tu technische universität dortmund

Mathematical Statistics and Applications in Industry

The consequences of neglected confounding and interactions in mixed-effects meta-regression: An illustrative example

Recent Advances in Meta-Analysis: Methods and Software

Eric S. Knop

- Interactions reflecting effect moderators are often neglected in meta-regression
- often due to the limited number of available studies
- but still: we may end up with biased estimates and draw wrong conclusions when important moderators and interactions are not included

ightarrow Today we analyse an example which illustrates this problem

Content of today

- Method: the mixed-effects meta-regression model
- Introduction to an example of a meta-regression on acute heart failure
- Analysis of the example with different versions of the model
- Brief simulation on subsamples of the example
- Suggestions and outlook

The mixed effects meta regression model

$$y_i = \beta_0 + x_{i1}\beta_1 + ... + x_{ip}\beta_p + u_i + e_i, i = 1, ..., k$$

with:

- **y**_i, function of the effect measure of study i = 1, ..., k
- $x_{ij}, \text{ moderator } j \text{ in study } i, \text{ for } j = 1, ..., p$
- β_j , coefficient of moderator *j*,
- $u_i \sim \mathcal{N}(0, \tau^2)$, between study heterogeneity
- $e_i \sim \mathcal{N}(0, \sigma_i^2)$, sampling error within study *i*

Estimation of the model parameters

- $\hat{\beta}$ = weighted least squares estimator (WLS) for β with a consistent estimate $\hat{\tau}^2$ for τ^2 (we use REML).
- t-type confidence intervals for β_j :

$$\left[\hat{\beta}_{j} \mp t_{(k-m-1),(1-rac{lpha}{2})}\sqrt{\hat{\mathbf{\Sigma}}_{jj}}
ight]$$

with $t_{(k-m-1),(1-\frac{\alpha}{2})}$ being the $(1-\frac{\alpha}{2})$ -quantile of the $t_{(k-m-1)}$ -distribution and $\hat{\Sigma}_{jj}$ the estimated variance of β_j .

we estimate $\hat{\Sigma}_{jj}$ with the Knapp-Hartung (2003) method

A meta regression on Acute Heart Failure by Kimmoun et. al (2021)

- research synthesis included 285 studies on acute heart failure (204 report 1-year mortality)
- studies published between 1998 and 2017
- outcome measures were 30-day and 1-year readmission rates and mortality
- study characteristics like median year of recruitment, average age of the patients and therapy effects were reported
- major finding: statistically significant decline of 1-year mortality over calendar time
- but: average age of patients decreased over calendar time as well (1.56 years every 10 years)

 \rightarrow is the observed time trend confounded by the average age or is there an interaction between those variables?

Meta-regression analysis with a univariable model

 $y_i = \beta_0 + \beta_{year} x_{i,year} + u_i + e_i$ (y_i logit transformed 1-year mortality)

Figure: Model from the analysis by Kimmoun et al. (2021): Meta-regression model of median year of recruitment for the one-year mortality.

$$\hat{eta}_{\mathit{year}} = -$$
0.015 (95%-CI: [-0.0263, -0.0042])

Meta-regression analysis with a two variable model

$$y_i = \beta_0 + \beta_{year} x_{i,year} + \beta_{age} x_{i,age} + u_i + e_i$$

Figure: Trends of year of recruitment (left) and average age (right) on the one-year mortality in a mixed-effects meta-regression model with these two moderators.

 $\hat{\beta}_{year} = -0.0081, 95\%$ -CI: $[-0.0200, 0.0038]; \hat{\beta}_{age} = 0.0299, 95\%$ -CI: [0.0178, 0.0420]

The consequences of neglected confounding and interactions in mixed-effects meta-regression: An illustrative example

Meta-regression analysis with interaction

 $y_i = \beta_0 + \beta_{year} x_{i,year} + \beta_{age} x_{i,age} + \beta_{int} x_{i,year} x_{i,age} + u_i + e_i$ (moderators centered)

Figure: Trends of year of recruitment for an average age of 60.5 (left) and 79.5 (right) years in a mixed-effects meta-regression model with two moderators and their interaction.

 $\hat{\beta}_{year} = -0.0066, 95\%$ -CI: [-0.0185, 0.0052]; $\hat{\beta}_{age} = 0.0333, 95\%$ -CI: [0.0208, 0.0457]; $\hat{\beta}_{int} = -0.0018, 95\%$ -CI: [-0.0035, -0.0001]

The consequences of neglected confounding and interactions in mixed-effects meta-regression: An illustrative example

Comparison of the results

Table: Parameter estimates and corresponding 95%-CIs for all three models.

model	$\hat{eta}_{y\!ear}$	\hat{eta}_{age}	\hat{eta}_{int}
univariable	-0.0150, [-0.0263, -0.0042]	-	-
two variables	-0.0081, [-0.0200, 0.0038]	0.0299, [0.0178, 0.0420]	-
interaction	-0.0066, [-0.0185, 0.0052]	0.0333, [0.0208, 0.0457]	-0.0018, [-0.0035, -0.0001]

Analysis on subsamples

- a lot more (204) studies were available than common in meta-analysis
- would we draw the same conclusions if less studies were available?
- ightarrow we draw subsamples of size 30 and fit the models for them:

Table: Rejection rates (at confidence level 0.95) and median interval lengths for 1000 subsamples of size 30 for each model, respectively.

	moderator/model	univariable	two variables	interaction
Rejection rate	eta_{year}	0.124	0.036	0.052
	eta_{age}	-	0.524	0.586
	β_{int}	-	-	0.125
Interval length	eta_{year}	0.063	0.061	0.063
	$eta_{ extsf{age}}$	-	0.063	0.068
	β_{int}	-	-	0.010

Suggestions

- Kimmoun et al. (2021) showed significant decline in 1-year mortality over calendar time
 - fitting a model with both moderators revealed that the time trend was confounded by the average age
 - including an interaction to the model showed that there is a significant time trend which depends on the average age
- \rightarrow Which model should we believe?
 - has to be considered by experts if confounding or interactions are plausible
 - we suggest to always include interaction terms, when they are plausible
 - generally considering possible confounding variables and interactions may generally improve insights into the underlying data, even when few studies are available

- The analysis is based on one study. Extensive systematic reviews or simulations are necessary to generalize the suggestions.
- Much more studies were included than common in meta analysis.
- Knapp-Hartung estimator was originally proposed for models with a single covariate. What about other variance estimators for models with interactions? → more on that in the next talk by Markus Pauly

Literature

Kimmoun, A., Takagi, K., Gall, E., Ishihara, S., Hammoum, P., El Bèze, N., Bourgeois, A., Chassard, G., Pegorer-Sfes, H., Gayat, E., Solal, A. C., Hollinger, A., Merkling, T., Mebazaa, A., & METAHF Team (2021). Temporal trends in mortality and readmission after acute heart failure: a systematic review and meta-regression in the past four decades. *European journal of heart failure, 23(3)*, 420–431.

Knapp, G., & Hartung, J. (2003). Improved tests for a random effects meta-regression with a single covariate. *Statistics in Medicine*, *22*, 2693–2710.

Knop, E. S., Pauly, M., Friede, T., & Welz, T. (2023). The consequences of neglected confounding and interactions in mixed-effects meta-regression: An illustrative example. *Research Synthesis Methods*.14(4), 647-651.