotic normality of the maximum-likelihood esti-
mators for the negative binomial regression model but used another parametrization for
the parameter of interest. However, our model is a special case of the negative binomial
regression and the results can be adapted easily by means of the delta method. The
consistency in mentioned in Appendix A in Lawless (1987).

In addition, asymptotically, the maximum-likelihood estimators for a rate and the shape
parameter are independent. As we see in the next sections, for several tests we have
to estimate the variance σ2

k, k = E,R, P . The next corollary states that the maximum-
likelihood estimator for σ2

k is obtained by plugging in the corresponding maximum-likelihood
estimators for the rate and the shape parameter.

Corollary 3.3. For k = E,R, P , the maximum-likelihood estimator σ̂2
k for the variance
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σ2
k = Var(Xk,1) = λk(1 + λkφ) is given by

σ̂2
k = λ̂k(1 + λ̂kφ̂).

Furthermore, the estimator σ̂2
k is consistent for the variance σ2

k.

Proof. Due to the functional invariance of maximum-likelihood estimators, the variance
estimator σ̂2

k is a plug-in estimator. In addition, the consistence of the estimator follows
from the continuous mapping theorem.

Supported by Monte-Carlo simulations and the fact that the squared estimator λ̂2
k and the

estimator for the shape parameter φ̂ are biased and assumed to be biased, respectively, we
suppose that the maximum-likelihood estimators for the variances are biased, too.

3.2 Restricted Maximum-Likelihood Estimation

Next, we describe a concept of maximum-likelihood estimation whereby the estimators are
restricted to a subspace of the parameter space. Sometimes, for example when estimating
the variance for a Wald-type test restricted to the null hypothesis it is required to estimate
the rates and the shape parameter with restriction to an inequality g(ζ) ≥ 0, with g : R4 → R

a continuous function. Therefore, in the following, we define the restricted parameter space
and the maximum-likelihood estimator for the parameters restricted to this space. Then,
we study the calculation as well as asymptotic properties of the restricted estimators.
Let Θg be the parameter space restricted to g(ζ) ≥ 0, i.e.

Θg := {ζ ∈ Θ : g(ζ) ≥ 0} .

Then, the restricted maximum-likelihood estimators are defined by

ζ̂RML := (λ̂E,RML, λ̂R,RML, λ̂P,RML, φ̂RML) := arg max
ζ∈Θg

log l(ζ|Xn).

Whether the restricted maximum-likelihood estimator exists and is unique depends on
the restricted parameter space. Hereinafter, we assume that the estimator exists and is
unique. If the unrestricted maximum-likelihood estimators fulfil the condition g(ζ̂) ≥ 0, the
restricted maximum-likelihood estimators coincide with the unrestricted ones. Otherwise,
the restricted estimators are located at the boundary of the restricted parameter space, i.e.
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they meet the condition g(ζ̂RML) = 0. Then, the restricted estimators can be calculated by

ζ̂RML = arg max
g(ζ)=0

log l(ζ|Xn).

The uniqueness as well as whether a closed form expression for ζ̂RML exists depends on the
function g(·). The next theorem states the restricted maximum-likelihood estimator for the
variance σ2

k.

Theorem 3.4. For k = E,R, P , the restricted maximum-likelihood estimator σ̂2
k,RML is

given by

σ̂2
k,RML = λ̂k,RML(1 + λ̂k,RML φ̂RML).

If the true parameter vector is located in the restricted parameter space , i.e. ζ ∈ Θg, the
restricted maximum-likelihood estimator σ̂2

k,RML is a consistent estimator for σ2
k.

Proof. As for the unrestricted maximum-likelihood estimator for the variance, due to the
functional invariance of maximum-likelihood estimators, σ̂2

k,RML is obtained by plugging
in the corresponding estimators for the rate and the shape parameter. The consistency of
the restricted maximum-likelihood variance estimator follows if the restricted maximum-
likelihood estimators for the rates and the shape parameter are consistent. The consistency
of the restricted estimator ζ̂RML follows from the consistency of the unrestricted estimator
ζ̂ because the function g, which defines the restricted parameter space, is continuous.

However, the consistency of the restricted maximum-likelihood estimators does not hold if
the true parameter vector is not located in the restricted parameter space, i.e. ζ ∈ Θ\Θg.
Nevertheless, under certain to be specified conditions, the restricted estimators converge
almost surely to a parameter vector located in Θg. Sufficient conditions for the almost surely
convergence of the restricted estimator ζ̂RML has been proved on page 20f. in Mielke (2010).
In the following we recapitulate these results. Thereto, let ζ ∈ Θ be an arbitrary parameter
vector and let ζ0 := (λE,0, λR,0, λP,0, φ) ∈ Θ be the true parameter vector. Furthermore,
let c = (cE, cR, cP ) be a vector of weights. Then, we define the weighted Kullback–Leibler
divergence between ζ and ζ0 by

K(ζ0, ζ, c) :=
∑

k=E,R,P
ckK((λk,0, φ0), (λk, φ)) (3.1)
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with

K((λk,0, φ0), (λk, φ)) := E(λk,0,φ0)
[
log

(
P(λk,0,φ0)(X = ·)

)
− log

(
P(λk,φ)(X = ·)

)]
the usual Kullback–Leibler divergence measuring the difference between two probabil-
ity distributions. In addition, we define ζΘg as the minimizer of the KL-divergence
K(ζ0, ζ, (wE, wR, wP )) with respect to ζ ∈ Θg, i.e.

ζΘg := arg min
ζ∈Θg

K(ζ0, ζ, (wE, wR, wP )).

Theorem 3.5 states sufficient conditions for the almost surely convergence of the restricted
estimator ζ̂RML to ζΘg .

Theorem 3.5. Condition 1: If the true parameter is located in the restricted parameter
space, ζ0 ∈ Θg, and none of the three groups vanishes asymptotically, i.e. limn→∞ nk/n =
wk ∈ (0, 1), the argument ζΘg which minimized the Kullback-Leibler divergence is well-
defined.
Condition 2: Any sequence of parameter vectors in the restricted space ζ(n) ∈ Θg which
limit is located in the closure of the parameter space but not in the parameter space itself,
i.e. limn→∞ ζ

(n) ∈ Θ\Θ or which length converges to infinity, limn→∞ ‖ζ(n)‖ = ∞, has a
mass of zero:

lim
n→∞

∏
k=E,R,P

P(λ(n)
k
,φ(n)) (Xk,1 = ·) = 0 P(λk,0,φ0) − a.s.

If Condition 1 and 2 hold, the restricted maximum-likelihood estimator ζ̂RML converges
almost surely to the minimizer ζΘg of the Kullback–Leibler divergence.

We refer to Theorem 3.5 in later sections when we establish Wald-type tests with restricted
maximum-likelihood variance estimators. Summarizing, we calculated the maximum-
likelihood estimator ζ̂ for the parameter vector ζ and, additionally, we proved its consistency
and asymptotic normality in Theorem 3.2. With the consistency of ζ̂ , we concluded that the
maximum-likelihood variance estimator σ̂2

k with k = E,R, P is consistent, too. Moreover,
we described the idea of restricted maximum-likelihood estimators and showed that the
restricted maximum-likelihood estimators for the parameter vector ζ and the variance
of a negative binomial distribution are consistent if the true parameter is located in the
restricted parameter space. In addition, we stated that under certain conditions the

28



restricted estimator ζ̂RML converges almost surely to the minimizer of a Kullback–Leibler
divergence. The calculation of the restricted estimators depends on the function g and will
therefore be discussed later on.
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4 Hypothesis Testing

In the following, we introduce the notation of hypothesis testing for a one-sided hypothesis
H0 as well as the idea of Wald-type and permutation tests. Thereto, in this section, let
Yn := (Yn,1, . . . , Yn,n) ∼ Fn,η be a vector of n random variables with an unknown parameter
η ∈ Rd and probability measure P ≡ Pη. With g : Rd → R a continuous function, we define
the one-sided hypothesis

H0 : g(η) ≤ 0 versus H1 : g(η) > 0.

Furthermore, let Tn : Rn → R be a test statistic mapping the random vector Yn to a real
number and let the output Tn(Yn) be distributed according to Gη. In addition, to define
a hypothesis test for H0, we assume that the cumulative distribution function of Gη is
increasing in g(η). We define a level α test Ψn as a function mapping the random vector
Yn into the set [0, 1], i.e.

Ψn : Rn → [0, 1]

Yn 7→


1 Tn(Yn) > cn

γn Tn(Yn) = cn

0 Tn(Yn) < cn

with cn ∈ R and γn ∈ [0, 1] being defined such that for all η with g(η) = 0 the equation

EP [Ψn(Yn)] = P(Tn(Yn) > cn) + γn · P(Tn(Yn) = cn) != α (4.1)

holds, with α ∈ (0, 1) the so-called level of significance. In practice, the hypothesis test Ψn

is usually defined with γn to be zero and the outcome Ψn = 1 is interpreted as a rejection
of the hypothesis H0 with level of significance α. In other words, if the hypothesis H0 is
true, the probability of a false rejection, which is referred to as the type I error, is at most
α. Here, the assumption that the distribution function of Gη is increasing in g(η) assures
that the type I error rate is smaller than α if g(η) < 0 holds. Besides the type I error rate,
the type II error rate is defined as the probability of not rejecting the hypothesis H0 if the
alternative H1 is true. The probability of the complementary event, i.e. the probability of
rejecting the hypothesis if the alternative is true, is called the power of a test.
For a given distribution Fn,η, it is not always possible to construct an appropriate test
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statistic Tn for the hypothesis H0 such that calculating the parameters cn and γn is feasible.
In particular, the construction is not possible for the hypotheses we study in this thesis.
As a consequence, we introduce two ways of constructing asymptotic tests. As the name
implies, the idea of asymptotic tests is to determine the parameters cn and γn with respect
to the asymptotic distribution of the test statistic Tn, if calculating them for the actual
distribution is not feasible. Hence, an asymptotic level α test Ψn is defined such that the
limit

lim
n→∞

EP [Ψn(Yn)] ≤ α

holds for all η with g(η) ≤ 0 and, in particular, equality holds for all η with g(η) = 0.
In this thesis, we introduce Wald-type and permutation tests as approaches to construct
hypothesis tests. Wald-type tests are asymptotic tests assuming an asymptotically standard
normally distributed test statistic. In contrast, we introduce permutation tests as exact tests
assuming exchangeable random variables and, if possible, extend them to asymptotic tests
in case the assumption of exchangeable random variables is not given. Random variables
are called exchangeable if the joint distribution of the random variables is invariant to
permutations.

4.1 Wald-type Tests

The idea of Wald-type tests is to define a test statistic Tn for H0 through the maximum-
likelihood estimator for g(η) which is asymptotically standard normally distributed if
g(η) = 0 holds. Then, the Wald-type test ΨWald

n is defined with the parameter cn as the
(1 − α)-quantile q1−α of a standard normal distribution and the parameter γn as zero.
Pioneering work on Wald-type tests has been done by Wald (1943). However, in the
following, we outline the definition of Wald-type tests as introduced by Engle (1984).
Let the random vector Yn and the hypothesis H0 be defined as above and in addition let
ĝ(Yn|η) be a consistent maximum-likelihood estimator for g(η) which is asymptotically
standard normally distributed in the sense of

√
n
(
ĝ(Yn|η)− g(η)

) D−−−→
n→∞

N (0, σ2).

To obtain a test statistic TWald
n which is asymptotically standard normally distributed for

g(η) = 0, we divide the term
√
nĝ(Yn|η) by an, at least under H0, consistent estimator
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σ̂2(Yn) for the variance σ2, i.e.

TWald
n (Yn) :=

√
n
ĝ(Yn|η)√
σ̂2(Yn)

D−−−→
n→∞

N (0, 1) for g(η) = 0.

With this, we define the Wald-type test for the hypothesis H0 by

ΨWald
n (Yn) :=

1 TWald
n (Yn) > q1−α

0 TWald
n (Yn) ≤ q1−α

.

Of course, for g(η) = 0 holds that the asymptotic level of significance is equal to α, thus

lim
n→∞

EP

[
ΨWald
n (Yn)

]
= lim

n→∞
P

(
TWald
n (Yn) > q1−α

)
= α.

Since the distribution function of the test statistic TWald
n is increasing in g(η), the Wald-type

test ΨWald
n is an asymptotic level α test.

4.2 Permutation Tests

In this subsection, we introduce two types of permutation tests, an exact test as well as an
asymptotic test. The exact permutation test assumes exchangeable random variables, i.e.
the joint distribution of the random variables is invariant to permutations. In contrast, the
asymptotic permutation test does not assume exchangeable random variables.
Let the random vector Yn and the hypothesis H0 be defined as before. Generalized, exact
permutation tests for the hypothesis H0 base on the assumption that the entries of the
random vector Yn are exchangeable for g(η) = 0. Hence, at the boundary of the hypothesis
H0, the distribution of an arbitrary, for H0 appropriate test statistic T Permn (Yn) does
not change if the random vector Yn is permuted. Meaning, for g(η) = 0 the equality in
distribution

T Permn (Yn) D= T Permn (τn(Yn))

holds with τn(Yn) an uniformly distributed random variable on the space of permutations
of Yn and, thus, each permutation of Yn has the probability 1/n!. We denote the random
variable τn(Yn) as the uniformly distributed permutation and, hereinafter, let P̃ be the
probability measure of τn(Yn). Additionally, the probability measure P̃ is assumed to be
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independent of P. Having this in mind, we define a (one-sided) permutation test.

Definition 4.1 (One-sided exact permutation test). Let T Permn (Yn) be a test statistic
which is appropriate to test the hypothesis H0 and let τn(Yn) be an uniformly distributed
permutation. With the previously introduced notation, we define a permutation test for
the hypothesis H0 as a function mapping the vector Yn into the set [0, 1], i.e.

ΨPerm
n : Rn → [0, 1]

Yn 7→


1 T Permn (Yn) > cPermn

γPermn T Permn (Yn) = cPermn

0 T Permn (Yn) < cPermn

with cPermn ≡ cPermn (Yn) and γPermn ≡ γPermn (Yn) such that the equation

E
P̃

[
ΨPerm
n (τn(Yn))|Yn

]
=P̃

(
T Permn (τn(Yn)) > cPermn

∣∣∣Yn
)

+ γPermn · P̃
(
T Permn (τn(Yn)) = cPermn

∣∣∣Yn
) != α

holds.

Due to the independence of the probability measures P and P̃, conditioning on Yn is not
mandatory. However, it clarifies that the permutation test ΨPerm

n or to be precise its
constants cPermn and γn depend on the realizations of Yn as well as on the distribution of
T Permn (τn(Yn))

∣∣∣Yn but not on the distribution of Yn. The next theorem proves that the
permutation test as defined above is an exact test at the boundary of the hypothesis.

Theorem 4.2. Let the random vector Yn, the hypothesis H0, and the uniformly distributed
permutation τn(Yn)) be defined as above and let the probability measures P and P̃ be
independent. Furthermore, let the entries of the random vector Yn be exchangeable if
g(η) = 0 holds. Then, the permutation test ΨPerm

n as defined in Definition 4.1 is an exact
level α test at the boundary ∂H0 of the hypothesis, i.e. for g(ζ) = 0.

Proof. We prove that EP
[
ΨPerm
n (Yn)

]
= α holds if g(η) is equal to zero. Hence, in the

following, we assume that η fulfills the equation g(η) = 0. Due to the exchangeablity of the
random variables, the equality in distribution

ΨPerm
n (Yn) D= ΨPerm

n (τn(Yn))
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holds. Hence, the law of total expectation yields the equation

EP

[
ΨPerm
n (Yn)

]
= E

P̃

[
E
P|P̃

[
ΨPerm
n (τn(Yn))

∣∣∣Yn
]]
.

Since the probability measures are independent, the measure P|P̃ is equal to P and the
expectations can be switched. Taking the property E

P̃

[
ΨPerm
n (τn(Yn))

]
= α into account

yield the assertion

EP

[
ΨPerm
n (Yn)

]
= E

P̃

[
EP

[
ΨPerm
n (τn(Yn))

]]
= EP

[
E
P̃

[
ΨPerm
n (τn(Yn))

]]
= EP [α] = α.

Whether the actual level of significance of the permutation test ΨPerm
n is less than α for

g(η) < 0 depends on the test statistic. However, hereinafter, we denote the permutation
test as an exact test but we keep in mind that, primarily, the test is exact at the boundary
of the hypothesis.
So far, we have defined an exact permutation test with parameters cPermn and γn determined
by the conditional permutation distribution of the test statistic given the realizations
of Yn. However, the conditional distribution does mostly not correspond to any known
distribution but can be approximated by Monte-Carlo simulations. Thus, in practice, the
parameters cPermn and γn are determined through simulations. For the exact permutation
test from Definition 4.1, we assumed exchangeable random variables at the boundary of H0

and, of course, this assumption does not always hold. In particular, for the retention of
effect hypothesis the corresponding random variables are not exchangeable. Therefore, a
permutation test as introduced above is in general not a level α test. However, Janssen
(1997) established an asymptotic permutation test for non-i.i.d. random variables which
does not assume exchangeable random variables under H0. Next, we introduce the idea
and summarize the main results of Janssen (1997).
Basically, Janssen’s asymptotic permutation test considers an appropriate, and at the
boundary of H0 asymptotically standard normally distributed test statistic T Permn . Intu-
itively and as for the Wald-type test, a one-sided asymptotic level α test for H0 is obtained
by rejecting the hypothesis if and only if the test statistic is larger than the (1−α)-quantile
q1−α of a standard normal distribution. However, if the distribution of the test statistic
T Permn converges slowly to a standard normal distribution, the actual level of the test can
differ clearly from α, especially, if the sample size is small. Therefore, instead of using a
quantile of a standard normal distribution, the asymptotic permutation test rejects H0
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if and only if the test statistic T Permn is larger than the quantile cPerm1−α of the conditional
permutation distribution of T Permn (τn(Yn))|Yn. In other words, the idea is to approximate
the distribution of the test statistic not through a normal distribution but with means
of a permutation distribution. The crucial point why this definition yields an asymptotic
level α test is that, under certain to be specified conditions, the permutation quantile cPerm1−α

converges to the quantile q1−α.
More precisely, let Yn and H0 be defined as above and for each n ∈ N, let (cn,i)i≤n be
a sequence of real numbers, which is taken into account to define the test statistic. As
mentioned previously, the test statistic for the permutation test is defined such that it is
asymptotically standard normally distributed. Janssen (1997) defined the test statistic
through the linear statistic ∑n

i=1 cn,iYn,i. The definition of the test statistic by means of
a linear statistic allows to apply certain central limit theorems to show the asymptotic
normality of the test statistic. We obtain the test statistic for the asymptotic permutation
test by studentizing the linear statistic, i.e. divide it by an estimator σ̂Perm(Yn) of its
standard deviation which needs to be specified. Thus, the test statistic is given by

T Permn (Yn) :=
∑n
i=1 cn,iYn,i
σ̂Perm(Yn) . (4.2)

In particular, the coefficients (cn,i)i≤n are chosen such that the resulting test statistic fits
the hypothesis and that the asymptotic normality of the test statistic holds.
With the definition of the test statistic in (4.2), we next define the asymptotic permutation
test.

