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Typical	random	effects	meta-analysis

• Forest	plot
• Mean	effect	size,	SE,	CI
• Variance	or	SD	of	true	effect	sizes	(tau-squared	or	tau),				
• Derived	quantities,	such	as	I-squared



What	is	missing?

• Uncertainty	in	estimate	of	tau
• Sensitivity	to	tau	of:
• Parameter	estimates
• Shrunken	estimates
• Standard	errors	of	all	quantities

• Usually	of	concern	only	when	number	of	studies	is	small	to	moderate



Trace	plot	SAT	coaching	from	Rubin	1981

• 8	parallel	experiments
• Left	side:	Fixed	Effects
• Right	side:	Independent	studies
• Bottom:	Posterior	(or		likelihood)	of	
tau
• Note	zero	is	most	likely,	but	wide	
range	is	possible

• Lines:	Shrunken	estimates	of	study	
effects,	for	each	possible	value	of	
tau
• Shrinkage	changes	a	lot	over	plausible	
values	of	tau



Trace	Plot	from	DuMouchel’s	hblm	program

• For	decades,	the	only	program	
to	product	trace	plots
• Discrete	version	of	tau	(for	
numerical	integration)
• Note	spacing	looks	
approximately	exponential,	not	
linear
• Gives	misleading	view	of	posterior	
distribution	of	tau



Aspirin	Effect	on	Future	Heart	Attack

• Clearly	AMIS	is	an	outlier
• Other	studies	are	similar,	even	if	
tau		were	relatively	large
• (But	size	of	tau	is	affected	by	the	
AMIS	study,	and	is	much	lower	
without	it.)

• For	most	reasonable	values	of	
tau,	other	studies	are	
remarkably	consistent



Ex	with	covariates:	DuMouchel	reanalysis	of	
NO2	data

• Effect	of	NO2	on	breathing
• Range	of	conclusions	depending	
on	value	of	tau,	which	is	
uncertain
• If	tau=0,	small	effect
• If	tau=.15,	effects	range	from	
about	.05	to	.28
• Studies	varied	in	how	well	they	
controlled	for	various	sources	of	
bias



Adjust	for	one	possible	source	of	bias

• Gender	is	either	adjusted	for	in	the	
study,	or	not
• Shrinkage	is	toward	mean	of	
subgroups
• If	not	adjusted	for,	effect	sizes	(for	
plausible	ranges	of	tau)	are	small
• If	adjusted	for,	effect	sizes	are	large	
(about	25-30	percent	increase	in	
breathing	issues	for	high	NO2)
• Within	each,	residual	variation	is	
relatively	small	(over	plausible	
range	of	tau	values,	but	not	outside	
that	range)



Covariates	for	all	three	potential	bias	sources

• When	studies	have	none	of	the	
three	potential	flaws,	effect	size	
is	estimated	to	be	about	.30	to	
.33	(for	plausible	values	of	tau)	
• When	studies	have	all	three	
flaws,	effect	size	is	estimated	to	
be	about	0	to	.05
• By	using	linear	combinations	of	
parameter	estimates,	we	can	
estimate	effect	size	for	any	study	
design



Implementation	in	R::bayesmeta

• All	but	one	slide	in	this	presentation	was	produced	by	bayesmeta
• Includes	basic	trace	plot,	but	many	additional	options
• Confidence	intervals
• Plots	for	frequentist	models	using	metafor
• Q	statistic	rather	than	posterior	if	desired
• Control	of	translucency	of	lines	(make	some	lighter	to	highlight	others)



Summary

• Trace	plots	are	a	rich	source	of	information	for	meta-analysts
• Easy	to	see	whether/how	estimates	depend	on	plausible	values	of	tau
• (And	what	values	of	tau	are	plausible)
• Can	illustrate	outlying	studies,	and	other	abnormalities	(literally)
• Vital	because	we	usually	assume	normal	distribution,	even	though	this	is	not	
scientifically	necessary

• Can	illustrate	effects	of	covariates,	and	dependence	on	tau
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