The Common Mean Problem and Inference in Random-Effects Meta-Analysis Model with Normal Outcomes

Guido Knapp

Department of Statistics, TU Dortmund University, Dortmund, Germany

Symposium "Recent Advances in Meta-Analysis Methods and Software" Göttingen, Germany, 23 – 24 August 2023

(日) (國) (필) (필) (필) 표

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
000000	000		00000	000

Contents

- 2 Meta-Analysis Model
- Inference with Normal Means

4 Example

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
●00000	000		00000	000

Common Mean Problem

- Let us consider k independent normal populations where the *i*th population follows a normal distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma_i^2 > 0$, i = 1, ..., k.
- Let \overline{Y}_i denote the sample mean in the *i*th population, S_i^2 the sample variance, and n_i the sample size, i = 1, ..., k.
- Then, we have

$$ar{Y}_i \sim \mathcal{N}\left(\mu \ , \ rac{\sigma_i^2}{n_i}
ight)$$
 and $rac{(n_i-1)}{\sigma_i^2} \sum_{i=1}^{N_i} \chi_{n_i-1}^2, \ i=1,\ldots,k,$

and the statistics are all mutually independent. Note that $(\bar{Y}_i, S_i^2, i = 1, ..., k)$ is minimal sufficient for $(\mu, \sigma_1^2, ..., \sigma_k^2)$ even though it is not complete.

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
○●○○○○	000		00000	000

Estimates of μ

• If the population variances $\sigma_1^2, \ldots, \sigma_k^2$ are completely known, the maximum likelihood estimator of μ is given by

$$\hat{\mu} = \frac{\sum_{i=1}^{k} \frac{n_i}{\sigma_i^2} \, \bar{\mathbf{Y}}_i}{\sum_{j=1}^{k} \frac{n_j}{\sigma_j^2}}.$$

- The above estimator is also the minimum variance unbiased estimator under normality as well as the best linear unbiased estimator without normality for estimating μ.
- The variance of $\hat{\mu}$ is given by

$$\operatorname{Var}\left(\hat{\mu}\right) = \frac{1}{\sum_{i=1}^{k} \frac{n_i}{\sigma_i^2}}.$$

Common Mean Problem 00●000	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks 000
Estimates of μ				

• Graybill-Deal (1959) estimator of μ is given as

$$\hat{\mu}_{GD} = \frac{\sum_{i=1}^{k} \frac{n_i}{S_i^2} \, \bar{Y}_i}{\sum_{j=1}^{k} \frac{n_j}{S_j^2}}$$

Clearly, $\hat{\mu}_{\textit{GD}}$ is an unbiased estimator of the common mean μ .

• For calculating the variance of $\hat{\mu}_{\textit{GD}},$ it holds

$$\begin{aligned} \mathsf{Var}\left(\hat{\mu}_{GD}\right) &= \mathsf{E}\left[\mathsf{Var}\left(\hat{\mu}_{GD}|S_{1},\ldots,S_{k}\right)\right] + \mathsf{Var}\left[\mathsf{E}\left(\hat{\mu}_{GD}|S_{1},\ldots,S_{k}\right)\right] \\ &= \mathsf{E}\left[\left(\sum_{i=1}^{k}\frac{n_{i}\;\sigma_{i}^{2}}{S_{i}^{4}}\right) \middle/ \left(\sum_{i=1}^{k}\frac{n_{i}}{S_{i}^{2}}\right)^{2}\right].\end{aligned}$$

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
000●00	000		00000	000

Estimates of μ

Meier (1953) derived a first order approximation of the variance of $\hat{\mu}_{\textit{GD}}$ as

$${f Var}\left(\hat{\mu}_{GD}
ight) = rac{1}{\sum_{i=1}^k rac{n_i}{\sigma_i^2}} \left[1 + 2\sum_{i=1}^k rac{1}{n_i-1} \,\, c_i \,\, (1-c_i) + O\left(\sum_{i=1}^k rac{1}{(n_i-1)^2}
ight)
ight]$$

with

$$c_i = \frac{n_i / \sigma_i^2}{\sum_{j=1}^k n_j / \sigma_j^2}, \ i = 1, \dots, k.$$