Definition 4.3. Let the random vector Yn and the hypothesis H0 be defined as before.
Furthermore, let the test statistic T Permn (Yn) be defined as in (4.2). Then, we define the
asymptotic permutation test ΨPerm

n for the hypothesis H0 by

ΨPerm
n : Rn → [0, 1]

Yn 7→

1 T Permn (Yn) > cPerm1−α

0 T Permn (Yn) ≤ cPerm1−α

,

with cPerm1−α ≡ cPerm1−α (Yn) the (1− α)-quantile of the conditional permutation distribution of
the test statistic given observations of Yn, i.e.

cPerm1−α := min
{
c ∈ R : P̃

(
T Permn (τn(Yn) > c)

∣∣∣Yn
)
≤ α

}
.
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To assure that the permutation test defined in Definition 4.3 is an asymptotic level α test,
it suffices to show that T Permn (Yn) is asymptotically standard normally distributed and
that the conditional permutation distribution T Permn (τn(Yn))|Yn converges to a standard
normal distribution. The central limit theorem for conditional permutation distributions,
confer Theorem 3.3 in Janssen (1997), proves that the conditional permutation distribu-
tion converges to a standard normal distribution and states sufficient conditions for this
convergence.

Theorem 4.4 (Central limit theorem for conditional permutation distributions). As before,
let Yn be a random vector with length n and let (cn,i)i≤n be a sequence of real numbers.
Furthermore, suppose that the following conditions hold:

1. For each n ∈ N the sum of the squared regression coefficients and the regression
coefficients is equal to one and zero, respectively:

n∑
i=1

c2
n,i = 1 ∀n ∈ N,

n∑
i=1

cn,i = 0 ∀n ∈ N.

2. With Y n,· :=
∑n
i=1 Yn,i/n the average, it holds that

lim inf
n→∞

1
n

n∑
i=1

(Yn,i − Y n,·)2 > 0 P− a.s.

3. There exists σ̃ > 0 such that

1
σ̂2
Perm(τn(Yn))

1
n

n∑
i=1

(Yn,i − Y n,·)2 P×P̃−−−→
n→∞

σ̃2.

4. The maximum of the sequence (cn,i)i≤n of real numbers converges to zero:

max
1≤i≤n

|cn,i|
n→∞−−−→ 0.

5. For d→∞ it holds:

lim sup
n→∞

1
n

n∑
i=1

(Yn,i − Y n,·)2
1[d,∞)

(
|Yn,i − Y n,·|

)
→ 0 P− a.s.
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Under the assumptions 1.-5., the permutation statistic in (4.2) is asymptotically
normal distributed, i.e.:

sup
t∈R

(∣∣∣∣P̃ (T Permn (τn(Yn)) ≤ t|Yn
)
− Φ

(
t

σ̃

)∣∣∣∣) P−−−→
n→∞

0.

Proof. Confer proof of Theorem 3.3 in Janssen (1997).

Therefore, to construct an asymptotic permutation test, we have to determine the sequence
(ci,n)i≤n an the estimator σ̂Perm, which fulfill the corresponding conditions. In conclusion,
in this section we stated some basic notations of hypothesis testing and, afterwards,
introduced the Wald-type test as an asymptotic test. Wald-type tests are defined through
an asymptotically normal distributed test statistic. As an alternative to Wald-type tests,
we established an exact and an asymptotic permutation test. The exact permutation test
bears on exchangeable random variables and its rejection are is defined by the permutation
distribution of the test statistic given the corresponding observations. For the asymptotic
permutation test, we did not assume exchangeable random variables, but, in contrast
to the asymptotic permutation test, we assumed the test statistic to be asymptotically
normal distributed. Analogously to the exact permutation test, we defined the rejection
area of the asymptotic permutation test by a quantile of the test statistics permutation
distribution. Last but not least, we stated the central limit theorem for conditional
permutation distributions which ensures that the defined asymptotic permutation test is
an asymptotic level α test.
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5 Test for Assay Sensitivity

In the following, we study statistical tests for the assay sensitivity of a three-arm clinical trial.
In Section 1, we already mentioned that we consider assay sensitivity as the superiority of
the experimental or the reference treatment over placebo which resulted in assay sensitivity
being defined as one of the following statistical testing problems

1. HEP
0 : λE ≥ λP versus HEP

1 : λE < λP ,

2. HRP
0 : λR ≥ λP versus HRP

1 : λR < λP ,

3. HEP∪RP
0 : HEP

0 ∪HRP
0 versus HEP∩RP

1 : HEP
1 ∩HRP

1 .

The first two hypotheses imply the same statistical problem. Analogously to the test
procedure testing both, assay sensitivity and non-inferiority/superiority of the experimental
versus the reference treatment, the hypothesis HEP∪RP

0 can be tested by testing the
hypothesis HEP

0 and HRP
0 separately. Hence, without loss of generality, we only study the

statistical hypothesis

HEP
0 : λE ≥ λP versus HEP

1 : λE < λP .

Thereto, we introduce different Wald-type tests and a permutation test. Wald-type tests are
commonly taken into account when comparing two rates of negative binomial distributions,
confer Aban et al. (2009), Friede and Schmidli (2010), and Zhu and Lakkis (2013). However,
to our knowledge there are no publications applying the permutation test to count data.
We end this section by comparing the actual level of the established hypothesis tests with a
simulation study for parameter settings motivated by the examples from Section 2.
In this section, we consider neither power, nor sample size planning, nor optimal sample
size allocations for the corresponding tests, since the sample size is in general determined
for the test procedure.

5.1 Wald-type Tests

In what follows, we construct different Wald-type tests for the hypothesisHEP
0 . Basically, the

test statistic of the first test is obtained directly by the maximum-likelihood estimators for
the rates of a negative binomial distribution. Furthermore, the second test statistic is defined
by means of the logarithmized rate estimators to take account of the estimator’s skewness.
For both types of test statistics, we introduce different consistent variance estimators. At
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first, we note that the hypothesis HEP
0 can be written as HEP

0 : λP −λE ≤ 0. As motivated
in Section 4, we construct a Wald-type test by means of a consistent, asymptotically normal
distributed maximum-likelihood estimator for the parameter of interest λP − λE. With
the consistency and asymptotic normality of the maximum-likelihood estimators λ̂E and
λ̂P , confer Theorem 3.2, it follows that at the boundary of the hypothesis HEP

0 , i.e. for
λP − λE = 0, the asymptotic normality

√
n(λ̂P − λ̂E) D−−−→

n→∞
N (0, σ2

EP )

holds with the variance σ2
EP given by

σ2
E

wE
+ σ2

P

wP
= λE(1 + φλE)

wE
+ λP (1 + φλP )

wP
.

Here, limn→∞ nk/n = wk ∈ (0, 1) holds, meaning none of the groups vanished asymptotically.
Hence, with σ̂2

EP an under HEP
0 consistent estimator for the variance, we define the first

Wald-type test statistic for HEP
0 by

TEPn,Wald (Xn) :=
√
n
λ̂P − λ̂E√

σ̂2
EP

.

The definition of the test statistic TEPn,Wald results in the Wald-type test

ΨEP
n,Wald (Xn) :=

1 TEPn,Wald (Xn) ≥ q1−α

0 TERn,Wald (Xn) < q1−α

.

However, the question remains how to estimate the variance σ2
EP consistently. By taking

the results from Section 3 into account, we establish three different appropriate estimators
for the variance σ2

EP . First of all, we deduce the unrestricted maximum-likelihood estimator
for σ2

EP from the maximum-likelihood estimators for σ2
k, k = E,P .

Theorem 5.1 (Unrestricted maximum-likelihood estimator for the variance σ2
EP ). For

k = E,P , let σ̂2
k be the maximum-likelihood estimator for the variance σ2

k as in Corollary
3.3. Then, the maximum-likelihood estimator σ2

EP,ML for the variance σ2
EP is given by

σ̂2
EP,ML = σ̂2

E

wE
+ σ̂2

P

wP
.
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The estimator σ̂2
EP,ML is consistent for the variance σ2

EP .

Proof. Due to the functional invariance of maximum-likelihood estimators, σ̂2
EP,ML is ob-

tained by plugging in the corresponding maximum-likelihood estimators σ̂2
k. The consistency

follows, since the sum of two consistent estimators is consistent for the limits of the two
estimators.

Analogously to the unrestricted maximum-likelihood estimator for the variance σ2
EP , we

define the restricted maximum-likelihood estimator for σ2
EP by restricting the parameter

estimators to the hypothesis HEP
0 . Estimating the variance restricted to the hypothesis can

be advantageous in the sense of that the test statistic converges faster to its asymptotic
distribution. As mentioned before, if the unrestricted maximum-likelihood estimators are
located in the hypothesis, i.e. if λ̂P − λ̂E ≤ 0 holds, the restricted maximum-likelihood
estimators coincide with the unrestricted ones. On the other hand, we have to calculate
the restricted ones by maximizing the likelihood function with respect to the boundary
λE = λP of the hypothesis. The next theorem states conditions for the solution of this
problem.

Theorem 5.2. If the maximum-likelihood estimators are not located in the hypothesis, the
restricted maximum-likelihood estimators for the rates are given by

λ̂E,RML = λ̂P,RML = 1
nE + nP

∑
k=E,P

nk∑
i=1

Xk,i,

λ̂R,RML = λ̂R.

Furthermore, the restricted maximum-likelihood estimator φ̂RML of the shape parameter is
given as the maximizer of the log-likelihood function log l(λ̂E,RML, λ̂R,RML, λ̂P,RML, φ|Xn)
with respect to φ and it is a solution of the equation

G(φ) :=
∑

k=E,R,P

nk
φ2 log

(
1 + φλ̂k,RML

)
−

nk∑
i=1

Xk,i−1∑
j=0

1
jφ2 + φ

 != 0 (5.1)

with respect to φ.

The results from Theorem 5.2 follow immediately from the derivation of the log-likelihood
function restricted to λP = λE. In Theorem 5.2 we proved that the restricted maximum-
likelihood estimators for the rates λE and λP are equal to the mean of the observations from
both groups. In addition, the estimator for the rate λR, which is not part of the hypothesis
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HEP
0 , is equal to the unrestricted maximum-likelihood estimator λ̂R. Analogously to the

unrestricted maximum-likelihood estimator for the shape parameter in Section 3, there is
no closed form expression known for the restricted estimator φ̂RML and we cannot prove
that Equation (5.1) has a unique solution. However, for the cases considered, the solution
has been unique. Moreover, in the cases considered, it can be shown graphically that
the function G(·) has the same shape as the corresponding function for independent and
identically distributed random variables which solution is unique. With the same arguments
as for the unrestricted maximum-likelihood variance estimator, the restricted one is a
plug-in estimator. As mentioned in Section 3, the restricted maximum-likelihood estimators
are consistent under HEP

0 . Thus, the restricted maximum-likelihood variance estimators
are consistent, which is also stated in the next theorem.

Theorem 5.3 (Restricted maximum-likelihood estimator for σ2
EP ). The maximum-likelihood

estimator for the variance σ2
EP with restriction to the hypothesis HEP

0 is given by

σ̂2
EP,RML = λ̂E,RML(1 + φ̂RMLλ̂E,RML)

wE
+ λ̂P,RML(1 + φ̂RMLλ̂P,RML)

wP

with λ̂E,RML, λ̂P,RML, and φ̂RML the restricted maximum-likelihood estimators for the rates
and the shape parameter, respectively. Under the hypothesis HEP

0 , the restricted maximum-
likelihood estimator σ̂2

EP,RML is consistent.

In case of independent and identically negative binomially distributed random variables, the
maximum-likelihood estimator for the shape parameter is biased. Therefore, we expect that
the unrestricted and the restricted maximum-likelihood estimator for the shape parameter
as well as for the variance σ2

EP are also biased. Additionally, this assertion is supported by
Monte-Carlo simulations. As as consequence, we next estimate the variance σ2

EP unbiased
by means of the sample variance of the active treatment group E and the placebo group P .

Definition 5.4. Let σ̂2
k be the sample variance of the observations from group k = E,P ,

i.e.

σ̂2
k,SV := 1

nk − 1

nk∑
i=1

(
Xk,i −Xk,·

)2
.

Then, the sample variance estimator σ̂2
EP,SV for the variance σ2

EP is given by

σ̂2
EP,SV :=

σ̂2
E,SV

wE
+
σ̂2
P,SV

wP
.
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Theorem 5.5. The sample variance estimator σ̂2
EP,SV is an unbiased and consistent esti-

mator for σ2
EP .

Proof. To prove the unbiasedness it suffices to show that the sample variance σ̂2
k,SV is

unbiased which is of course given because the random variables Xk,i are independent and
identically distributed for i = 1, . . . , nk.
The consistency follows if the variance estimators σ̂2

k,SV are consistent. By means of the
algebraic formula for the variance, the estimator σ̂2

k,SV can be rearranged to a function of
the first and second sample moment. Since the sample moments are consistent estimators
for the corresponding moments, the consistency of the sample variance σ̂2

k,SV follows
immediately.

The distribution of the maximum-likelihood estimator λ̂k is positively skewed and depending
on the skewness, the test statistic TEPn,Wald converges slowly against a standard normal
distribution. To act contrary to the positive skew, we consider the logarithmized maximum-
likelihood estimators log(λ̂k), k = E,P . Theorem 5.6 proves that the logarithmized
maximum-likelihood estimator is consistent and asymptotically normal distributed.

Theorem 5.6. The logarithmized maximum-likelihood estimator log(λ̂k), k = E,P is a
consistent estimator for log(λk) and, additionally, it is asymptotically normal distributed in
the sense of

√
n
(
log(λ̂k)− log(λk)

) D−−−→
n→∞

N
(

0,
σ2
k,log

wk

)

with

σ2
k,log = σ2

k

λ2
k

= φ+ 1
λk
.

Proof. Since the logarithm log(·) is a continuous function, the consistency of the logarth-
mized rate estimator follows from the consistency of λ̂k for λk and the continuous mapping
theorem. The asymptotic normality follows by means of the delta method, which is studied
detailed in Chapter 5.5.4 in Casella and Berger (2002).

Therefore, we define a Wald-type test statistic by

TEP, log
n,Wald (Xn) :=

√
n

log(λ̂P )− log(λ̂E)√
σ̂2
EP,log
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where σ̂2
EP,log denotes an under HEP

0 consistent estimator for the variance

σ2
EP,log :=

σ2
E,log

wE
+
σ2
P,log

wP
.

The asymptotic normality of the test statistic TEP, log
n,Wald at the boundary of the hypothesis

HEP
0 follows from Theorem 5.6. Thus, we define a Wald-type test for the hypothesis HEP

0

by

ΨEP,log
n,Wald (Xn) :=

1 TEP,log
n,Wald (Xn) > q1−α

0 TEP,log
n,Wald (Xn) ≤ q1−α

.

In Section 4.1, we stated that Wald-type tests are defined through maximum-likelihood
estimators for the parameters of the hypothesis. It should be mentioned that the definition
of the Wald-type test ΨEP,log

n,Wald does not contradict this definition of Wald-type tests because
log(λ̂k) is the maximum-likelihood estimator of log(λk) and the hypothesis HEP

0 is equivalent
to log(λP ) − log(λE). Analogously to the estimators for the variance σ2

EP , the variance
σ2
EP,log can be estimated by an unrestricted or a restricted maximum-likelihood as well as

by a sample variance based estimator for the variance σ2
EP,log. Since the different variance

estimators are obtained by plugging in the corresponding estimators for the rates, the
shape parameter or the sample variance, respectively, we omit stating them. However, it
should be mentioned that in contrast to the sample variance estimator σ̂2

EP,SV , the sample
variance estimator for the variance σ2

EP,log is biased since the reciprocal of the squared
maximum-likelihood estimator of a rate is not an unbiased estimator for the reciprocal of
the squared rate.
To conclude, we established two approaches for Wald-type tests for the hypothesisHEP

0 where
one takes the difference of the rates and the other one the difference of the logarithmized
rates into account. In addition, we introduced different ways to estimate the variance for
the corresponding test statistics. At least asymptotically, both tests result in the same
decision.

5.2 Permutation test

The Wald-type tests, which has been established in the last subsection, are asymptotic
tests and, as a consequence, their actual level of significance is not guaranteed to be α.
However, at the boundary of the hypothesis HEP

0 , i.e. for λE = λP , the random variables
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from the experimental treatment group E and the placebo group P are exchangeable, since
they are independent and identically distributed. Hence, in this subsection, we construct a
permutation test for HEP

0 which is exact at the boundary of the hypothesis.
A permutation test statistic for HEP

0 can obviously defined through the difference of the
estimated rates of the different groups, i.e.

T̃EPn,Perm (XE,nE ,XP,nP ) := λ̂P − λ̂E.

Even if this test statistic is appropriate to construct an exact permutation test, we define
the test statistic for the permutation test as

TEPn,Perm (XE,nE ,XP,nP ) :=
√
n

λ̂P − λ̂E√
σ̂2
P,SV

wP
+ σ̂2

E,SV

wE

.

This test statistic corresponds to the Wald-type test statistic TEPn,Wald with the variance
estimated by the sample variances. Lemma 4.1 in Janssen (1997) proves that the permutation
distribution of TEPn,Perm (τnE+nP (XE,nE ,XP,nP )) conditioned on (XE,nE ,XP,nP ) converges
asymptotically to a standard normal distribution regardless of whether the random variables
of the different groups are exchangeable at the boundary of the hypothesis. Hence, even if
the assumption of exchangeability is not fulfilled, the permutation test for HEP

0 based on
TEPn,Perm is at least asymptotically exact. The random variables are not exchangeable, if, for
instance, the shape parameter is not equal among the two groups. By means of the statistic
TEPn,Perm, the one-sided permutation test ΨEP

n,Perm is defined analogously to Definition 4.1.
Since the assumptions of Theorem 4.2 hold, it follows that the permutation test ΨEP

n,Perm is
an exact test at the boundary of the hypothesis HEP

0 . Moreover, Monte-Carlo simulations
showed that the level of significance is less than α in the interior of the null hypothesis, i.e.
for λE > λP . As mentioned before, in practice and especially for the simulation study in
the next subsection, we define the parameter γn,Perm to be zero and, hence, the quantile
cn,Perm is given by

cn,Perm = argmin
{
c ∈ R : P̃

(
TEPn,Perm(τnE+nP (XE,nE ,XP,nP)) > c

∣∣∣XE,nE ,XP,nP

)
≤ α

}
.

In consequence, if λE = λP holds, the actual level of the resulting permutation test is
possibly not equal to α but slightly smaller. However, this definition avoids test outcomes
which cannot interpreted uniquely as a rejection or non-rejection of the hypothesis. An
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exact calculation of the quantile cn,Perm for a given vector of observations (XE,nE ,XP,nP) is
in general not feasible due to a large number of possible permutations of the observations.
More precisely, the number of possible allocations of n observations into two groups with n1

and n2 observations, respectively, is given by
(
n
n1

)
. Therefore, we approximate the quantile

cn,Perm by Monte-Carlo methods.

5.3 Simulation study

So far, we established a wide range of tests for the hypothesis HEP
0 but especially for the

Wald-type tests, we do not know the actual level. Therefore, in the following we compare
the different tests for the hypothesis HEP

0 by Monte-Carlo simulations. For this purpose,
we have to determine the rates λE, λR, λP and the shape parameter φ for the corresponding
negative binomial distributions. Although we only compare the effect of one active treatment
with the placebo response, we have to specify the parameter for the second active treatment
because the shape parameter is estimated taking the observations of all groups into account.
In addition, the sample sizes nE, nR, and nP have2 to be fixed. We motivate the choices of
the different parameters by the examples for clinical trials discussed in Sections 2.2.1 and
2.2.2. Additionally, we construct the different tests with a level of significance α = 0.05 and
run M Monte-Carlo simulations. In the following, let α̂act = α̂act(M) be the approximation
of the actual level αact of a test. We choose the number of Monte-Carlo simulations to
be M = 20,000. The number M is motivated by a statistical test assessing whether the
simulated actual level is equal to α. More precisely, since a statistical test Ψ is Bernoulli
distributed with success probability equal to the actual level of significance αact, the number
of rejected hypothesis Mα̂act(M) is binomial distributed with number of trials and success
probability equal to the number of simulations and the actual level, respectively. Hence,
the rejection area of an asymptotic two-sided test for the hypothesis H0 : αact = α with
level of significance 0.05 is given by0, α− q0.975

√
α(1− α)

M

 ∪
α + q0.975

√
α(1− α)

M
, 1


=[0, 0.04698] ∪ [0.05302, 1].

Therefore, if the approximation α̂act of the actual level αact is contained in the set above,
the actual level of the corresponding test is significantly different from α = 0.05. In this
section’s graphics, the boundaries of the rejection area are plotted as dashed grey lines.
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From a practical point of view, if the actual level of a test deviates from α, we regard an
upward deviation as more worse then a downward deviation. This is due because a liberal
tests means that we falsely assume the experimental treatment to be more effective than
the placebo more times than planned. On the other hand, if a test is conservative, the error
probability of a falsely rejected hypothesis is less then considered but at least a treatment
is not incorrectly considered as effective more often than intended. It is worth mentioning
that in some cases a small inflation of the actual level is tolerated, confer Section 4.4 in
Friede et al. (2007), who tolerated a deviation of ±10%. Next, we define the parameter
setting for the first Monte-Carlo study by means of the example we discussed in Section
2.2.1.

Definition 5.7 (Parameter setting motivated by the TRISTAN study in COPD).

λE = λR = λP = 1.71

φ ∈ {0.3, 0.5, 0.7},

n ∈ {550, 1100, 2200},

nE : nR : nP ∈ {1:1:1, 2:1:1, 2:2:1, 3:2:1}.

The choice of the rates is based on the exacerbation rates from Table 1. Since we simulate
the actual level at the boundary of the hypothesis, we have to choose at least the rate
λE to be equal to λP . The rate λR which potentially affects the actual level due to an
influence on the variance estimation is also defined equally to the placebo rate λP for the
sake of simplicity. The different shape parameters are motivated by the confidence interval
[0.34, 0.6] for the shape parameter φ of the TRISTAN study. With the choice of the shape
parameter as above we cover the range of the confidence interval. Last but not least, the
exacerbations rates in Table 1 were calculated with results from about 360 patients per
group which corresponds to a three-arm study with approximately 1080 patients. To cover
a wide range, we define the total number of observations in Definition 5.7 as 550, 1100 and
2200. The sample size allocations are common allocations in three-arm clinical trials, confer
Pigeot et al. (2003), who take the allocations 1:1:1, 2:2:1, and 3:2:1 for simulations into
account. Additionally, we consider the allocation 2:1:1, which is one further example for
the idea of allocating more patients to the experimental treatment group than to the other
groups to obtain much information about the experimental treatment. The next figure
shows the results of the Monte-Carlo study.
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(b) Sample size allocation 2:1:1.
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(c) Sample size allocation 2:2:1.
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(d) Sample size allocation 3:2:1.

Figure 3: Actual level of different tests for HEP
0 by sample size allocation. The points for

a sample size of 550 are red, for one of 1100 are green, and for one of 2200 are
blue. Actual levels between the lower and upper dashed grey lines do not differ
significantly from α = 0.05. The abbreviations ML, SV, RML denote whether the
variance of the Wald-type test has been estimated by the unrestricted maximum-
likelihood estimator, the sample variance estimator or the restricted maximum-
likelihood estimator, respectively. The values for the shape parameter are not
marked differently.
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Altogether, the permutation test ΨEP
n,Perm performs best and is recommended for usage,

i.e. there is no trend for being liberal or conservative detectable. In the following, we
regard the different sample size allocations and state which test are appropriate for usage
besides the permutation test. For the sample size allocation 1:1:1, the actual levels of the
Wald-type tests tend to be slightly liberal, since some points are above or at least near
the upper grey line. However, this seems to be a trend and none of the Wald-type tests
can be regarded as inappropriate for the current parameter combinations. Among each
other, the results for the allocation 2:1:1, 2:2:1, and 3:2:1 are qualitatively the same. The
Wald-type test ΨEP

n,Wald with a restricted maximum-likelihood variance estimator is not
appropriate to test the hypothesis HEP

0 because it tends to be liberal. The other tests
can be applied but the Wald-type test ΨEP

n,Wald with an unrestricted maximum-likelihood
variance estimator or a sample variance estimator as all as the Wald-type test ΨEP,log

n,Wald with
a restricted maximum-likelihood variance estimator are conservative or, at least, tend to be
conservative.
Next, we define the parameter setting motivated by the example for a clinical trial in MS
from Section 2.2.2.

Definition 5.8 (Parameter setting motivated by the CONFIRM study in MS).

λE = λR = λP = 17.4,

φ ∈ {1, 2, 3},

n ∈ {215, 430, 860},

nE : nR : nP ∈ {1:1:1, 2:1:1, 2:2:1, 3:2:1}.

We calculated the sample sizes n in Definition 5.8 the same way as the sample size in
Definition 5.7. In contrast, the shape parameter is not motivated by a confidence interval
but by the approximations for the shape parameter from Table 3. Figure 4 shows the actual
levels of the different tests for the parameter setting stated in Definition 5.8.
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(b) Sample size allocation 2:1:1.
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(c) Sample size allocation 2:2:1.
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(d) Sample size allocation 3:2:1.

Figure 4: Actual level of different tests for HEP
0 by sample size allocation. The points for a

sample size of 215 are red, for one of 430 are green, and for one of 860 are blue. Actual
level between the lower and upper dashed grey lines do not differ significantly from
α = 0.05. The abbreviations ML, SV, RML denote whether the variance of the Wald-
type test has been estimated by the unrestricted maximum-likelihood estimator,
the sample variance estimator or the restricted maximum-likelihood estimator,
respectively. The values for the shape parameter are not marked differently.
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Analogously to the scenarios motivated by the TRISTAN study, the permutation test
ΨEP
n,Perm can be recommended for application for the sample size allocations considered.

Besides the permutation test, for the allocation 1:1:1, all Wald-type tests except the test
ΨEP,log
n,Wald with a restricted maximum-likelihood variance estimator are appropriate for usage.

The test last mentioned tends to be liberal for the smaller sample sizes. For the other
sample size allocations, the results are qualitatively the same among each other. More
precisely, the Wald-type test ΨEP

n,Wald with the restricted maximum-likelihood variance
estimator is liberal and, thus, not appropriate for usage. The other tests can be applied
but only the permutation test ΨEP

n,Perm and the Wald-type test ΨEP,log
n,Wald with the sample

variance estimator are not conservative.

To conclude, for the considered parameter combinations motivated by the examples in
Section 2 for trials in COPD and MS, the permutation test ΨEP

n,Perm performs all in all the
best concerning a small deviation of the actual level from α = 0.05. For both parameter
settings holds that especially the sample size allocation affects the actual level of the
Wald-type tests. However, the magnitude of the influence depends on the test as well as
the parameter setting. In particular, the Wald-type tests ΨEP,log

n,Wald seem to be more robust
concerning an unbalanced allocation than the Wald-type tests ΨEP

n,Wald. Additionally, for
some of the sample size allocations, the actual level of the Wald-type tests from Figure 3
and Figure 4 differ. Hence, depending on the sample size allocation, the parameter setting
has an influence on the actual level of Wald-type tests.
Lastly, it should be emphasized that in practice, the sample size allocation as well as the
sample size itself are known and therefore, a statistical test do not have to perform well for
all allocations and sample sizes.
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6 Retention of Effect Hypothesis

In this section, we describe several Wald-type tests and an asymptotic permutation test for
the retention of effect hypothesis

HRET
0 : λP − λE ≤ ∆(λP − λR) versus HRET

1 : λP − λE > ∆(λP − λR),

with ∆ ∈ (0, 1) the prespecified non-inferiority margin. Furthermore, we calculate functions
approximating the power of the Wald-type tests and the permutation test. Subsequently,
from these power approximating functions we obtain sample size formulas, i.e. formulas
approximating the sample size necessary to test the retention of effect hypothesis with
power 1 − β for a given parameter vector ζHRET

1
located in the alternative and a given

sample size allocation (wE, wR, wP ). Since the sample size allocation influences the power,
we suggest different asymptotically optimal sample size allocations, too. Thereby, optimality
is regarded in terms of a larger power. We conclude this section by studying the finite
sample size properties of the hypothesis tests for HRET

0 . Thereto, we simulate the actual
levels and the power of these the tests. Additionally, since some of the Wald-type tests
take explicitly into account that the observations are negative binomially distributed, we
analyze how sensitive the tests are concerning deviations from the assumed distribution.
Finally, we show by means of Monte-Carlo simulations that the sample size for the test
procedure can be planned through the tests for the retention of effect hypothesis.
It should be mentioned that the theory which will be established in this section also holds
for ∆ ∈ (1,∞), i.e. we also could test superiority instead of non-inferiority. The margin
∆ = 1 corresponds to testing superiority of the experimental over the reference treatment
without taking the placebo into account. We exclude this case in the following because the
theory of the different tests certainly holds but not the theory for the optimal sample size
allocations.

6.1 Wald-type Tests

In the following, we introduce Wald-type tests for the retention of effect hypothesis HRET
0

and analogously to the Wald-type tests for the assay sensitivity, we establish an unrestricted
and a restricted maximum-likelihood as well as a sample variance based estimator for the
variance within the test statistic.
First of all, with the parameter η := (1−∆)λP + ∆λR − λE, we rearrange the retention of
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effect hypothesis to

HRET
0 : η ≤ 0 versus HRET

1 : η > 0.

According to Section 4.1, we have to estimate the parameter η with a consistent, at
the boundary of the hypothesis asymptotically standard normally distributed maximum-
likelihood estimator to establish the Wald-type tests for the retention of effect hypothesis.
With the functional invariance of maximum-likelihood estimators we obtain the maximum-
likelihood estimator η̂ := (1−∆)λ̂P + ∆λ̂R − λ̂E for the parameter η. From the properties
of the maximum-likelihood estimators for the rates from Theorem 3.2, it follows that the
estimator η̂ meets the requirements.

Theorem 6.1. Let none of the groups k = E,R, P vanish asymptotically, i.e. the conver-
gence limn→∞ nk/n = wk ∈ (0, 1) holds. Then, the maximum-likelihood estimator η̂ is a
consistent estimator for the parameter of interest η and the asymptotic normality

√
n (η̂ − η) D−−−→

n→∞
N (0, σ2

RET )

holds. The variance σ2
RET is given by

σ2
RET := σ2

E

wE
+ ∆2 σ

2
R

wR
+ (1−∆)2 σ

2
P

wP

= λE(1 + λEφ)
wE

+ ∆2λR(1 + λRφ)
wR

+ (1−∆)2λP (1 + λPφ)
wP

. (6.1)

Let σ̂2
RET be an estimator for the variance σ2

RET which is consistent under the hypothesis
HRET

0 . Then, we define a Wald-type test statistic for the retention of effect hypothesis by

TRETn,Wald (Xn) :=
√
n

η̂√
σ̂2
RET

. (6.2)

The asymptotic normality of TRETn,Wald at the boundary of HRET
0 follows immediately from

Theorem 6.1. Therewith, we define the Wald-type test for the retention of effect hypothesis
by

ΨRET
n,Wald (Xn) :=

1 TRETn,Wald (Xn) ≥ q1−α

0 TRETn,Wald (Xn) < q1−α.
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After establishing the Wald-type test ΨRET
n,Wald for the retention of effect hypothesis, next,

we study consistent estimators σ̂2
RET for the variance σ2

RET .
As before, the maximum-likelihood variance estimator σ̂2

RET,ML is obtained by replacing
the variances σ2

k, k = E,R, P , in Formula (6.1) by the corresponding maximum-likelihood
estimators from Corollary 3.3. Due to the continuous mapping theorem, the consistency of
the estimator σ̂2

RET,ML follows from the consistency of the maximum-likelihood estimators
for the variances σ2

k shown in Corollary 3.3. We assume that the estimator σ̂2
RET,ML is

biased because the maximum-likelihood estimators for the group variances are expected
to be biased. Additionally, Monte-Carlo simulations support the assertion of a biased
estimator σ̂2

RET,ML.
In what follows, we establish the maximum-likelihood variance estimator σ̂2

RET,RML restricted
to the hypothesis HRET

0 . Thereto, we calculate the corresponding restricted estimators
for the rates and the shape parameter. As mentioned before, the restricted and the
unrestricted maximum-likelihood estimators coincide if the unrestricted ones are located
in the hypothesis, i.e. if η̂ ≤ 0 holds. In contrast, the restricted maximum-likelihood
estimators are calculated by maximizing the log-likelihood function restricted to

η = 0 ⇐⇒ λP = λE −∆λR
1−∆

if the unrestricted estimators are not located in the hypothesis. Necessary conditions for
the maximizer of the restricted log-likelihood function

log lHRET
0

(λE, λR, φ|Xn) := nE
φ

log
(

1
1 + λEφ

)
+XE,· log

(
λEφ

1 + λEφ

)
+ nR

φ
log

(
1

1 + λRφ

)

+XR,· log
(

λRφ

1 + λRφ

)
+ nP

φ
log

 1
1 + λE−∆λR

1−∆ φ

+XP,· log
 λE−∆λR

1−∆ φ

1 + λE−∆λR
1−∆ φ


+

∑
k∈{E,R,P}

nk∑
i=1

Xk,i−1∑
j=0

log
(
j + 1

φ

)

are given by equations resulting from equating the partial derivatives of the restricted
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log-likelihood function with zero:

∂ log lHRET
0

(λE, λR, φ|Xn)
∂λE

=− nP + φxP,·
1−∆ + (λE −∆λR)φ + xP,·

λE −∆λR
+ xE,· − λEnE
λE(λEφ+ 1)

!= 0,

∂ log lHRET
0

(λE, λR, φ|Xn)
∂λR

= ∆(nP + φxP,·)
1−∆ + (λE −∆λR)φ −

∆xP,·
λE −∆λR

+ xR,· − λRnR
λR(λRφ+ 1)

!= 0,

∂ log lHRET
0

(λE, λR, φ|Xn)
∂φ

=XE,· − nEλE
φ(φλE + 1) + XR,· − nRλR

φ(φλR + 1) + XP,· − nPλP
φ(φλP + 1)

+ nR log(φλR + 1) + nE log(φλE + 1) + nP log(φλP + 1)
φ2

−
∑

k∈{E,R,P}

nk∑
i=1

Xk,i−1∑
j=0

1
jφ2 + φ

!= 0.

For the restricted rate estimators λ̂k,RML, k = E,R, as well as for the restricted shape
estimator φ̂RML no closed form expression is known. The restricted maximum-likelihood
estimator λ̂P,RML for λP is given by

λ̂P,RML = λ̂E,RML −∆λ̂R,RML

1−∆ .

Additionally, it is not known whether the restricted estimators exist nor if they are unique
when they exist. However, in all cases considered the restricted log-likelihood function has
a unique maximum for the parameter spaces considered. As mentioned in Section 3, the
restricted maximum-likelihood estimators are consistent if the true parameter is located in
the hypothesis HRET

0 .
Finally, we introduce the sample variance based estimator for the variance σ2

RET which
is unbiased. With the sample variance σ̂2

k,SV of the observations from group k = E,R, P

introduced in Definition 5.4, we define the sample variance based estimator

σ̂2
RET,SV :=

σ̂2
E,SV

wE
+ ∆2 σ̂

2
R,SV

wR
+ (1−∆)2 σ̂

2
P,SV

wP

for the variance σ2
RET . Both, the unbiasedness and the consistency of the estimator σ̂2

RET,SV

follow from the properties of the sample variances.

Remark 6.2. The Wald-type test ΨRET
n,Wald with the variance estimated by σ̂2

RET,SV does
not assume the parametric model introduced in Section 2.3. A nonparametric model such
that the first, second, and fourth moments of the random variables Xk,i exist as well as
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that the random variables are independent suffices for the Wald-type test ΨRET
n,Wald with

the sample variance estimator to be an asymptotic level α test for the retention of effect
hypothesis HRET

0 . In this case, the rates for the hypothesis HRET
0 are the expectation of

the random variables, i.e. λk = E[Xk,i] with i = 1, . . . , nk and k = E,R, P .

6.2 Permutation test

In this section, we introduce an asymptotic permutation test for the retention of effect
hypothesis HRET

0 . In Section 4.2, we proved that we can construct an exact permutation
test for a certain hypothesis if the corresponding random variables are exchangeable at the
boundary of this hypothesis. However, at the boundary of the retention of effect hypothesis,
i.e. for η = 0, the entries of the random vector Xn are not exchangeable and hence we
construct an asymptotic permutation test. In Equation (4.2), we defined a test statistic to
construct an asymptotic permutation test as

TRETn,Perm(Xn) :=
∑n
i=1 cn,iXn,i

σ̂Perm(Xn)

with σ̂Perm(Xn) an estimator for the standard deviation of ∑n
i=1 cn,iXn,i. In addition, we

cited in Theorem 4.4 the central limit theorem for conditional permutation distribution
which guarantees that under certain conditions a permutation test defined through T Permn

is an asymptotic test. Thus, in the following, we define the coefficients (ci,n)i≤n and the
variance estimator σ̂Perm(Xn) such that the test statistic TRETn,Perm fulfills the assumptions of
Theorem 4.4 and is therefore appropriate for defining an asymptotically exact permutation
test ΨRET

n,Perm as in Definition 4.3. Thereto, we first of all define for each n ∈ N the scheme
of regression coefficients (cn,i)i≤n by

cn,i :=
√

nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

×


− 1
nE

i = 1, . . . , nE
∆
nR

i = nE + 1, . . . , nE + nR

1−∆
nP

i = nE + nR + 1, . . . , n

. (6.3)

The variance σ2
Perm of the weighted sum ∑n

i=1 cn,iXn,i is given by

Var
[
n∑
i=1

cn,iXn,i

]
= nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

(
σ2
E

nE
+ ∆2σ

2
R

nR
+ (1−∆)2σ

2
P

nP

)
.
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Therefore, we define an estimator σ̂2
Perm(Xn) for the variance σ2

Perm by

σ̂2
Perm(Xn) := nEnRnP

nRnP + ∆2nEnP + (1−∆)2nEnR

(
σ̂2
E,SV

nE
+ ∆2 σ̂

2
R,SV

nR
+ (1−∆)2 σ̂

2
P,SV

nP

)

with σ̂2
k,SV the sample variance estimator for σ2

k as in Definition 5.4. We defined the test
statistic for the permutation test ΨRET

n,Perm as above because it corresponds to the way
Janssen (1997) defined the test statistic for an asymptotic permutation test and it simplifies
the proof of the asymptotic normality of the conditional permutation distribution of the test
statistic. However, simple rearrangements show that the test statistic TRETn,Perm is equal to the
test statistic of the Wald-type test ΨRET

n,Wald with the sample variance estimator. Theorem
6.3 proves that the test statistic TRETn,Perm fulfills the assumptions of the central limit theorem
for conditional permutation distributions.