▶ ∢ ⊒ ▶

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
0000●0	000		00000	000

Variance Estimates

Sinha (1985) derived an unbiased estimator of the variance of $\hat{\mu}_{GD}$ that is a convergent series. A first order approximation of this estimator is

$$\widehat{\mathsf{Var}}_{(1)}\left(\widehat{\mu}_{GD}\right) = \frac{1}{\sum_{i=1}^{k} \frac{n_i}{S_i^2}} \left[1 + \sum_{i=1}^{k} \frac{4}{n_i + 1} \left(\frac{n_i \ / \ S_i^2}{\sum_{j=1}^{k} n_j \ / \ S_j^2} \ - \ \frac{n_i^2 \ / \ S_i^4}{\left(\sum_{j=1}^{k} n_j \ / \ S_j^2\right)^2} \right) \right]$$

This estimator is comparable to Meier's (1953) approximate estimator:

$$\widehat{\mathsf{Var}}_{(2)}\left(\widehat{\mu}_{GD}\right) = \frac{1}{\sum_{i=1}^{k} \frac{n_i}{S_i^2}} \left[1 + \sum_{i=1}^{k} \frac{4}{n_i - 1} \left(\frac{n_i / S_i^2}{\sum_{j=1}^{k} n_j / S_j^2} - \frac{n_i^2 / S_i^4}{\left(\sum_{j=1}^{k} n_j / S_j^2\right)^2} \right) \right]$$

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
00000●	000		00000	000

Variance Estimates

Two further estimates

• The "classical" meta-analysis variance estimator

$$\widehat{\mathsf{Var}}_{(3)}\left(\widehat{\mu}_{GD}\right) = \frac{1}{\sum_{i=1}^{k} \frac{n_i}{S_i^2}}.$$

• Hartung (1999): approximate variance estimator

$$\widehat{\mathsf{Var}}_{(4)}(\hat{\mu}_{GD}) = \frac{1}{\sum_{i=1}^{k} \frac{n_i}{S_i^2}} \left[\frac{1}{k-1} \sum_{i=1}^{k} \frac{n_i}{S_i^2} \left(\bar{Y}_i - \hat{\mu}_{GD} \right)^2 \right].$$

< ∃ →

Common Mean Problem	Meta-Analysis Model ●00	Inference with Normal Means	Example 00000	Final Remarks 000

Random-Effects Model

- Let us consider k independent normal populations where the *i*th population follows a normal distribution with mean $\mu_i \in \mathbb{R}$ and variance $\sigma_i^2 > 0$, i = 1, ..., k.
- For the expected values, we assume

$$\mu_i \sim N(\mu, \tau^2), i = 1, \ldots, k.$$

Here, μ is the grand mean and τ^2 the between-population variance (heterogeneity parameter).

- Let \overline{Y}_i denote the sample mean in the *i*th population, S_i^2 the sample variance, and n_i the sample size, i = 1, ..., k.
- Then, we obtain the random-effects model

$$\bar{Y}_i \sim N\left(\mu \ , \ \tau^2 + \frac{\sigma_i^2}{n_i}\right), \ i = 1, \dots, k.$$

Common Mean Problem	Meta-Analysis Model 0●0	Inference with Normal Means	Example 00000	Final Remarks 000

Random-Effects Model

• Practically in meta-analysis, we work with

$$ar{Y}_i \sim N\left(\mu \ , \ au^2 + rac{S_i^2}{n_i}
ight), \ i=1,\ldots,k.$$

• Parameter space of (μ, τ^2) :

$$\Theta = \mathbb{R} imes [0,\infty)$$
 or $ilde{\Theta} = \mathbb{R} imes (0,\infty)$

Do we allow $\tau^2 = 0$ or not?

• Note: The variances S_i^2/n_i determine the order of the weights of the populations in the meta-analysis, in other words, the order of the importance of the populations.

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
000000	00●		00000	000

Random-Effects Model

• In simulation studies, however, for studying properties of statistical methods, the parameter space of the data-generating model is for $(\mu, \tau^2, \sigma_1^2, \dots, \sigma_k^2)$

$$\Theta^* = \mathbb{R} imes [0,\infty) imes (0,\infty)^k$$

using
$$\frac{(n_i-1) S_i^2}{\sigma_i^2} \sim \chi^2_{n_i-1}$$
, for generating S_i^2 , $i = 1, \dots, k$.

• Consequently, the order of the importance of the populations may change from simulation run to simulation run.

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
	000	●000000	00000	000

Heterogeneity estimates

- How important is the estimation of the heterogeneity parameter?
- What is the criterion for a *good* estimator? To describe well the underlying heterogeneity OR

to produce a good statistical analysis about the grand mean?