Theorem 6.3. Let P denote the probability measure of Xn and let τn(Xn) be a random
variable whose realizations are the permutations of Xn. The random variable τn(Xn) is
assumed to be uniformly distributed on the space of permutations of the vectors with length
n and its probability measure is denoted as P̃. Both probability measures are assumed to be
independent. Moreover, none of the groups vanishes asymptotically, i.e. limn→∞ nk/n =
wk ∈ (0, 1). Then, with the definition of cn,i and σ̂2

Perm as before the asymptotic normality
of TRETn,Perm in the sense of

sup
t∈R

( ∣∣∣P̃ (TRETn,Perm(τn(Xn)) ≤ t|Xn
)
− Φ (t)

∣∣∣ ) P−−−→
n→∞

0

holds.

The proof is stated in Appendix A. From the asymptotic normality proved in Theorem
6.3, it follows that the asymptotic permutation test ΨRET

n,Perm defined through the test
statistic TRETn,Perm with Definition 4.3 is an asymptotic level α test. Remark 6.4 discusses the
assumptions for the permutation test ΨRET

n,Perm.

Remark 6.4. In the proof of Theorem 6.3, concerning the distribution of the random
variables Xk,i with i = 1, . . . , nk and k = E,R, P , we only took into account that the fourth
moments E[X4

k,i] are bounded and that the random variables are uncorrelated, confer the
inequality in (A.4). Hence, the permutation test ΨRET

n,Perm is a non-parametric asymptotic
test if the random variables Xk,i are independent and the fourth moment exists.
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We end this subsection with a corollary proving that the power of the permutation test
approaches one if n becomes large.

Corollary 6.5. The asymptotic power of the permutation test ΨRET
n,Perm is one.

Proof. As mentioned before, the test statistic of the permutation test corresponds to the
test statistic of the Wald-type test with the sample variance estimator

TRETn,Perm(Xn) =
√
n

η̂√
σ̂2
RET,SV

.

The maximum-likelihood estimator η̂ converges in probability to the true parameter η. In
case that the true parameter is part of the alternative, η > 0 holds. Since the variance
estimator σ̂2

RET,SV is a consistent estimator for σ2
RET , the test statistic TRETn,Perm converges to

infinity if the true parameter is located in the alternative. Since additionally the quantile
for the permutation test converges to the quantile of a standard normal distribution, the
permutation test has asymptotic power one.

6.3 Sample Size Formula and Optimal Sample Size Allocation

When planning the sample size of a trial, one often fixes a parameter ζHRET
1

in the alternative
HRET

1 and determines the sample size such that the rate of not detecting the corresponding
effect ηHRET

1
is less than a prespecified parameter β ∈ (0, 1). In other words, the sample size

is calculated such that the trial has at least a power of 1− β for the parameter ζHRET
1

. The
choice of the parameter ζHRET

1
depends for instance on the assumed effect ηHRET

1
as well as

on the assumed variances in the different groups. The assumed sizes of the variances might
be informed by estimates from other studies or historical values. However, determining the
parameter ζHRET

1
is mostly difficult especially if no information about the variance or the

shape parameter are available. We discuss the difficulties of sample size planning and other
possible solutions such as adaptive designs in Section 7.
In this subsection, we study the concept of determining the sample size for a given parameter
vector in the alternative and how to allocate this sample size between the different groups.

6.3.1 Sample Size Formula

In the following, we calculate formulas to approximate the sample size n1−β for which
the different Wald-type tests and the permutation test have a power of 1− β for a given

57



parameter vector ζHRET
1

located in the alternative of the retention of effect hypothesis.
When establishing the different sample size formulas, we distinguish the Wald-type test
with the restricted maximum-likelihood variance estimator from the other Wald-type tests
as well as the permutation test, since the restricted maximum-likelihood variance estimator
is not consistent under the alternative.
First of all, we establish an approximative sample size formula for the Wald-type test
ΨRET
n,Wald with the variance estimated by the sample variance or the unrestricted maximum-

likelihood estimator and for the permutation test ΨRET
n,Perm. Let ΨRET

n be one of the last
mentioned tests and ζHRET

1
the true parameter. By means of the asymptotic normality of

the maximum-likelihood estimator η̂, it follows that the asymptotic normality

√
n
η̂ − ηHRET

1√
σ̂2
RET

n→∞−−−→ N (0, 1)

holds with σ̂2
RET the corresponding consistent variance estimator. Hence, we approximate

the power of the test ΨRET
n by

Eζ
HRET1

[
ΨRET
n (Xn)

]
≈ Pζ

HRET1

(
TRETn (Xn) ≥ q1−α

)
=Pζ

HRET1

√nη̂ − ηHRET
1√

σ̂2
RET

≥ q1−α −
√
n
ηHRET

1√
σ̂2
RET

 ≈ Φ
√n ηHRET

1√
σ2
RET

− q1−α

 (6.4)

with Φ(·) the cumulative distribution function of the standard normal distribution. For
the Wald-type tests, equality holds for the first approximation. However, in case of the
permutation test, we approximated the quantile for the rejection area by the quantile of a
standard normal distribution, since the quantile of the conditional permutation distribution
converges to the quantile of a standard normal distribution, confer Theorem 6.3.
For the sample size approximation n1−β, we obtain the formula

n1−β(ζHRET
1

) = (q1−α + q1−β)2 σ
2
RET

η2
HRET

1

. (6.5)

As mentioned above, for the Wald-type test ΨRET
n,Wald with the restricted maximum-likelihood

variance estimator σ̂2
RET,RML the sample size formula (6.5) is not appropriate because the

restricted variance estimator is not consistent for the variance σ2
RET if the true parameter

is located in the alternative HRET
1 . However, with σ2

RET,RML denoting the limit of the
restricted maximum-likelihood variance estimator whose calculation will be discussed later
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on, the asymptotic normality

√
n
η̂ − ηHRET

1√
σ̂2
RET,RML

D−−−→
n→∞

N
(

0, σ2
RET

σ2
RET,RML

)

holds. Analogously to the derivation of the approximation of the power function for the
other hypothesis tests, we approximate the power of the Wald-type test ΨRET

n,Wald with the
restricted maximum-likelihood variance estimator by

Eζ
HRET1

[
ΨRET
n,Wald(Xn)

]
≈ Φ

√n ηHRET
1√
σ2
RET

− q1−α

√
σ2
RET,RML√
σ2
RET

 . (6.6)

Hence, in case of a restricted variance estimator, we approximate the sample size n1−β for
the Wald-type test ΨRET

n,Wald by

n1−β(ζHRET
1

) =
q1−α

√
σ2
RET,RML√
σ2
RET

+ q1−β

2
σ2
RET

η2
HRET

1

. (6.7)

It remains to calculate the limit σ2
RET,RML of the restricted maximum-likelihood variance

estimator σ̂2
RET,RML if the true parameter is located in the alternative. Thereto, we

calculate the limit of the restricted maximum-likelihood estimators for the rates and the
shape parameter. In Theorem 3.5, we stated conditions such that these estimators converge
almost surely against the parameter which minimizes the Kullback-Leiber divergence defined
in (3.1). In the following, we discuss these conditions under our model but primarily, we
introduce some notations. Let Θ∂H0 be the parameter space Θ restricted to the boundary
∂HRET

0 of the retention of effect hypothesis, i.e.

Θ∂H0 :=
{

(λE, λR, λP , φ) ∈ Θ|λE −∆λR + (∆− 1)λP = 0
}
.

Moreover, ΘH1 denotes the parameter space of the alternative HRET
1 and we use the

notations ζ ∈ Θ∂H0 as well as ζHRET
1

= (λE,1, λR,1, λP,1, φ1) ∈ ΘH1 . The first condition from
Theorem 3.5 claims that the parameter ζRML minimizing the Kullback-Leibler divergence
K(ζHRET

1
, ζ, w) with respect to ζ is well defined. Under the model from Section 2.3, the
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Kullback-Leibler divergence K(ζHRET
1

, ζ, w), confer (3.1), is given by

∑
k=E,R,P

wkE(λk,1,φ1)
[
log

(
P(λk,1,φ1)(X = ·)

)
− log

(
P(λk,φ)(X = ·)

)]

=
∑

k=E,R,P
wkE(λk,1,φ1)

log
Γ

(
X + 1

φ1

)
Γ
(
X + 1

φ

)
− log

Γ
(

1
φ1

)
Γ
(

1
φ

)
+X log

(
λk,1φ1

λφ

)

+
(
X + 1

φ

)
log (1 + λφ)−

(
X + 1

φ1

)
log (1 + λk,1φ1)

]

=
∑

k=E,R,P
wk

E(λk,1,φ1)

log
Γ

(
X + 1

φ1

)
Γ
(
X + 1

φ

)
− log

Γ
(

1
φ1

)
Γ
(

1
φ

)
+ λk,1 log

(
λk,1φ1

λφ

)

+
(
λk,1 + 1

φ

)
log (1 + λφ)−

(
λk,1 + 1

φ1

)
log (1 + λk,1φ1)

.
However, no closed form expression exists for the remaining expectation and thus it has
to be approximated numerically. Moreover, we were not able to prove that the Kullback-
Leibler divergence K(ζHRET

1
, ζ, w) has a (unique) global minimum with respect to ζ. It

should be noted that the divergence is neither convex nor quasiconvex which follows from
choosing the sample size allocation w = (1/3, 1/3, 1/3), the parameter in the alternative
ζHRET

1
= (1.16, 1.16, 1.71, 2), and the margin ∆ = 43/55 to determine the hypothesis. Both

inequalities do not hold for ζ1 = (4.4, 1, 16.58333, 8.2), ζ2 = (6.6, 7.9, 1.941667, 8.1) and
t = 0.51. When calculating the Kullback-Leibler divergence, we applied the approximation

E(λk,1,φ1)

log
Γ

(
X + 1

φ1

)
Γ
(
X + 1

φ

)
 ≈ 10,000∑

x=0
log

Γ
(
X + 1

φ1

)
Γ
(
X + 1

φ

)
P(λk,1,φ1)(X = x).

To approximate the expectation, we only take the values up to x = 10,000 into account
because for the cases considered with reasonable λk,1, i.e. λk,1 ≤ 50, considering more
terms of the sum does not change in the sense of computational accuracy. Concerning the
existence and the uniqueness of the minimizer ζRML, for the cases considered, it existed
and has been unique on a reasonable choice of the parameter space.
Additionally, we have to show that Condition 2 of the theorem is fulfilled. Thereto, any
sequence of parameter vectors in the restricted space ζ(n) ∈ Θ∂H0 which limit is located in the
closure of the parameter space but not in the parameter space itself, i.e. limn→∞ ζ

(n) ∈ Θ\Θ
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has a mass of zero, i.e.

lim
n→∞

∏
k=E,R,P

P(λ(n)
k
,φ(n)) (Xk,1 = ·) = 0 Pζ

HRET1
− a.s.

However, if we regard a sequence ζ(n) with limit (λE, λR, λP , φ) = (0, 1, 1, 1) ∈ Θ\Θ, the
probability function P(λ(n)

E ,φ(n)) (XE,1 = ·) converges to one at XE,1 = 0 and the limit is not
Pζ

HRET1
almost surely zero. Nevertheless, the limit of the restricted maximum-likelihood

estimators can be calculated by minimizing the Kullback-Leibler divergence, since in the
proof of the convergence of the restricted maximum-likelihood estimators to the minimizer
of the Kullback-Leibler divergence, the second condition only ensures that the minimum
is located in a compact set. By restricting the parameter space to an arbitrary large but
compact set this condition is still fulfilled and such a restriction has no effect in practice.

6.3.2 Optimal Sample Size Allocations

In the following, we establish different optimal sample size allocations for the statistical
tests of the retention of effect hypothesis. As the optimality criteria we consider a maximal
power for a fixed sample size n. Furthermore, when maximizing the power with respect
to the sample size allocation, we introduce several restrictions for the allocation. These
restrictions are be motivated by ethical as well as practical reasons.
Since we do not know the exact power function of the Wald-type tests and the permutation
test, we consider the approximative power functions (6.4) and (6.6) to determine the effect
of the sample size allocation on the power. These power functions become more accurate
if the sample size n increases. Besides the sample size n, the approximative sample size
formulas depend on the effect ηHRET

1
, the quantile q1−α, and especially the variance σ2

RET .
If the variance is estimated with the restricted maximum-likelihood variance estimator, the
power approximation additionally depends on σ2

RET,RML.
Maximizing the approximative power function (6.4) with respect to the sample size allocation
w = (wE, wR, wP ) corresponds to minimizing the variance σ2

RET (wE, wR, wP ) which is given
by

σ2
RET (wE, wR, wP ) = σ2

E

wE
+ ∆2 σ

2
R

wR
+ (1−∆)2 σ

2
P

wP
(6.8)
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with respect to (wE, wR, wP ). At least for large sample sizes, the allocation minimizing
(6.8) also minimizes the approximation (6.6) because the term

q1−α

√
σ2
RET,RML(wE, wR, wP )√
σ2
RET (wE, wR, wP )

is negligible compared to
√
nηHRET

1
/
√
σ2
RET . With wopt denoting the optimal sample size

allocation, we obtain the minimization problem

wopt := arg min σ2
RET (wE, wR, wP )

s.t. wE + wR + wP = 1

(wE, wR, wP ) ∈ (0, 1)3.

According to Section 4.1.1 in Mielke (2010), the optimal allocation wopt is given by

wopt =
(

σE
σE + ∆σR + |1−∆|σP

,
∆σR

σE + ∆σR + |1−∆|σP
,

|1−∆|σP
σE + ∆σR + |1−∆|σP

)
.

The optimal sample size for the group k = E,R, P depends on the (assumed) standard
deviation σk as well as on the margin ∆ and the standard deviations for the other groups.
More precisely, if the standard deviation of one group increases, the optimal sample size for
this group increases as well. Depending on the variances and the margin ∆, the optimal
sample size allocation wopt can yield a rather small sample size for one group resulting
in a lack of information about this group. In particular, if the variance in the placebo
group is much larger than the variances in the active treatment group and the margin
∆ is not near to one, the sample size in the placebo group becomes large. Especially,
the sample size in the placebo group becomes larger than the sample sizes in the active
treatment groups. However, due to ethical reasons it is sometimes not feasible that the
sample size in the placebo group is larger than the sample size in the treatment groups.
Therefore, it is reasonable to demand that the fractions wE and wR are at least as large as
wP . Additionally, to avoid that too few patients are allocated to a group, we introduce a
lower bound m ∈ (0, 1/3] for the fraction wP . Too few patients in one group are sometimes
not desirable because they result in a lack of information, which may be required for other
aims of the study. Considering these additional restraints, the optimal allocation wopt,m is
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the solution of the minimization problem

wopt,m := arg min σ2
RET (wE, wR, wP ) (6.9)

s.t. f1(wE, wR, wP ) := wP − wE ≤ 0

f2(wE, wR, wP ) := wP − wR ≤ 0

f3(wE, wR, wP ) := m− wP ≤ 0

h(wE, wR, wP ) := wE + wR + wP − 1 = 0

(wE, wR, wP ) ∈ (0, 1)3.

Theorem 6.6, whose proof is stated in Appendix A, reveals that wopt,m exists and is unique.

Theorem 6.6. The minimization problem (6.9) has a unique solution which can be calculated
by the Karush-Kuhn-Tucker (KKT) conditions and will be stated in the proof.

In addition to the previously mentioned restraints for the sample size allocation, often the
sample sizes in the active treatment groups shall be equal, i.e. wE = wR. Confer Section
3.3 in Pigeot et al. (2003) who calculated the optimal sample size in a three-arm trials with
normally distributed endpoints and equal variances for the different groups. In this case,
the optimal sample size allocation is the solution of the minimisation problem (6.10).

wopt,E=R := arg min σ2
RET (wE, wE, wP ) (6.10)

s.t. f1(wE, wP ) := wP − wE ≤ 0

f2(wE, wP ) := m− wP ≤ 0

h(wE, wP ) := 2wE + wP − 1 = 0

wE, wP ∈ (0, 1)

Theorem 6.7. The optimization problem (6.10) has a unique solution which will be calcu-
lated in the proof.

Analogously to the proof of Theorem 6.6, the proof of Theorem 6.7 is stated Appendix
A. So far, we stated three different optimal sample size allocations which all depend on
a prespecified parameter vector ζHRET

1
located in the alternative. However, if the sample

size is planned for more than one alternative or no certain alternative is specified, (Mielke,
2010, Section 4.1.3) recommends the use of the rule of thumb nE : nR : nP = 1 : ∆ : (1−∆)
which corresponds to wrot = (1/2,∆/2, (1 − ∆)/2). The rule of thumb is motivated by
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resulting in a smaller variance σ2
RET than the allocations 1:1:1 and 2:2:1 for certain ratios

σ2
P/σ

2
T , see Theorems 3 and 4 in Mielke (2010). Theoretical comparison of the introduced

optimal sample size allocations is difficult because there is not one explicit expression for
the solution wopt,m. However, when defining the parameter setting for the simulation of the
power in the next subsection, we compare the different optimal sample size allocations for
several examples.

6.4 Simulation Study

In the forgoing subsections, we described the asymptotic theory of the different Wald-type
tests ΨRET

n,Wald and the permutation test ΨRET
n,Perm for the retention of effect hypothesis. In this

subsection, we study the finite sample size properties of the tests. Therefore, we simulate
the actual level of significance as well as the power of the different statistical tests for
the retention of effect hypothesis. Afterwards, for scenarios where multiple tests can be
applied, we additionally compare their power. Analogously to the simulations in Section
5, we define the parameter vector (λE, λR, λP , φ, nE, nR, nP ) by taking the examples from
Section 2 into account. Moreover, we discuss the optimal sample size allocation for these
parameter settings.
As mentioned before, we motivate the choice of the rates, the shape parameter and the
sample sizes by the examples from Sections 2.2.1 and 2.2.2. The non-inferiority margin
is defined such that the parameters for the simulation of the actual level are located at
the boundary of the hypothesis. As well, we apply the same sample size allocations as
for the simulations in Section 5.3 and the rule of thumb 1 : ∆ : (1 − ∆). Additionally,
we allocate the sample size by the optimal allocations calculated in the last subsection.
To this, we specify the variances σ2

E, σ2
R, and σ2

P by determining the rates and the shape
parameter. Thereto, choosing a parameter vector ζHRET

0
= (λE, λR, λP , φ) which is located

in the hypothesis HRET
0 is not reasonable because the optimal allocations aim to maximize

the power. Thus, for a given parameter vector ζHRET
0

used to simulate the actual level,
we specify a parameter vector ζHRET

1
= (λE,1 = λR, λR, λP , φ) located in the alternative.

More precisely, the vector ζHRET
1

is defined with the parameters λR, λP , and φ as in the
vector ζHRET

0
and the rate of the experimental treatment group λE,1 is equal to the rate

λR. In other words, for parameters located in the alternative we determine that the
experimental and the reference treatment are equally effective. When simulating the power
for the parameter vector ζHRET

1
, we also use this vector to calculate the optimal sample size

allocation. A disadvantage of this approach is that eventually we simulate the power for
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the optimal sample size allocations which has been calculated with the true parameter, i.e.
when comparing the power of the tests for different sample size allocations some might take
advantage of information which are not accessible in practice. As mentioned before, we
discuss the problem of unknown nuisance parameters in planning the sample size allocation
of a trial in Section 7.
In the following, we determine the parameter vectors ζHRET

0
and ζHRET

1
, the non-inferiority

margin ∆ and the sample sizes by means of the examples from Sections 2.2.1 and 2.2.2 and
calculate the optimal sample size allocations. Motivated by the results of Calverley et al.
(2003) stated in Table 1, we choose the rates located in the hypothesis HRET

0 to be λE = 1.28,
λR = 1.16, and λP = 1.71. Hence, we obtain the vectors ζHRET

0
= (1.28, 1.16, 1.17, φ) and

ζHRET
1

= (1.16, 1.16, 1.17, φ). The margin ∆ is given by ∆ = (λP − λE)/(λP − λR) = 43/55.
As in Definition 5.7, the shape parameters and the sample sizes are determined as φ =
0.3, 0.5, 0.7 and n = 550, 1100, 2200, respectively. Table 4 lists the optimal sample size
allocations wopt, wopt,m, and wopt,E=R. For the calculation of the optimal allocations wopt,m
and wopt,E=R, we choose the lower boundary m of the sample size for the placebo group to
be m = 10%. The choice of m is arbitrary.

Table 4: Different optimal sample size allocations for the tests of the retention of effect
hypothesis calculated with the parameter ζHRET

1
= (1.16, 1.16, 1.17, φ) and the

non-inferiority margin ∆ = 43/55.

Shape parameter φ wopt ≡ wopt,m wopt,E=R

φ = 0.3 (0.4849, 0.3791, 0.1360) (0.4324, 0.4324, 0.1352)
φ = 0.5 (0.4834, 0.3779, 0.1387) (0.4311, 0.4311, 0.1378)
φ = 0.7 (0.4823, 0.3771, 0.1407) (0.4301, 0.4301, 0.1398)

Table 4 shows that for the current setting the optimal sample size allocation wopt and wopt,m
are equal. Furthermore, the effect of the shape parameter on the sample size allocation
is negligible. The sample size proportion of the placebo group is nearly the same for all
allocations. However, the sample size proportions for the active groups differ between the
optimal allocations in about 5%. The rule of thumb 1 : ∆ : (1−∆) results in the sample size
allocation (0.5, 0.3909, 0.1091) which differs only slightly from the sample size allocations
wopt. Hence, the optimal allocations as well as the rule of thumb allocated the sample size
unbalanced and such that the experimental treatment group has the largest sample size
and the placebo group the smallest. The next definition summarizes the choices of the
parameters.
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Definition 6.8 (Parameter setting motivated by TRISTAN study in COPD).

ζHRET
0

= (1.28, 1.16, 1.17, φ),

ζHRET
1

= (1.16, 1.16, 1.17, φ),

∆ = 43/55,

φ ∈ {0.3, 0.5, 0.7},

n ∈ {550, 1100, 2200},

nE : nR : nP ∈ {1:1:1, 2:1:1, 2:2:1, 3:2:1, 1 : ∆ : (1−∆), wopt, wopt,E=R}.

Below, we define the parameter setting motivated by the CONFIRM study Fox et al. (2012)
in MS discussed in Section 2.2.2. With respect to the mean number of lesions in Table 2,
we define the rates λE = 8, λR = 5.1, and λP = 17.4. As before, the non-inferiority margin
∆ is defined such that the parameters are located at the boundary of the hypothesis, i.e.
∆ = 94/123. The shape parameters and the sample sizes are defined as in Definition 5.8.
Table 5 states the different optimal sample size allocations.

Table 5: Different optimal sample size allocations for the tests of the retention of effect
hypothesis calculated with the parameter ζHRET

1
= (5.1, 5.1, 17.4, φ) and the non-

inferiority margin ∆ = 94/123.

φ wopt wopt,m wopt,E=R

φ = 1 (0.3967, 0.3032, 0.3001) (0.3967, 0.3032, 0.3001) (0.3509, 0.3509, 0.2982)
φ = 2 (0.3933, 0.3005, 0.3062) (0.3933, 0.3034, 0.3034) (0.3478, 0.3478, 0.3043)
φ = 3 (0.3920, 0.2996, 0.3084) (0.3920, 0.3040, 0.3040) (0.3467, 0.3467, 0.3065)

For the sample size allocations stated in Table 5, the shape parameter effects the allocation
only slightly. Moreover, the differences between the sample size allocations wopt and wopt,m
are negligible. The sample size proportion of the placebo group are almost equal for
the different allocations. The proportions for the active treatment groups differ in about
5% between the allocations wopt and wopt,m on the one side and wopt,E=R on the other
side. The rule of thumb sample size allocation is given by wrot = (0.5, 0.3821, 0.1179), i.e.
the allocation wrot is clearly different from the optimal allocations and more unbalanced.
Compared to the optimal allocations stated in Table 4, the optimal allocation from Table 5
are much more balanced. In particular, the allocation wopt,E=R only differs slightly from
the allocation 1:1:1.

66



The next definition summarizes the parameter setting.

Definition 6.9 (Parameter setting motivated by CONFIRM study in MS).

ζHRET
0

= (8, 5.1, 17.4, φ),

ζHRET
1

= (5.1, 5.1, 17.4, φ),

∆ = 94/123,

φ ∈ {1, 2, 3},

n ∈ {215, 430, 860},

nE : nR : nP ∈ {1:1:1, 2:1:1, 2:2:1, 3:2:1, 1 : ∆ : (1−∆), wopt, wopt,E=R}.

After defining two parameter settings for the Monte-Carlo simulations, we study the actual
level and the power of the different tests.

6.4.1 Actual Level

Our aim below is to study the actual level of significance αact of the Wald-type tests ΨRET
n,Wald

with the variance estimated by the sample variance or a maximum-likelihood estimator
as well as the actual level of the permutation test ΨRET

n,Perm. The first two figures show the
actual levels for the parameters stated in Definition 6.8. However, the results for the rule of
thumb allocation wrot are not shown, since they are qualitatively similar to the results for
the sample size allocation 3:2:1. As before, the results base on M = 20,000 Monte-Carlo
simulations and the quantile, which determines the rejection area of the permutation test,
relies on 20,000 random permutation. The Wald-type tests and the permutation test are
constructed with a level of significance α = 0.05. Hence, with M = 20,000 it follows
that a two-sided level 0.05 test rejects the hypothesis that the actual level αact is equal to
α = 0.05 if the simulated actual level α̂act is not contained in [0.04698, 0.05302]. In the
corresponding figures, the boundaries of the interval are shown as dashed grey lines. As
argued in Section 5.3, a Wald-type or permutation test for the retention of effect hypothesis
is only appropriate for usage if it is not liberal. Last but not least, we only study the
actual levels of the tests constructed with α = 0.05 but possible effects of α could be part
of further research.
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Figure 5: Actual level of different tests for HRET
0 by sample size allocation for the parameters

from Definition 6.8. The points for a sample size of 550 are red, for one of 1100
are green, and for one of 2200 are blue. Actual levels between the lower and upper
dashed grey lines do not differ significantly from α = 0.05. The abbreviations
ML, SV, RML indicate the variance estimator of the Wald-type tests. The shape
parameters are not distinguished.

Figure 5 shows that the permutation test ΨRET
n,Perm and the Wald-type test ΨRET

n,Wald with the
restricted maximum-likelihood variance estimator perform well, i.e. the actual levels of
these tests are only in a few cases not between the dashed grey lines, and are therefore
recommended for application. Moreover, the sample size and its allocation does not affect the
actual level significantly. In contrast, the performance of the Wald-type tests ΨRET

n,Wald with
the sample variance estimator or the unrestricted maximum-likelihood variance estimator
depends on the sample size allocation. For the allocations 1:1:1, 2:2:1, and wopt,E=R these
tests tend to be liberal, i.e. they are not appropriate to test the retention of effect hypothesis
HRET

0 . However, for the allocation 2:1:1, 3:2:1, and wopt,m the Wald-type tests ΨRET
n,Wald with

the sample variance and the unrestricted maximum-likelihood estimator to not tend to
be liberal and conservative and are suitable tests for HRET

0 under the given setting. In
case that multiple tests are appropriate for a given sample size allocation, we additionally
compare their power later on in this section.
Next, we study the actual level of the different tests for the parameters from Definition 6.9.

69



The results of the optimal allocation wopt,m are not shown because they are qualitatively the
same as for the allocation 1:1:1 which is what we expected, since the sample size allocations
do not differ much.
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(f) Sample size allocation 1 : ∆ : (1−∆).

Figure 6: Actual level of different tests for HRET
0 by sample size allocation for the parameters

from Definition 6.9. The points for a sample size of 215 are red, for one of 430 are
green, and for one of 860 are blue. Actual levels between the lower and upper dashed
grey lines do not differ significantly from α = 0.05. The abbreviations ML, SV,
RML indicate the variance estimator of the Wald-type tests. The shape parameters
are not distinguished.

Altogether, the Wald-type test ΨRET
n,Wald with the restricted maximum-likelihood variance

estimator performs best and can be recommended for application. The influence of both
sample size allocation and sample size on the actual level is rather small. For the sample
size allocation 1:1:1 the tends to be slightly conservative and for the other sample size
allocations, there is no trend detectable. In the following, we analyse for each sample size
allocation which tests are applicable besides the Wald-type test ΨRET

n,Wald with the restricted
maximum-likelihood variance estimator.
For the sample size allocation 1:1:1 applying the permutation test is only appropriate if the
sample size is large enough. The remaining Wald-type tests ΨRET

n,Wald are liberal and thus
not appropriate to test the retention of effect hypothesis in this setting. The permutation
test ΨRET

n,Perm is the only test which cannot recommended for application for the sample size
allocation 2:1:1. If the sample size is allocated according to 2:2:1, the permutation test
ΨRET
n,Perm can be applied but is slightly conservative in contrast to the Wald-type test ΨRET

n,Wald

with a unrestricted maximum-likelihood or a sample variance estimator which are liberal
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and should therefore not be applied. For the allocation 3:2:1, all tests are appropriate for
usage but the Wald-type test ΨRET

n,Wald with the unrestricted maximum-likelihood estimator
tends to be conservative for smaller sample sizes. For the sample size allocation wopt,E=R,
the permutation tests can be applied and it is in contrast to the Wald-type test ΨRET

n,Perm with
the restricted maximum-likelihood variance estimator not conservative. For the sample sizes
allocated to the rule of thumb, the remaining tests can be applied but they are conservative.
To conclude, besides the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood
variance estimator, the actual levels of the different Wald-type tests and the permutation
test are influence by the sample size allocation. Thereto, the influence on the actual levels
is much stronger for the parameters from Definition 6.9 than for the parameters from
Definition 6.8. Whether this is due to the sample sizes, rates or shape parameters cannot
be ascertained with the present Monte-Carlo simulations. Moreover, the permutation test
ΨRET
n,Perm and the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance
estimator performed well for all considered sample size allocations if the parameters were
defined as in Definition 6.8. However, this does not hold for the other parameter setting. In
total, the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance estimator
is stable concerning the sample size allocation. Besides, the other tests, i.e. the permutation
test ΨRET

n,Perm and the Wald-type tests ΨRET
n,Wald with the sample variance or the unrestricted

maximum-likelihood variance estimator, are clearly liberal in same cases. Finally, it should
be mentioned that the number of simulations of the discussed Monte-Carlo results is not
sufficiently large enough to detect the influence of the sample size and especially the shape
parameter for a fixed rate. An increase of the number of simulations is not feasible due
to the computing time of the permutation test. However, at least for the Wald-type tests
Monte-Carlo simulations with 100,000 replicates are possible. The results show that the
actual levels approach α = 0.05 if the shape parameter φ decreases or the sample size n
increases what was to be expected.

6.4.2 Power

After studying the actual levels of the Wald-type tests ΨRET
n,Wald and the permutation test

ΨRET
n,Perm, we compare the power of these tests and study how well the power approximations

(6.4) and (6.6) fit the actual power. In the following, we only consider the tests which are
not liberal for the corresponding sample size allocations because the other tests are not
appropriate.
If the approximative power functions from Equations (6.4) and (6.6) are larger than the
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power itself, the corresponding sample size formulas from Equations (6.5) and (6.7) result
in a too small sample size and are therefore not recommended for application. However, if
the approximations are smaller than the power, the sample size formulas yield sample sizes
resulting in a larger power which is also not desirable but at least the power is not smaller
than planned. Firstly, we study the power of the different tests for a parameter setting
motivated by the TRISTAN study. As stated in Definition 6.8, we choose the parameter
vector ζHRET

1
= (1.16, 1.16, 1.71, φ) as well as the non-inferiority margin ∆ = 43/55. In

contrast to the Monte-Carlo simulations of the actual levels from Section 6.4.1, we only
regard the results for the shape parameter φ = 0.5, since they are qualitatively the same
for the shape parameters φ = 0.3 and φ = 0.7. Regarding this, it should be mentioned
that if the shape parameter φ increases for a fixed sample size the power decreases. For
a fixed sample size allocation, the tests which are not liberal have nearly the same power
with a difference less than the Monte-Carlo error. Since the results for the different sample
size allocations do not differ qualitatively, we only show the results for the sample size
allocation wopt ≡ wopt,m.
The approximative power function for the Wald-type test with the restricted maximum-
likelihood variance estimator from (6.6) is a function in the limit σ2

RET,RML of the restricted
maximum-likelihood variance estimator σ̂2

RET,RML. The limit σ2
RET,RML is given by

λE,RML(1 + λE,RMLφRML)
wE

+ λR,RML(1 + λR,RMLφRML)
wR

+ λP,RML(1 + λP,RMLφRML)
wP

with ζ = (λE,RML, λR,RML, λP,RML, φRML) the minimizer of the Kullback-Leibler divergence
K(ζ, ζHRET

1
, w) from (3.1). The Kullback-Leibler divergence for negative binomially dis-

tributed endpoints is stated in Section 6.3.1 and can only be minimized iteratively. By
doing so, we obtain ζ = (1.222, 1.059, 1.639, 0.503) and σ2

RET,RML = 7.893 for the allocation
wopt = (0.4834, 0.3779, 0.1387). In comparison, the limit of the unrestricted variance esti-
mators is equal to σ2

RET = 7.845, i.e. the variances are similar and we do not expect big
differences between the approximative power functions.
As above, the results are based on M = 20,000 simulations. We simulate the quantile of
the conditional permutation distribution with 20,000 random permutations and the tests
are defined with the level of significance α = 0.05.
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Figure 7: Power of different tests for HRET
0 with rates λE,1 = λR = 1.16 as well as λP = 1.71,

non-inferiority margin ∆ = 94/123, shape parameter φ = 0.5, and sample size
allocation wopt. The black and the green line are the power approximations from
Equations (6.4) and (6.6), respectively.

Figure 7 displays that the power of the different Wald-type tests ΨRET
n,Wald and the permutation

test ΨRET
n,Perm is almost the same. This also holds for the power approximations (6.4) and (6.6)

which differ at most by 0.007. Moreover, both formulas approximate the power well. Thus,
the corresponding sample size formulas can be used for sample size planning. In particular,
since the different Wald-type tests and the permutation test are neither conservative nor
liberal and have the same power for the sample size allocation wopt,m, none of them is
superior for the considered setting. Since the Wald-type test ΨRET

n,Wald with the restricted
maximum-likelihood variance estimator is recommended for all sample size allocations, we
compare the power of the mentioned test for the different allocations. Instead of the actual
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power we plot the power approximation, since the difference between them is rather small
and in particular not significant.
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Figure 8: Power of the Wald-type test ΨRET
n,Wald with the restricted maximum-likelihood vari-

ance estimator for rates λE,1 = λR = 1.16 as well as λP = 1.71, non-inferiority
margin ∆ = 94/123, and shape parameter φ = 0.5 by sample size allocation.

The power approximations for the sample size allocation 3:2:1 and 1 : ∆ : (1−∆) are not
shown in Figure 8, since they are almost identically to the power approximation for the
optimal sample size allocation wopt. The differences are at most 0.0024 which is negligible,
since this is smaller than the deviations of the actual power from the approximations. In
Figure 8 we see that the power of the Wald-type test ΨRET

n,Wald with the restricted maximum-
likelihood variance estimator is maximized by the sample size allocation wopt among the
allocations considered, what was to be expected. Additionally, the rule of thumb results
in a very good approximation of the allocation wopt. In particular, around half of the
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patients should be allocated to the experimental treatment group. Additionally, the power
decreases as the sample size becomes balanced. For the, from a practical point of view,
most important range for the power of 0.7-0.95, the power for the sample size allocations
1:1:1 and wopt differ at most by 0.071.
In what follows, we study the power of the Wald-type tests ΨRET

n,Wald and the permutation
test ΨRET

n,Perm for the parameter setting motivated by the example for a clinical trial in MS
discussed in Section 2.2.2. As mentioned at the beginning of this subsection, we choose
the rates λE,1 = λR = 5.1 as well as λP = 17.4 and the non-inferiority margin ∆ = 94/123.
We omit the graphics of the results for the shape parameters φ = 1 and φ = 3 and only
have a closer look at the results for the shape parameter φ = 2 because the outcomes are
qualitatively the same. Moreover, we leave out the graph for the rule of thumb sample
size allocation because the results are qualitatively equal to the results for the sample
size allocation 3:2:1. As seen in Figure 6, for the sample size allocations 1:1:1 and wopt,m
the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance estimator is
the only non-liberal test and therefore we omit the corresponding graphs, too. For these
allocations, the power of the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood
variance estimator is slightly larger than the approximation, i.e. the sample size formula
(6.7) is not recommended for sample size planning.
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Figure 9: Power of different tests for HRET
0 by sample size allocation. The rates are λE,1 =

λR = 5.1 as well as λP = 17.4 and the non-inferiority margin is given by ∆ = 94/123.
The black and the green line are the power approximations from Equations (6.4)
and (6.6), respectively.

Figure 9 shows that for the sample size allocation wopt,E=R, the permutation test ΨRET
n,Perm is

more powerful than the Wald-type test ΨRET
n,Wald with the restricted maximum-likelihood

variance estimator. That was to be expected, since the Wald-type test is slightly conservative.
Moreover, the power of the Wald-type test is larger than the power approximation and,
therefore, the corresponding sample size formula can applied for sample size planning. On
the contrary, the power of the permutation test is smaller than the approximation and,
hence, the corresponding sample size formula is not appropriate to plan the sample size. For
the sample size allocation 2:1:1, the three Wald-type tests ΨRET

n,Wald have almost the sample
same power which is a bit larger than the approximations whose difference is negligible,
i.e. the sample size formulas can be applied. Regarding the sample size allocation 2:2:1,
the power of the permutation test ΨRET

n,Perm is smaller than the power of the Wald-type
test ΨRET

n,Wald with the restricted maximum-likelihood variance estimator. Analogously to
the sample size allocation wopt,E=R, the power approximation from (6.4) has larger values
than the power of the permutation test and, in consequence, the corresponding sample size
formulas are not appropriate for usage. In contrast, the power of the Wald-type test is
larger than its approximation and as a result, a trial with a sample size from Formula (6.6)
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will be slightly overpowered. Finally, we study the power of the tests for the sample size
allocation 3:2:1. At least for the sample sizes where the different points can be distinguished
graphically, the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance
estimator has the largest power. The approximative power functions are smaller than the
respective actual power values and hence the sample size formulas can be used.
Next, we compare the power of the tests for different sample size allocations. Thereto,
for each sample size allocation, we take the Wald-type test ΨRET

n,Wald with the restricted
maximum-likelihood variance estimator into account because it is recommended for use for
all sample size allocations. Additionally, besides for the sample size allocation wopt,E=R, the
Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance estimator has the
largest power. Concerning the test and the sample size allocation with the largest power,
the power of the permutation test ΨRET

n,Perm for the sample size allocation wopt,E=R is neither
the test with the largest nor the smallest power and is therefore omitted in the next graph.
Since the power is mostly distinct from its approximation, we compare the simulated power
itself. However, to simplify the comparison, we interpolate the respective points linearly.
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Figure 10: Power of the Wald-type test ΨRET
n,Wald with the restricted maximum-likelihood

variance estimator for rates λE,1 = λR = 1.16 as well as λP = 1.71, non-inferiority
margin ∆ = 94/123, and shape parameter φ = 0.5 by sample size allocation.