• Confidence intervals for the heterogeneity parameter exist. If we accept the values in the intervals as feasible values for the heterogeneity, what will be their impact on the statistical analysis about the grand mean?

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
000000	000	○●○○○○○	00000	000

Weights in RE Model

Example: Results of eight randomized controlled trials comparing the effectiveness of amlodipine and a placebo on work capacity (here only the results of the control group, Li et al. (1994))

	Placebo (C)			
Protocol	n _{Ci}	Ӯсі	s_{Ci}^2	
154	48	-0.0027	0.0007	
156	26	0.0270	0.1139	
157	72	0.0443	0.4972	
162A	12	0.2277	0.0488	
163	34	0.0056	0.0955	
166	31	0.0943	0.1734	
303A	27	-0.0057	0.9891	
306	47	-0.0057	0.1291	

What would be a good guess for a common mean?

Common Mean Problem 000000	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks 000
Weights in RE Mo	del			

- Weights depend on the empirical variances and the sample sizes.
- Not only large sample size may lead to a larger precision of the study-specific estimate but also a small empirical variance.
- Should a result from a rather homogeneous study population (small variance) really be the most important result in meta-analysis?
- Hartung et al. (2003): Methods forcombining results of experiments with general weights including inverse variances in the random-effects model.
- Simulation study: Choosing the random-effects model as data-generating model, which Type I error rate is then acceptable for using general weights?

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks 000

- If you accept $\tau^2 \in [0, \infty)$, you will allow that the random-effects model may reduce to the common effect model for $\tau^2 = 0$.
- If the heterogeneity estimate is zero, the meta-analysis is done in the common effect model.
- Should we use approximate confidence in the common mean problem? No!
- $\bullet\,$ In the common mean problem, exact confidence intervals for $\mu\,$ exist.

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks 000

Since

$$t_i = rac{\sqrt{n_i} \ \left(ar{Y}_i - \mu
ight)}{S_i} \sim t_{n_i-1}$$

or, equivalently,

$$F_i = \frac{n_i \left(\bar{Y}_i - \mu\right)^2}{S_i^2} \sim F_{1,n_i-1}$$

are test statistics for testing hypotheses about μ based on the *i*th sample, suitable linear combinations of these test statistics or other functions thereof can be used as a pivotal quantity to construct exact confidence intervals for μ .

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks 000

Fairweather (1972): weighted linear combination of the t_i 's, namely

$$W_t = \sum_{i=1}^k u_i t_i, \quad u_i = \frac{[Var(t_i)]^{-1}}{\sum_{j=1}^k [Var(t_i)]^{-1}}, i = 1, \dots, k.$$

Let $b_{\alpha/2}$ denote the upper critical value of the distribution of W_t satisfying the equation $1 - \alpha = P(|W_t| \le b_{\alpha/2})$, then the exact $100(1 - \alpha)\%$ confidence interval for μ is given by

$$Cl_{(7)}(\mu): \frac{\sum_{i=1}^{k} \sqrt{n_{i}} \ u_{i} \ \bar{Y}_{i} \ / \ S_{i}}{\sum_{i=1}^{k} \sqrt{n_{i}} \ u_{i} \ / \ S_{i}} \mp \frac{b_{\alpha/2}}{\sum_{i=1}^{k} \sqrt{n_{i}} \ u_{i} \ / \ S_{i}}$$

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
	000	000000●	00000	000

- At least seven exact intervals exist. Which one should we use?
- All the intervals except Fairweather's and Hartung and Knapp (2005) interval do not necessarily produce a genuine interval.
- For some intervals, sufficient conditions exist to produce a genuine interval.
- What is a good strategy to reduce the random-effects model to the common mean problem? Use of an estimator of τ^2 or a hypothesis test for $H_0: \tau^2 = 0$?

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
000000	000		●0000	000

Example

Example: Results of eight randomized controlled trials comparing the effectiveness of amlodipine and a placebo on work capacity (here only the results of the control group, Li et al. (1994))

	Placebo (C)				
Protocol	n _{Ci}	Ӯсі	s_{Ci}^2		
154	48	-0.0027	0.0007		
156	26	0.0270	0.1139		
157	72	0.0443	0.4972		
162A	12	0.2277	0.0488		
163	34	0.0056	0.0955		
166	31	0.0943	0.1734		
303A	27	-0.0057	0.9891		
306	47	-0.0057	0.1291		

What would be a good guess for a common mean?