The sample size allocation wopt,m is omitted in Figure 10, since the power is nearly identically
to the power for the allocation 2:2:1. Figure 10 shows that the sample size allocation wopt
does not result in the largest power but the sample size allocation 2:1:1. For most sample
sizes, the allocation 1:1:1 yield the smallest power and the rule of thumb is not a good
approximation of the allocation with the largest power. For the important range 0.7-
0.95 of the power, the difference between the largest and the smallest power for a fixed
sample size is 0.0768. In essence, the allocation wopt does not maximize the power and is
therefore not optimal. This may be due to the allocation wopt is based on the approximative
power function for the Wald-type test ΨRET

n,Wald with an unrestricted variance estimator.
Determining an optimal allocation with respect to the approximative power function for
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the Wald-type test ΨRET
n,Wald the restricted maximum-likelihood variance estimator could

be a part of further research on this topic. This results in an optimization problem which
can only be solved numerically, since the power approximation depends on the limit of the
restricted maximum-likelihood variance estimator σ2

RET,RML and thus on the minimizer of
the Kullback-Leibler divergence.
Summarizing, for the first parameter setting the power of the tests which are not liberal is
nearly the same and the approximative power functions describe the power well. Among the
considered sample size allocation, the allocation wopt maximizes the power of the Wald-type
test ΨRET

n,Wald with the restricted maximum-likelihood variance estimator. In contrast, for
the second parameter setting, the power of the tests differ and none of the considered tests
has the largest power for all considered sample size allocations. However, the Wald-type
test ΨRET

n,Wald with the restricted maximum-likelihood estimator has only for the allocation
wopt,E=R not the largest power, since here the permutation test ΨRET

n,Perm has the largest one.
The power of the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance
estimator is for the considered cases not larger than its approximation, i.e. the sample size
can be planned with the corresponding sample size formula. However, the power is not
maximized for the allocation wopt but for the allocation 2:1:1, i.e. formulas for the optimal
sample size allocations from Section 6.3.2 do not hold in this setting.

6.4.3 Robustness Concerning Deviations from the Assumed Distribution

The Wald-type tests ΨRET
n,Wald with a maximum-likelihood variance estimator have been

established under the assumption of negative binomially distributed random variables. The
assumptions of a specific distribution is mostly uncertain and, therefore, we study how
sensitive the different Wald-type tests and the permutation test are concerning deviations
from the assumed negative binomial distribution stated in Section 2.3. As to that, we assume
that the random variables Xk,i with i = 1, . . . , nk and k = E,R, P are Poisson–inverse-
Gaussian and Poisson–lognormally distributed as destribed and motivated in Section 2. The
expectation and the variance are assumed to be the same as for the Monte-Carlo simulations
in Section 6.4.1. Firstly, we simulate the actual levels of the Wald-type tests ΨRET

n,Wald

and the permutation test ΨRET
n,Perm for Poisson–inverse-Gaussian and Poisson–lognormally

distributed random variables which parameters are chosen analogously to Definition 6.8.
As before, the results base on M = 20,000 Monte-Carlo simulations, the quantile of the
conditional permutation distribution on 20,000 random permutations and the test are
constructed with the level of significance α = 0.05. We expect that the actual levels of
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the permutation test ΨRET
n,Perm and the Wald-type test ΨRET

n,Wald with the sample variance
estimator are not significantly different from the actual levels of these tests for negative
binomially distributed observations because these tests are not constructed for a specific
distribution. Since Figure 1 shows that the differences between the probability function of
the negative binomial, the Poisson–inverse-Gaussian and the Poisson–lognormal distribution
are rather small, we assume that the actual levels of the Wald-type tests ΨRET

n,Wald with a
maximum-likelihood variance estimator are not affected significantly if the observations are
not negative binomially distributed. The results for the sample size allocations 2:1:1 and
2:2:1 are exemplary for the effects caused by a different distribution and, thus, we omit the
graphs for the other allocations.

0.045

0.050

0.055

0.060

α̂act

Ψn,Perm
RET  Ψn,Wald

RET  RML Ψn,Wald
RET  SV Ψn,Wald

RET  ML

(a) Poisson–inverse-Gaussian distribution.
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(c) Poisson–lognormal distribution. Sample
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Figure 11: Actual level of different tests for HRET
0 by sample size allocation for Poisson–

inverse-Gaussian and Poisson–lognormally distributed random variables. The
points for a sample size of 550 are red, for one of 1100 are green, and for one of
2200 are blue. Actual levels between the lower and upper dashed grey lines do not
differ significantly from α = 0.05. The abbreviations ML, SV, RML indicate the
variance estimator of the Wald-type tests. The shape parameters are not marked
differently.

We analyze the results of Figure 11 by comparing them to the corresponding results for
negative binomially distributed random variables from Figure 5. As expected, the actual
levels of the permutation test ΨRET

n,Perm and the Wald-type test ΨRET
n,Wald with the sample

variance estimator only differ within the limits of the Monte-Carlo error from the actual
levels for negative binomially distributed observations. In contrast and in particular contrary
to our expectations, the actual levels of the Wald-type test ΨRET

n,Wald with the unrestricted
or the restricted maximum-likelihood variance estimator increase if the distribution of
the random variables changes. Additionally, since the actual levels of the Wald-type test
ΨRET
n,Wald with a maximum-likelihood variance estimator differ much for a fixed sample size,

the shape parameter seems to affect the inflation. We conclude that the Wald-type test
ΨRET
n,Wald with a maximum-likelihood variance estimator is affected by a different distribution

but the inflation depends on both, the allocation and the distribution. Since the inflation is
small, the Wald-type test ΨRET

n,Wald with a maximum-likelihood variance estimator can in
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several cases still be recommended for use.
In the following, we study the actual levels of the Wald-type tests ΨRET

n,Wald and the per-
mutation test ΨRET

n,Perm for Poisson–inverse-Gaussian and Poisson–lognormally distributed
observations with expectation and variance equal to the setting for the negative binomial
distribution from Definition 6.9. As before, for the permutation test ΨRET

n,Perm and the
Wald-type test ΨRET

n,Wald with the sample variance estimator we do not expect any significant
changes of the actual level. However, for the Wald-type test ΨRET

n,Wald with a maximum-
likelihood variance estimator an affect on the actual levels is expected, since Figure 2 shows
that the probability mass function of the mixed Poisson distributions differ clearly.
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(c) Poisson–lognormal distribution. Sample
size allocation 2:1:1.
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Figure 12: Actual level of different tests for HRET
0 by sample size allocation for Poisson–

inverse-Gaussian and Poisson–lognormally distributed random variables. The
points for a sample size of 215 are red, for one of 430 are green, and for one of
860 are blue. Actual levels between the lower and upper dashed grey lines do not
differ significantly from α = 0.05. The abbreviations ML, SV, RML indicate the
variance estimator of the Wald-type tests. The shape parameters are not marked
differently.

Comparing Figures 6 and 12, the actual levels of the permutation test ΨRET
n,Perm and the

Wald-type test ΨRET
n,Wald with the sample variance estimator are not affected by a different

mixed Poisson distribution. However, the Wald-type tests ΨRET
n,Wald with the restricted or

unrestricted maximum-likelihood variance estimator have actual levels of at least 7.5%, i.e.
they become very liberal if the random variables are not negative binomially distributed.
To conclude, the permutation test ΨRET

n,Perm and the Wald-type test ΨRET
n,Wald with the sample

variance estimator are robust concerning a different mixed Poisson distribution. That was
to be expected, since both tests do not bear on a specific distribution, confer Remarks
6.2 and 6.4. However, the Wald-type test ΨRET

n,Wald with the restricted or unrestricted
maximum-likelihood variance estimator is affected by a different distribution even if the
distribution is nearly the same as the negative binomial distribution and are therefore
not appropriate to test the retention of effect hypothesis HRET

0 if the random variables
are not exactly negative binomially distributed. The more the distribution differs from a
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negative binomial distribution, the more liberal the Wald-type test ΨRET
n,Wald with a maximum-

likelihood variance estimator. Analogously to the actual level, the power of the Wald-type
test ΨRET

n,Wald with the sample variance estimator and the permutation test ΨRET
n,Perm is not

affected significantly if the distribution of the endpoint changes.

6.4.4 Power of the Test Procedure

The power of a three-arm non-inferiority trial is in general reported with respect to both
assay sensitivity and non-inferiority. Thus, from a theoretical point of view, we have to
determine the sample size through the power of the test procedure and not through the
power for the retention of effect hypothesis. However, for reasonable alternatives Section 5
in Kieser and Friede (2007) and Section 4.2 in Mielke et al. (2008) show that for binary
and censored exponentially distributed endpoints, respectively, the power of the test for the
retention of effect hypothesis is approximately the power of the test procedure. Hence, in
this section, we study the power of the test procedure and compare it with the power of
the test for the retention of effect hypothesis for negative binomially distributed endpoints.
Thereto, we only take the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood
variance estimator as a test for the hypothesis HRET

0 into account because it has the best
overall performance in case of negative binomially distributed observations. Additionally,
we define assay sensitivity as the superiority of the experimental as well as the reference
treatment over placebo. If the assertion that the power of the test procedure and the test
for the retention of effect hypothesis are similar holds for this definition of assay sensitivity,
it also holds if assay sensitivity is defined by just one superiority. Since we showed that
the permutation ΨEP

n,Perm performed best when testing the superiority of the experimental
treatment versus placebo, see Section 5.3, we test superiority of an active treatment over
placebo with the permutation test ΨEP

n,Perm.
Firstly, we compare the power of the test procedure and the Wald-type test ΨRET

n,Wald with the
restricted maximum-likelihood estimator for the scenario motivated by the TRISTAN study,
i.e. for the parameter vector ζHRET

1
= (1.16, 1.16, 1.71, 0.5) and the non-inferiority margin

∆ = 43/55. As for the power simulations for the retention of effect hypothesis, the results for
the shape parameters φ = 0.3 and φ = 0.7 are qualitatively the same and therefore omitted.
As in Section 6.4.2, we simulated the power for the sample sizes n ∈ {500, 1000, . . . , 4000}.
We do not show any graphs because the power curves are the same as in Figure 7. However,
Table 6 states the difference between the power of the test procedure and the Wald-type
test ΨRET

n,Wald with the restricted maximum-likelihood variance estimator for all sample sizes
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considered (entire range) as well as for the sample sizes where the power in the practically
relevant range 70%− 95% (relevant range). A difference larger than zero implies that the
test for the retention of effect hypothesis is more powerful.

Table 6: Difference between the power of the test procedure and the Wald-type test ΨRET
n,Wald

with the restricted maximum-likelihood variance estimator for the parameter ζHRET
1

=
(1.16, 1.16, 1.71, 0.5) and the non-inferiority margin ∆ = 43/55 by sample size
allocation.

Allocation Entire range Relevant range
1:1:1 2.47% 0%
2:1:1 5.55% 0%
2:2:1 3.0% 0%
3:2:1 4.555% 0%
wopt 4.795% 0%

wopt,E=R 3.97% 0%
wrot 5.53% 0%

Table 6 shows that the power of the test procedure and the power of the Wald-type test
differ at most by 5.55% but within the relevant range for the power, the difference of the
power functions is zero. Thus, the sample size for a three-arm non-inferiority trial can be
planned through the test for the retention of effect hypothesis.
Analogously to the parameter motivated by the TRISTAN study, we compare the power
for the parameter ζHRET

1
= (5.1, 5.1, 17.4, 2) and the non-inferiority margin ∆ = 94/123

motivated by the CONFIRM study. Exemplary, we analyse the results for φ = 2 but
it should be mentioned that the results for the shape parameters φ = 1 and φ = 3 are
qualitatively the same. As for the power simulation in Section 6.4.2, the sample size is
chosen as n ∈ {50, 100, . . . , 700}. For the shape of the power curve see Figure 9.
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Table 7: Difference between the power of the test procedure and the Wald-type test ΨRET
n,Wald

with the restricted maximum-likelihood variance estimator for the parameter ζHRET
1

=
(5.1, 5.1, 17.4, 2) and the non-inferiority margin ∆ = 94/123 by sample size allocation.

Allocation Entire range Relevant range
1:1:1 1.675% 0%
2:1:1 5.28% 0.105%
2:2:1 2.43% 0.08%
3:2:1 4.63% 0.0245%
wopt 2.505% 0.01%

wopt,E=R 1.75% 0%
wrot 5.055% 0.64%

For all sample sizes considered, the power functions differ at most by 5.28%. In contrast to
the results from Table 6, the differences between the power functions are not zero for the
relevant range. However, they are less than 0.7% and, as before, the sample size formula
for the Wald-type test can be applied to plan the sample size of a three-arm non-inferiority
trial.
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7 Conclusion and Discussion

The aim of this thesis was to develop tests for the retention of effect hypothesis and assay
sensitivity as well as to derive formulas for the sample size and its allocation. The major re-
sult of this thesis is that the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood
variance estimator is appropriate to test the retention of effect hypothesis HRET

0 if the
observations are negative binomially distributed and the shape parameter is equal among
the groups. However, this Wald-type test is sensitive to deviations from the assumed
distribution. Moreover, we showed that in this setting assay sensitivity should be tested
with a permutation test. In the following, we summarize and discuss the major results of
this thesis in more detail and subsequently give an outlook regarding further research on
the retention of effect hypothesis.
In Section 2.3, we defined that the random variables Xk,i with i = 1, . . . , nk and k = E,R, P

are negative binomially distributed with rates λk and shape parameter φ. To test assay
sensitivity we introduced different Wald-type tests as well as an exact permutation test
in Section 5. The Monte-Carlo simulations of the tests’ actual levels of significance in
Section 5.3 show that the performance of most of the Wald-type tests depend on the sample
size allocation as well as on the size of the rates and the shape parameter. However, the
actual level of the permutation test is not influenced significantly by these factors and thus
recommended to test assay sensitivity.
In Section 6, we dealt with tests for the retention of effect hypothesis HRET

0 . We established
the different Wald-type tests in Section 6.1 and an asymptotic permutation test in Section
6.2. In Section 6.4.1, we compared the actual levels of significance of the different tests in
Monte-Carlo simulations. It became apparent that overall the Wald-type test ΨRET

n,Wald with
the restricted maximum-likelihood variance estimator performs best, i.e. the test is not
liberal and at most slightly conservative. Moreover, this test is robust over various scenarios
of rates, shape parameters, sample sizes and sample size allocations. Depending on these
factors, the permutation test ΨRET

n,Perm and the Wald-type test ΨRET
n,Wald with an unrestricted

variance estimator are also appropriate for application. Since the Wald-type test ΨRET
n,Wald

with a maximum-likelihood variance estimator has been constructed with the assumption of
negative binomially distributed random variables, we studied in Section 6.4.3 how the actual
levels change if the observations are Poisson–lognormally or Poissson–inverse-Gaussian
distributed. The actual level of the Wald-type test ΨRET

n,Wald with a maximum-likelihood
estimator gets affected by deviations from the assumed distribution, i.e. the test becomes
liberal. The magnitude of the inflation depends on the distribution as well as on the
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expectation, variance, sample size, and sample size allocation. However, the actual levels
of the permutation test ΨRET

n,Perm and the Wald-type test ΨRET
n,Wald with a sample variance

estimator are not affected significantly.
To plan the different tests for the retention of effect hypothesis, we introduced power
approximations for the different tests and established the sample size formulas in Section
6.3.1. Both the power approximations and the sample size formulas are motivated by the
asymptotic normality of the tests. In Section 6.3.2, we calculated sample size allocations
which maximize the power for a fixed sample size. Since we do not know the actual power
of the tests, we calculated the optimal allocations such that they maximize the power
approximations, i.e. if the power approximations are inaccurate, the calculated allocations
do not necessarily maximize the power. The comparison of the power for the non-liberal
tests in Section 6.4.2 showed that for the scenarios motivated by the TRISTAN study the
corresponding tests have almost the same power for a fixed sample size allocation. This
could be due to the large sample size, i.e. to obtain a power of 70% a sample size of about
3,000 is required. Moreover, the formulas (6.4) and (6.6) approximate the power well and
thus the sample size formulas 6.5 and 6.7 are appropriate to determine the sample size for
the corresponding tests of the retention of effect hypothesis. In Figure 8 we compared the
power of the Wald-type test ΨRET

n,Wald with the restricted maximum-likelihood variance esti-
mator for different sample size allocations. Among the considered allocations, the power is
maximized for the allocation wopt, which has been defined in (6.9), and the power decreases
as the allocation becomes balanced. In other words, the sample size which maximizes the
power approximation for the tests with an unrestricted variance estimator also maximizes
the power of the Wald-type test ΨRET

n,Wald with a restricted maximum-likelihood variance
estimator. For the scenarios motivated by the CONFIRM study a sample size n of about
300 is required for a power of 70%, i.e. the sample size is much smaller than in the first
example. For some allocations the power of the Wald-type test ΨRET

n,Wald with an unrestricted
variance estimator and the permutation test ΨRET

n,Perm is smaller than its approximation
(6.4). In these cases the sample size formula (6.5) is not recommended for usage. However,
the approximation (6.6) of the power of the Wald-type test ΨRET

n,Wald with the restricted
maximum-likelihood variance estimator fits well and hence the corresponding sample size
formula (6.7) can be applied. In Figure 10 we saw that for this setting the optimal sample
size allocations from Section 6.3.2 do not maximize the power of the Wald-type test ΨRET

n,Wald

with the restricted maximum-likelihood variance estimator. Summarizing, among the
considered tests and in case of negative binomially distributed observations the Wald-type
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test ΨRET
n,Wald with the restricted maximum-likelihood variance estimator performs best and

thus is recommended for use.

In the following, we discuss some open questions of this thesis and give an outlook about
future research on the planning and assessing of three-arm non-inferiority trials. In particular,
we focus on how the model can be extended for instance to include covariates. Additionally,
we give ideas about dealing with that in the sample size calculation as well in the optimal
allocations knowledge about the unknown variances σ2

E, σ2
R, and σ2

P is required.
In this thesis, we defined non-inferiority through the retention of effect hypothesis

HRET
0 : (λP − λE) ≤ ∆(λP − λR) versus HRET

1 : (λP − λE) > ∆(λP − λR)

with ∆ ∈ (0, 1) the prespecified clinical relevance. In Section 1, we motivated the retention
of effect hypothesis by the non-inferiority hypothesis H0 : λE ≥ λR + δ with the prespecified
clinical relevance δ := f(λP − λR). However, Hida and Tango (2011) proposed not to define
non-inferiority through the retention of effect hypothesis because the definition of δ would
contradict to δ being a prespecified margin since it is defined by means of rates. Instead
of testing superiority of the reference treatment over placebo and non-inferiority defined
through the retention of the effect hypothesis, Hida and Tango (2011) suggested to test the
inequality

λE < λR + ∆ < λP

with two separate hypothesis tests. More precisely, it has been suggested that relevant
superiority of the reference treatment over the placebo and non-inferiority of the experimental
and the reference treatment should be tested. For further discussions of this proposal we
refer to Röhmel and Pigeot (2011). However, establishing tests and deriving formulas for
the sample size and its allocation for the hypotheses proposed could be part of further
research.
From a theoretical point of view, it remains to be proved that the maximum-likelihood
estimator φ̂ is unique. Moreover, the existence and uniqueness of the maximum-likelihood
estimators restricted to the retention of effect hypothesis HRET

0 , which have been introduced
in Section 6.1, has not been proved yet. Last but not least it has not been shown yet that
the minimizer of the Kullback-Leibler divergence is unique for the model stated in Section
2.3.
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A crucial assumption for the model in Section 2.3 was that the shape parameter φ is
equal among the groups. Thus, a logical extension of the model is to allow unequal shape
parameters. To extend the model in this way, we just have to replace the estimator φ̂ by the
corresponding maximum-likelihood estimator φ̂k with k = E,R, P . The asymptotic theory
of the different Wald-type tests for assay sensitivity and the retention of effect hypothesis as
well as the asymptotic theory of the permutation test for the retention of effect hypothesis
still holds. However, the permutation test for assay sensitivity is not exact any more, since
the random variables are not exchangeable at the boundary of the hypothesis.
In a clinical trial, for each patient a number of baseline characteristics are gathered, for
instance gender, age, weight, or the measurement of the endpoint at baseline. When
included in the final analysis, the are referred to as covariates. To allow the inclusion
of covariates, Lawless (1987) described the negative binomial regression. Basically, the
negative binomial regression assumes that the rate of a negative binomial distribution is a
function in the covariates. In the following we briefly introduce negative binomial regression
and state how it can be applied to test the retention of effect hypothesis. Using the notation
of Lawless (1987), let Y be an observation and x ∈ R

m a vector of covariates then the
negative binomial regression model is given by

P(Y = y|x) =
Γ
(
y + 1

φ

)
y!Γ

(
1
φ

) (
φµ(x)

1 + φµ(x)

)y ( 1
1 + φµ(x)

) 1
φ

for y ∈ N0. As before, φ is the shape parameter. With T > 0 and β ∈ Rm, the function
µ(x) is defined by

µ(x) := T exp (x′β) .

The expectation and the variance of Y conditioned on x is given by E[Y |x] = µ(x) and
Var[Y |x] = µ(x)(1+φµ(x)). Next, we apply the negative binomial regression to the retention
of effect hypothesis. Thereto, let Yi and xi with i = 1, . . . , n be the observation and the
vector of covariables for the i-th patient, respectively. Without restricting the generality of
the results, we set T = 1. The treatment group of the i-th patient is determined by the
first three entries of x, i.e. (xi,1, xi,2, xi,3, . . .) = (1, 0, 0, . . .) corresponds to the experimental
treatment group, (xi,1, xi,2, xi,3, . . .) = (0, 1, 0, . . .) to the reference treatment group, and
(xi,1, xi,2, xi,3, . . .) = (0, 0, 1, . . .) to the placebo group. It should be mentioned that in
general two indicators are sufficient to model three groups if β1 is defined as one. However,

91



we use three indicators since it results in the rates, which describe the treatment efficacies as
well as the placebo response, given by log(β1), log(β2), and log(β3), respectively. Thereby,
the retention of effect hypothesis is given by

HRET
0 : log(β3)− log(β1) ≤ ∆(log(β3)− log(β2))

versus HRET
1 : log(β3)− log(β1) > ∆(log(β3)− log(β2)).

Lawless (1987) proved that the maximum-likelihood estimators β̂ and φ̂ are asymptotically
normal distributed. Hence, the theory of the Wald-type test with a maximum-likelihood
variance estimator for the retention of effect hypothesis from Mielke (2010) also holds for this
setting. However, the theory of the Wald-type test with a sample variance estimator and the
theory of the asymptotic permutation test cannot be applied easily. This is mainly because
the sample variance is not a consistent estimator for the maximum-likelihood estimator of
log(βj) with j = 1, 2, 3 and the permutation test as introduced by Janssen (1997) is only
applicable if the effect can be estimated the corresponding sample mean. Summarizing, if we
assume that the link function µ(x) = T exp(x′β) holds, the statistical model and the Wald-
type test with a maximum-likelihood variance estimator can easily be extended to covariates.

The sample size formulas and optimal sample size allocations introduced in Section 6.3
require knowledge about the variances σ2

E, σ2
R, and σ2

P . Even if the sample size is planned
based on variances from similar studies, it might be too small which results in an under-
powered or if it is too large in an overpowered trial. However, adaptive designs provide a
solution to this problems. In Section 2 in Gallo et al. (2006), an adaptive design has been
defined as

". . . a clinical study design that uses accumulating data to decide how to
modify aspects of the study as it continues, without undermining the validity
and integrity of the trial. The goal of adaptive designs is to learn from the
accumulating data and to apply what is learned as quickly as possible."

Additionally, Gallo et al. (2006) discussed issues and opportunities of adaptive designs.
Similar definitions of an adaptive design are given on page 10 in CHMP (2007) as well
as in Section III.A in FDA (2010). Moreover, CHMP (2007) and FDA (2010) defined
regulatory requirements for adaptive designs. Concerning the sample size planning, we
focus on designs for clinical trials with sample size review as one possibility of adaptive
designs. Thereto, we describe two different approaches. Both approaches include a small
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study which is part of the actual trial but also affects the design of the trial. Firstly, we
describe a design with a sample size review based on the estimation of nuisance parameters.
Here, the small study on which the sample size review is based is called internal pilot study.
Secondly, we extend this design to two stage designs where the sample size is reviewed as
well as an interim analysis is performed. In this case, the small study is denoted as stage I.
Hereinafter, we denote the sample size of the internal pilot study and stage I with n0.
Regarding the design where only the sample size is reviewed, the unknown variances are
estimated with the results from the internal pilot study and the estimates in turn are used to
reestimate the sample size n̂1−β for the whole trial. To complete the trial max(0, n̂1−β − n0)
patients have to be recruited. For general discussions about the purpose of internal
pilot studies confer Wittes and Brittain (1990). For a review of sample size reestimation
procedures confer Friede and Kieser (2006) and in particular for sample size reestimation
in a two-arm non-inferiority trial with negative binomially distributed endpoints see Friede
and Schmidli (2010). To our knowledge, there are no publications studying such a design
for three-arm trials. Therefore, in the following, we discuss ideas how the sample size
can be reestimated in three-arm non-inferiority trials with negative binomially distributed
endpoints and non-inferiority defined by the retention of effect hypothesis HRET

0 . Thereby,
we restrict ourselves to the sample size formula (6.5), since the approach follows analogously
for the formula (6.7). Additionally, we assume that we are in a scenario where the sample
size formula works. Then, the sample size of trial is calculated by

n1−β = (q1−α + q1−β)2 σ
2
RET

η2
HRET

1

with ηHRET
1

= (1−∆)λP,HRET
1

+ ∆λR,HRET
1
− λE,HRET

1
being the assumed effect and σ2

RET

the assumed variance given by

σ2
RET = σ2

E

wE
+ σ2

R

wR
+ σ2

P

wP
.

After recruiting n0 patients, the variance σ2
RET in the sample size formula is replaced by its

estimate σ̂2
RET . Thus, the reestimated sample size is given by

n̂1−β = (q1−α + q1−β)2 σ̂
2
RET

η2
HRET

1

.

As mentioned above, max(0, n̂1−β − n0) patients need to be recruited and, afterwards, the
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final analysis is done with the results from both the internal pilot study and the second
stage.
After focusing on designs where only the sample size is reviewed, we discuss approaches for
designs with an effect based sample size reestimation and an interim analysis potentially
allowing early rejection of the null hypothesis. Thereto, an approach for sample size and
effect review in three-arm non-inferiority trials with normally distributed endpoints and
homogeneous variances has been proposed by Schwartz and Denne (2006). However, to our
knowledge, there are no publications addressing this approach in three-arm non-inferiority
trials with negative binomially distributed endpoints. In Schwartz and Denne (2006), the
idea is to replace the variance σ2

RET in the sample size formula as above but, additionally,
substitute the effect ηHRET

1
by an unbiased estimator. More precisely, if we assume that

the rates in the experimental and the reference treatment group are equal under the fixed
alternative, we obtain the effect

ηHRET
1

= (1−∆)(λP,HRET
1
− λR,HRET

1
).

Now, an unbiased estimator η̂HRET
1

for the effect ηHRET
1

is obtained by estimating the rates
unbiased with the corresponding sample mean. Replacing the effect and the variance in the
sample size formula by its estimates yield the reestimated sample size

n̂1−β = (q1−α + q1−β)2 σ̂
2
RET

η̂2
HRET

1

.

If the estimated effect η̂HRET
1

is small, the sample size n̂1−β becomes large. Additionally, a
small estimated effect also indicates that the trial may lack assay sensitivity. Thereto, as
an interim analysis, it is feasible to test assay sensitivity and even non-inferiority as well as
extend the trial to a superiority trial. Such a sequential design has been introduced for
three-arm non-inferiority trials with binary distributed observation by Li and Gao (2010).
In a generalized setting such adaptive designs and their regulatory as well as statistical
issues have been studied by Koyama et al. (2005).
For further research on this topic one has to study whether a sample size reestimation and
an interim analysis affects the actual level of significance and the power of the study. Last
but not least, to recalculate the optimal sample size allocation, one replaces the assumed
variances σ2

E, σ2
R, and σ2

P by its estimates. Of course, the formula for optimal sample size
allocations has to be appropriate if resulting allocation should yield valid results.
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A Appendix

Proof of Theorem 6.3. To prove the assertion, we show that the conditions 1.-5. of Theorem
4.4 are fulfilled and thereto we proceed analogously to the proof of Lemma 4.1 in Janssen
(1997). For the sake of a convenient notation, we denote the i-th entry of the vector of
random variables Xn = (XE,nE ,XR,nR ,XP,nP) as Xn,i. Without loss of generality, we
assume that the expectation of 1

n

∑n
i=1Xn,i is equal to zero, since the statistic TRETn,Perm(Xn)

is invariant under the same shift for each Xn,i. Of course, the shift does not effect the
variance of the random variables.

1. Basic calculations show that the sum of the cn,i and the sum of the c2
n,i is zero and

one, respectively, i.e.

n∑
i=1

cn,i =
√

nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

×− nE∑
i=1

1
nE

+ ∆
nE+nR∑
i=nE+1

1
nR

+ (1−∆)
nE+nR+nP∑
i=nE+nR+1

1
nP

 = 0,

n∑
i=1

c2
n,i = nEnRnP

nRnP + ∆2nEnP + (∆− 1)2nEnR
×nE∑

i=1

1
n2
E

+ ∆2
nE+nR∑
i=nE+1

1
n2
R

+ (∆− 1)2
nE+nR+nP∑
i=nE+nR+1

1
n2
P


= nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

( 1
nE

+ ∆2 1
nR

+ (∆− 1)2 1
nP

)
= 1.

2. In the following, we prove that the limes inferior of the sample variance of Xn is
P-almost surely positive, i.e.

lim inf
n→∞

1
n

n∑
i=1

(Xn,i −Xn,·)2 > 0 P− a.s.

With the assumption that the expectation of the average Xn,· is zero and the strong
law of large numbers, the average Xn,· converges almost surely to zero. By means of
the continuous mapping theorem, the squared average X2

n,· converges almost surely
to zero. With the property that the sum of three sequences of random variables
converges almost surely if each of the sequences converges almost surely as well as
with the strong law of large numbers, the average of the squared random variables
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converges almost surely:

1
n

n∑
i=1

X2
n,i

n→∞−−−→ wE(σ2
E + λ2

E) + wR(σ2
R + λ2

R) + wP (σ2
P + λ2

P ) P-a.s.

Hence, with the algebraic formula of the sample variance

1
n

n∑
i=1

(Xn,i −Xn,·)2 n→∞−−−→wE(σ2
E + λ2

E) + wR(σ2
R + λ2

R) + wP (σ2
P + λ2

P ) > 0 P-a.s.

3. To prove the convergence

1
σ̂2
Perm(τn (Xn))

1
n

n∑
i=1

(Xn,i −Xn,·)2 n→∞−−−→
P×P̃

1, (A.1)

we show that the variance estimators σ̂2
Perm(τn (Xn)) and 1

n

∑n
i=1(Xn,i−Xn,·)2 converge

in P× P̃-probability to the same limit, i.e.

1
n

n∑
i=1

(Xn,i −Xn,·)2 n→∞−−−→
P×P̃

wE(σ2
E + λ2

E) + wR(σ2
R + λ2

R) + wP (σ2
P + λ2

P ), (A.2)

σ̂2
Perm(τn (Xn)) n→∞−−−→

P×P̃
wE(σ2

E + λ2
E) + wR(σ2

R + λ2
R) + wP (σ2

P + λ2
P ). (A.3)

The assertion A.2 follows immediately from 2., since we showed P-a.s. convergence
which implies P × P̃-a.s. convergence which in turn yield convergence in P × P̃-
probability.
To prove the convergence of the variance estimator σ̂2

Perm(τn (Xn)), we decompose it
by means of the algebraic formula for the sample variance, i.e.

σ̂2
Perm(τn (Xn)) = Wn,1 −W 2

n,2 −W 2
n,3 −W 2

n,4
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with

Wn,1 := nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

(
1

nE(nE − 1)

nE∑
i=1

X2
n,τ(i)

+ ∆2

nR(nR − 1)

nE+nR∑
i=nE+1

X2
n,τ(i) + (∆− 1)2

nP (nP − 1)

nE+nR+nP∑
i=nE+nR+1

X2
n,τ(i)


Wn,2 :=

√
nRnP

(nRnP + ∆2nEnP + (∆− 1)2nEnR)nE(nE − 1)

nE∑
i=1

Xn,τ(i)

Wn,3 :=

√√√√ ∆2nEnP
(nRnP + ∆2nEnP + (∆− 1)2nEnR)nR(nR − 1)

nE+nR∑
i=nE+1

Xn,τ(i)

Wn,4 :=

√√√√ (∆− 1)2nEnR
(nRnP + ∆2nEnP + (∆− 1)2nEnR)nP (nP − 1)

nE+nR+nP∑
i=nE+nR+1

Xn,τ(i).

Thereby, Xn,τ(i) denotes the i-th entry of the vector τn(Xn). We prove the conver-
gence of the variance estimator σ̃2

Perm (τn (Xn)) by showing that Wn,2,Wn,3, and Wn,4

converge in P × P̃-probability to zero as well as that Wn,1 converges to the limit
stated in (A.3). The proof for the convergence of Wn,2,Wn,3, and Wn,4 are similar
and therefore, we only regard Wn,2. Let ε > 0 be an arbitrary real number, Markov’s
inequality yield

(P× P̃) (|Wn,2| ≥ ε) = (P× P̃)
(∣∣∣Wn,2 − EP×P̃[Wn,2] + E

P×P̃[Wn,2]
∣∣∣ ≥ ε

)
≤(P× P̃)

(∣∣∣Wn,2 − EP×P̃[Wn,2] + E
P×P̃[Wn,2]

∣∣∣ ≥ ε
)

≤(P× P̃)
(∣∣∣Wn,2 − EP×P̃[Wn,2]

∣∣∣+ ∣∣∣E
P×P̃[Wn,2]

∣∣∣ ≥ ε
)

≤ 1(
ε−

∣∣∣E
P×P̃[Wn,2]

∣∣∣)2 Var
P×P̃ [Wn,2] .

Later on, we show that E
P×P̃[Wn,2] = 0 holds. Due to the independence of P and P̃

and the law of total variance, we obtain

Var
P×P̃ [Wn,2] =E

P×P̃

[
Var

P×P̃

[
Wn,2

∣∣∣Xn
]]

+ Var
P×P̃

[
E
P×P̃

[
Wn,2

∣∣∣Xn
]]

=EP
[
Var

P̃

[
Wn,2

∣∣∣Xn
]]

+ VarP
[
E
P̃

[
Wn,2

∣∣∣Xn
]]

=EP [Var
P̃

[Wn,2]] + VarP [E
P̃

[Wn,2]] .
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Hence, Wn,2 converges in probability to zero if the expectation EP [Var
P̃

[Wn,2]] and
the variance VarP [E

P̃
[Wn,2]] converge to zero as n tends to infinity. For the sake of

readability, we define

κ := nRnP
(nRnP + ∆2nEnP + (∆− 1)2nEnR)nE(nE − 1) .

Taking into account that Xn,τ(i) and Xn,τ(1) have the same distribution as well as
that with probability 1/n the random variable Xn,τ(1) is equal to the random variable
Xn,i, i = 1, . . . , n, for the expectation E

P̃
[Wn,2] holds

E
P̃

[Wn,2] =
√
κ

nE∑
i=1

E
P̃

[
Xn,τ(i)

]
=
√
κnEEP̃

[
Xn,τ(1)

]
=
√
κnE

1
n

n∑
i=1

Xn,i.

Thus, E
P×P̃[Wn,2] = 0 follows immediately from the independence of P and P̃ as well as

the assumption that the average Xn,· has expectation zero. With κ = κ(n) ∈ O(1/n2),
we obtain

lim
n→∞

VarP [E
P̃

[Wn,2]] ≤ lim
n→∞

κ
nE
n

max
1≤i≤n

VarP[Xn,i] = 0. (A.4)

Moreover, to prove that the expectation EP [Var
P̃

[Wn,2]] converges to zero, we rear-
range the variance

Var
P̃

[Wn,2] = κVar
P̃

[
nE∑
i=1

Xn,τ(i)

]
= κE

P̃

(nE∑
i=1

Xn,τ(i) − nEXn,·

)2


=κE
P̃

 nE∑
i,j=1

Xn,τ(i)Xn,τ(j) − 2nEXn,·

nE∑
i=1

Xn,τ(i) + n2
EX

2
n,·


=κE

P̃

 nE∑
i,j=1,
i 6=j

Xn,τ(i)Xn,τ(j) +
nE∑
i=1

X2
n,τ(i)

− κn2
EX

2
n,·.

For i 6= j and i′ 6= j′, the random variables Xn,τ(i)Xn,τ(j) and Xn,τ(i′)Xn,τ(j′) are
identically distributed with respect to P̃ and with probability 1/(n(n−1)) the random
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variable Xn,τ(1)Xn,τ(2) is equal to Xn,iXn,j. Thus, we obtain

Var
P̃

[Wn,2] =κ nE(nE − 1)
n(n− 1)

n∑
i,j=1,
i6=j

Xn,iXn,j + κ
nE
n

n∑
i=1

X2
n,i − κn2

EX
2
n,·

=κ nE(nE − 1)
n(n− 1)

(
n2X

2
n,· −

n∑
i=1

X2
n,i

)
+ κ

nE
n

n∑
i=1

X2
n,i − κn2

EX
2
n,·

=κ
(
nE
n
− nE(nE − 1)

n(n− 1)

)
n∑
i=1

X2
n,i + κ

(
nE(nE − 1)n

(n− 1) − n2
E

)
X

2
n,·

=κ nE(n− nE)
n(n− 1)

n∑
i=1

X2
n,i − κ

nE(n− nE)
n− 1 X

2
n,·

=κnE(n− nE)
n(n− 1)

n∑
i=1

(Xn,i −Xn,·)2.

We already proved that the sample variance converges P almost surely and with
k = k(n) ∈ O(1/n2), it follows that the expectation EP[Var

P̃
[Wn,2]] converges to zero

as n approaches infinity. Thus, Wn,2 and analogously Wn,3 as well as Wn,4 converge
in P× P̃-probability to zero.
To prove the convergence of the variance estimator σ̂2

Perm (τn(Xn)), it remains to show
thatWn,1 converges in probability toW1 := wE(σ2

E+λ2
E)+wR(σ2

R+λ2
R)+wP (σ2

P +λ2
P ).

Analogously to Wn,2, let ε > 0 be an arbitrary real number and n sufficiently large
such that |E

P×P̃[Wn,1]−W1| < ε, Markov’s inequality yield

(P× P̃) (|Wn,1| ≥ ε) ≤ 1(
ε−

∣∣∣E
P×P̃[Wn,1]−W1

∣∣∣)2 Var
P×P̃ [Wn,1] .

Before showing that the right side converges to zero as n approaches infinity, we
simplify the notation of Wn,1. Thereto, we define the sequence (dn,i)i≤n as

dn,i := nEnRnP
nPnR + ∆2nPnR + (∆− 1)2nEnR

×


1

nE(nE−1) i = 1, . . . , nE
∆2

nR(nR−1) i = nE + 1, . . . , nE + nR
(∆−1)2

nP (nP−1) i = nE + nR + 1, . . . , n

and with that, Wn,1 is equal to ∑n
i=1 dn,iX

2
n,τ(i). For the sums dn,· := ∑n

i=1 dn,i and
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∑n
i=1 d

2
n,i, we have the asymptotic properties limn→∞ dn,· = 1 which follows from

lim
n→∞

dn,· = lim
n→∞

nEnRnP
nPnR + ∆2nEnP + (∆− 1)2nEnR

(
1

nE − 1 + ∆2

nR − 1 + (∆− 1)2

nP − 1

)

= lim
n→∞

nEnRnP
(nE − 1)(nR − 1)(nP − 1)

× (nR − 1)(nP − 1) + ∆2(nE − 1)(nP − 1) + (∆− 1)2(nR − 1)(nP − 1)
nPnR + ∆2nPnE + (∆− 1)2nEnR

,

as well as limn→∞
∑n
i=1 d

2
n,i = 0 which follows from

lim
n→∞

n∑
i=1

d2
n,i = lim

n→∞

(
nEnRnP

nPnR + ∆2nPnE + (∆− 1)2nEnR

)2

×
(

1
n2
E(nE − 1)2 + ∆4

n2
R(nR − 1)2 + (∆− 1)4

n2
P (nP − 1)2

)

= lim
n→∞

(
1 + ∆2nE

nR
+ (∆− 1)2nE

nP

)−2

×
(

n2
E

nE(nE − 1)2 + ∆4n2
E

nR(nR − 1)2 + (∆− 1)4n2
E

nP (nP − 1)2

)
.

For both limits, we took into account that none of the three groups vanish asymp-
totically, i.e. limn→∞ nk/n = wk ∈ (0, 1). Due to the independence of P and P̃, the
expectation of Wn,1 with respect to P× P̃ is given by

E
P×P̃[Wn,1] =

n∑
i=1

dn,iEP
[
E
P̃

[
X2
n,τ(i)

]]
= dn,·EP

[
1
n

n∑
i=1

X2
n,i

]

=dn,·
1
n

(
nE(σ2

E + λ2
E) + nR(σ2

R + λ2
R) + nP (σ2

P + λ2
P )
)
.

It follows that the expectation E
P×P̃[Wn,1] converges to W1. As for Var

P×P̃[Wn,2], the
variance of Wn,1 is equal to

Var
P×P̃[Wn,1] = EP [Var

P̃
[Wn,1]] + VarP [E

P̃
[Wn,1]] .

Since the forth moment of Xn,i with i = 1, . . . , n is bounded, for the second term
follows

VarP [E
P̃
[Wn,1]] = d2

n,·VarP
[

1
n

n∑
i=1

X2
n,i

]
≤ d2

n,·
1
n

max
1≤i≤n

EP

[
X4
n,i

]
.
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Hence, the variance VarP [E
P̃
[Wn,1]] converges to zero as n approaches infinity. It

remains to prove that EP [Var
P̃
[Wn,1]] converges to zero. Thereto, we calculate the

variance Var
P̃
[Wn,1] and for the sake of readability we omit the limits of the sums.

Var
P̃
[Wn,1] = E

P̃

(∑
i

dn,iX
2
n,τ(i) − EP̃

[∑
i

dn,iX
2
n,τ(i)

])2


=E
P̃

(∑
i

dn,iX
2
n,τ(i) − dn,·

1
n

∑
i

X2
n,i

)2


=E
P̃

∑
i,j

dn,idn,jX
2
n,τ(i)X

2
n,τ(j) − 2dn,·

(∑
i

dn,iX
2
n,τ(i)

)
1
n

∑
i

X2
n,i +

(
dn,·

1
n

∑
i

X2
n,i

)2


=E
P̃

∑
i 6=j

dn,idn,jX
2
n,τ(i)X

2
n,τ(j) +

∑
i

d2
n,iX

4
n,τ(i)

− (dn,· 1
n

∑
i

X2
n,i

)2

.

With the same arguments as before, we calculate the expectation and obtain the
variance

Var
P̃
[Wn,1]

=
∑
i 6=j

dn,idn,j

 1
n(n− 1)

∑
i 6=j

X2
n,iX

2
n,j +

(∑
i

d2
n,i

)
1
n

∑
i

X4
n,τ(i) −

(
dn,·

1
n

∑
i

X2
n,i

)2

.

The first term of the variance Var
P̃
[Wn,1] is equal to

d2
n,· −

∑
i d

2
n,i

n(n− 1)

(∑
i

X2
n,i

)2

−
∑
i

X4
n,i


= 1
n(n− 1)

(
d2
n,·

(∑
i

X2
n,i

)2

−
(∑

i

d2
n,·

)∑
i

X4
n,i −

(∑
i

d2
n,i

)(∑
i

X2
n,i

)2 )

+ 1
n(n− 1)

(∑
i

d2
n,i

)∑
i

X4
n,i.
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Hence, with dn,· := dn,·/n the variance Var
P̃
[Wn,1] can be rearranged to

Var
P̃
[Wn,1]

=d2
n,·


(∑

iX
2
n,i

)2

n(n− 1) −
∑
iX

4
n,i

n(n− 1) −

(∑
iX

2
n,i

)2

n2

+
(∑

i

d2
n,i

)−
(∑

iX
2
n,i

)2

n(n− 1) +
∑
iX

4
n,i

n− 1


=
∑
i

(dn,i − dn,·)2 1
n− 1

∑
j

(
X2
n,j −

1
n

∑
i

X2
n,i

)2

.

Since the forth moment of Xn,i with i = 1, . . . , n is bounded, the term

1
n− 1

∑
j

(
X2
n,j −

1
n

∑
i

X2
n,i

)2

converges in P-probability to a finite limit. Since ∑i(dn,i − dn,·)2 converges to zero,
it follows that the expectation EP[Var

P̃
[Wn,1] also converges to zero. Therefore, Wn,1

converges in P× P̃-probability to W1.

4. In the following, we prove that the maximum of the absolute values of the coefficients
(cn,i)i≤n approaches zero if n tends to infinity. As before, we take into account that
none of the three groups vanishes asymptotically:

max
1≤i≤n

|cn,i|

=
√

nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

max
{

1
nE

,
∆
nR
,
|∆− 1|
nP

}

≤
√

nEnRnP
nRnP + ∆2nEnP + (∆− 1)2nEnR

(
1
nE

+ ∆
nR

+ |∆− 1|
nP

)

=
√√√√√ 1

1 + ∆2nE
nR

+ (∆− 1)2nE
nP

(
1
√
nE

+ ∆√nE
nR

+ |∆− 1|√nE
nP

)
n→∞−−−→ 0.

5. Next, we prove the convergence

lim
d→∞

lim sup
n→∞

1
n

n∑
i=1

(
Xn,i −Xn,·

)2
1[d,∞)(|Xn,i −Xn,·|) = 0 P-a.s.

With lim supn→∞(an+bn) ≤ lim supn→∞ an+lim supn→∞ bn and the algebraic formula
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for the variance, we obtain P almost surly the inequality

lim
d→∞

lim sup
n→∞

1
n

n∑
i=1

(
Xn,i −Xn,·

)2
1[d,∞)(|Xn,i −Xn,·|)

≤ lim
d→∞

(
lim sup
n→∞

1
n

n∑
i=1

X2
n,i1[d,∞)(|Xn,i −Xn,·|) + lim sup

n→∞

(
−X2

n,·1[d,∞)(|Xn,i −Xn,·|)
))

Since Xn,· converges P almost surly to zero, the second limes superior is zero for
each d. Due to the strong law of large number which holds because the E[X2

n,i] are
bounded, for each d, the first limes superior is equal to

lim sup
n→∞

1
n

n∑
i=1

X2
n,i1[d,∞)(|Xn,i −Xn,·|) =

∑
k=E,R,P

wkE
[
X2
k,11[d,∞)(|Xk,1)

]
.

Since the expectation E[X2
k,1] exists for k = E,R, P , the expectationE

[
X2
k,11[d,∞)(|Xk,1)

]
converges to zero as d approaches infinity.

Since the test statistic TRETn,Perm fulfills the points 1.-5. from Theorem 4.4, the assertion
holds.

Proof of Theorem 6.6. The function x 7→ 1/x, x > 0, is strictly convex and since σ2
E,∆2σ2

R, (1−
∆)2σ2

P > 0 holds, the function σ2
RET (wE, wR, wP ) is a strictly convex function and a local

minimum is also a unique global minimum. Since the function fi, i = 1, 2, 3, are continuously
differentiable convex functions and h(·) is affine, the KKT conditions stated below are
sufficient conditions for a local minimum. Hence, we can solve the minimization problem
(6.9) by finding vectors w∗ ∈ R3 which fulfill the KKT conditions

fi(w∗), ≤ 0 i = 1, 2, 3,

h(w∗) = 0,

λi ≥ 0, i = 1, 2, 3,

λifi(w∗) = 0, i = 1, 2, 3,

5σ2
ER(w∗) + λ15 f1(w∗) + λ25 f2(w∗) + λ35 f3(w∗) + µ5 h(w∗) = 0

with λ ∈ R3 and µ ∈ R. Hence, the fifth KKT condition is equal to the following system of
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linear equations

− σ2
E

w2
E

− λ1 + µ = 0

− ∆2σ2
R

w2
R

− λ2 + µ = 0

− (1−∆)2σ2
P

w2
P

+ λ1 + λ2 − λ3 + µ = 0.

We calculate the optimal sample size allocation wopt,m by distinguishing the eight different
cases such that the formula

(
λ1 = 0 ∨ f1(w) = 0

)
∧
(
λ2 = 0 ∨ f2(w) = 0

)
∧
(
λ3 = 0 ∨ f3(w) = 0

)
is true, i.e. the forth KKT condition is fulfilled. For each case, we obtain requirements such
that the KKT conditions hold. Hence, if an allocation w∗ fulfils the resulting requirement,
it also fulfils the KKT conditions and is therefore the unique solution wopt,m.

1. f1(w) = f2(w) = f3(w) = 0.
Thus, wE = wR = wP = m holds. Due to h(w) = 0, it follows that m has to
be 1/3. Therefore, if m = 1/3, the optimal sample size allocation is given by
wE = wR = wP = 1/3.

2. f1(w) = f2(w) = λ3 = 0.
With h(w) = 0, it follows that the equality wE = wR = wP = 1/3 holds. Since we
assumed m ≤ 1/3, the condition f3(w) ≤ 0 is fulfilled. The inequalities λ1, λ2 ≥ 0 as
well as the fifth KKT condition holds if the inequalities

∆2σ2
R + (1−∆)2σ2

P ≥ 3σ2
E,

σ2
E + (1−∆)2σ2

P ≥ 3σ2
R

are true. In addition, these are sufficient conditions for wE = wR = wP = 1/3 being
the solution wopt,m.

3. f1(w) = λ2 = λ3 = 0.
The condition f1(w) = 0 yield wE = wP and with h(w) = 0, we obtain wR = 1− 2wE.
Additionally, f2(w) ≤ 0 and f3(w) ≤ 0 result in wP ∈ [m, 1/3]. The fifth KKT
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condition has the solutions

wP,± =


±
√

2∆2σ2
R(σ2

E+(1−∆)2σ2
P )+2(σ2

E+(1−∆)2σ2
P )

2(2σ2
E−∆2σ2

R+2(1−∆)2σ2
P ) ∆2σ2

R 6= 2(σ2
E + (1−∆)2σ2

P )
1
4 ∆2σ2

R = 2(σ2
E + (1−∆)2σ2

P )

and λ1 ≥ 0 results in

∆2σ2
R

(1− 2wP )2 ≥
σ2
E

w2
P

Hence, if one of the wP,± is contained in the interval [m, 1/3] and fulfills the inequality
stated last, it determines the optimal allocation wopt,m.

4. λ1 = λ2 = λ3 = 0.
In this case the optimal solution wopt,m is equal to the unrestricted optimal sample
size allocation wopt if for the optimal allocation wopt the restriction wE, wR ≥ wP ≥ m

holds.

5. λ1 = λ2 = f3(w) = 0.
The equalities f3(w) = 0 and h(w) = 0 result in wP = m and wE = 1 − wR − m,
respectively. Further, the inequalities f1(w), f2(w) ≤ 0 yield wE, wR ∈ [m, 1 − 2m].
Additionally, due to the fifth KKT condition, for wR holds

wR,± =


±
√
σ2
E∆2σ2

R(m−1)2+∆2σ2
R(m−1)

σ2
E−∆2σ2

R
σ2
E 6= ∆2σ2

R

1−m
2 σ2

E = ∆2σ2
R

and it follows that λ3 ≥ 0 is equal to

∆2σ2
R

w2
R,±
≥ (1−∆)2σ2

P

m2 .

Therefore, if one of the wR,± fulfils the corresponding conditions, it determines the
optimal solution wopt,m.

6. f1(w) = λ2 = f3(w) = 0.
The equation f1(w) = f3(w) = 0 yield wE = wP = m. With h(w) = 0, we obtain
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wR = 1− 2m. These allocations are the optimal solution wopt,m if the inequalities

∆2σ2
R

(1−m)2 ≥
σ2
E

m2,
,

2 ∆2σ2
R

(1−m)2 ≥
σ2
E + (1−∆)2σ2

P

m2

hold, since this assures the the fifth KKT condition as well as λ1, λ3 ≥ 0 are fulfilled.

7. λ1 = f2(w) = f3(w) = 0.
From f2(w) = f3(w) = 0 and h(w) = 0, we obtain wR = wP = m as well as
wE = 1 − 2m. Moreover, the fifth KKT condition and λ2, λ3 ≥ 0 results in the
inequalities

σ2
E

(1−m)2 ≥
∆2σ2

R

m2 ,

2 σ2
E

(1− 2m)2 ≥
∆2σ2

R + (1−∆)2σ2
P

m2 .

8. λ1 = f2(w) = λ3 = 0.
The equality f2(w) = 0 yield wR = wP and from h(w) = 0 follows that wE = 1− 2wR
holds. Moreover, f1(w) ≤ 0 and f3(w) ≤ 0 result in wR ∈ [m, 1/3] and from the fifth
KKT condition we obtain

wR,± =


±
√

2σ2
E(∆2σ2

R+(1−∆)2σ2
P )−2(∆2σ2

R+(1−∆)2σ2
P )

2(σ2
E−2(∆2σ2

R+(1−∆)2σ2
P )) σ2

E 6= 2((1−∆)2σ2
P + ∆2σ2

R)
1
4 σ2

E = 2((1−∆)2σ2
P + ∆2σ2

R)
.

Last but not least, λ2 ≥ 0 yield

σ2
E

(1− 2wR,±)2 ≥
∆2σ2

R

w2
R,±

.

Summing up, we obtain the solution wopt,m by finding a vector w = (wE, wR, wP ) which
fulfills one of the conditions stated in the items 1.-8.

Proof of Theorem 6.7. Firstly, we rearrange the minimization problem (6.10) to obtain a
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one-dimensional optimization problem

wopt,E=R := arg min σ2
RET (wE, wE, 1− 2wE) := f(wE)

s.t. wE ∈
[
m,

1−m
2

]
.

The function f is strictly convex on the interval (0, 1/2) and hence, it has a unique global
minimum on the interval [m, (1 − m)/2] which will hereafter denoted as the domain of
f(·). To determine this minimum, we calculate the root of the derivative of f(·). If the
root w∗E is contained in the domain of f(·), it is the global minimum. However, if it is not
in the domain, the function f has a minimum at the boundary of [m, (1 −m)/2]. More
precisely, if w∗E < m holds, the minimum of f(wE) is at w∗E = m, and if w∗E > (1−m)/2
holds, (1−m)/2 is the minimum of the function f on [m, (1−m)/2].
The function f(·) and its first derivative f ′(·) are given by

f(wE) = σ2
E + ∆2σ2

R

wE
+ (1−∆)2σ2

P

1− 2wE
,

f ′(wE) = −σ
2
E + ∆2σ2

R

w2
E

+ 2(1−∆)2σ2
P

(1− 2wE)2 .

Equating the first derivative with zero and rearranging the resulting equation yield

(
2(1−∆)2σ2

P − 4(σ2
E + ∆2σ2

R)
)
w2
E + 4(σ2

E + ∆2σ2
R)wE − (σ2

E + ∆2σ2
R) = 0. (A.5)

To calculate the wE solving the equation, we differentiate the cases (1−∆)2σ2
P = 2(σ2

E +
∆2σ2

R) and (1−∆)2σ2
P 6= 2(σ2

E + ∆2σ2
R). For the first case, w∗E = 1/4 solves Equation (A.5).

For the second case, the solution of Equation (A.5) with restriction to wE ∈ (0, 1/2) is
given by

w∗E =
−2(σ2

E + ∆2σ2
R) +

√
2(1−∆)2σ2

P (σ2
E + ∆2σ2

R)
2(1−∆)2σ2

P − 4(σ2
E + ∆2σ2

R) .

As mentioned before, (w∗E, w∗E, 1 − 2w∗E) is the solution of minimization problem (6.10)
if w∗E ∈ [m, (1 − m)/2] holds. If w∗E is smaller than m, the solution of (6.10) is given
by w∗E = (m,m, 1 − 2m) and if w∗E is larger than (1 − m)/2, we obtain the solution
w∗E = ((1−m)/2, (1−m)/2,m).
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