Common Mean Problem and RE Meta-Analysis Model

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
			00000	

			95%-CI	%W(common)	%W(rando	m)
1	-0.0027	[-0.0102;	0.0048]	97.8	20	6.5
2	0.0270	[-0.1027;	0.1567]	0.3	11	1.5
3	0.0443	[-0.1186;	0.2072]	0.2	8	8.7
4	0.2277	[0.1027;	0.3527]	0.4	12	2.0
5	0.0056	[-0.0983;	0.1095]	0.5	14	4.5
6	0.0943	[-0.0523;	0.2409]	0.3	10	0.0
7	-0.0057	[-0.3808;	0.3694]	0.0		2.2
8	-0.0057	[-0.1084;	0.0970]	0.5	14	4.6
				95%-0	Cl z	p-value
Co	mmon effe	ct model	-0.0014	[-0.0088; 0.0060	0] -0.38	0.7058
Ra	ndom effec	ts model	0.0428	[-0.0156; 0.1013	3] 1.44	0.1510

Quantifying heterogeneity:

tau2 = 0.0033 [0.0000; 0.0220]; tau = 0.0578 [0.0000; 0.1482]

.⊒ →

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
			00000	

Study	TE SE(TE)		95%–CI	Weight (common) (Weight random)
1	-0.0027 0.0038	•	-0.00 [-0.01; 0.00]	97.8%	26.5%
2	0.0270 0.0662	·	0.03 [-0.10; 0.16]	0.3%	11.5%
3	0.0443 0.0831		0.04 [-0.12; 0.21]	0.2%	8.7%
4	0.2277 0.0638		0.23 [0.10; 0.35]	0.4%	12.0%
5	0.0056 0.0530		0.01 [-0.10; 0.11]	0.5%	14.5%
6	0.0943 0.0748		0.09 [-0.05; 0.24]	0.3%	10.0%
7	-0.0057 0.1914		-0.01 [-0.38; 0.37]	0.0%	2.2%
8	-0.0057 0.0524	<u> </u>	-0.01 [-0.11; 0.10]	0.5%	14.6%
Common effe		\$	-0.00 [-0.01; 0.01]	100.0%	
Random effec	cts model		0.04 [-0.02; 0.10]		100.0%
		-0.3 -0.1 0 0.1 0.2 0.3			
Heterogeneity:	$l^2 = 54\%, \tau^2 = 0.0033, p = 0.03$				

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 000●0	Final Remarks 000

Subgroup analysis (delete study 4)

			95%-CI	%W(common)	%W(rand	om)
1	-0.0027	[-0.0102;	0.0048]	98.1		98.1
2	0.0270	[-0.1027;	0.1567]	0.3		0.3
3	0.0443	[-0.1186;	0.2072]	0.2		0.2
4	0.0056	[-0.0983;	0.1095]	0.5		0.5
5	0.0943	[-0.0523;	0.2409]	0.3		0.3
6	-0.0057	[-0.3808;	0.3694]	0.0		0.0
7	-0.0057	[-0.1084;	0.0970]	0.5		0.5
				95%-0	CI z	p-value
Co	mmon effe	ct model	-0.0022	[-0.0096; 0.005	2] -0.59	0.5552
Ra	ndom effec	ts model	-0.0022	[-0.0096; 0.005	2] -0.59	0.5552

Is the model $\mu_i \sim \mathcal{N}(\mu, \tau^2), i = 1, \dots, k$. justified in the first analysis?

▶ < Ξ ▶</p>

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 0000●	Final Remarks 000

We accept the random-effects model for the eight studies. Which estimate of τ^2 should we use?

Method	$\hat{ au}$	$\hat{\mu}$ and 95%-Cl on μ	p-value
REML	0.0578	0.0428 [-0.0156; 0.1013]	0.1510
ML	0	-0.0014 [-0.0088; 0.0060]	0.7058
EB	0.0512	0.0408 [-0.0137; 0.0953]	0.1420
DL	0.0518	0.0410 [-0.0138; 0.0958]	0.1426
HE	0	-0.0014 [-0.0088; 0.0060]	0.7058
SJ	0.0611	0.0437 [-0.0168; 0.1041]	0.1569
HS	0.0101	0.0060 [-0.0136; 0.0255]	0.5485

REML=Restricted Maximum Likelihood, ML = Maximum Likelihood, EB = Empirical Bayes,

DL =DerSimonian-Laird, HE= Hedges, SJ= Sidik-Jonkman, HS = Hunter-Schmid

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks ●00
Specific Remarks				

- Generalized confidence intervals are a viable alternative to frequentist and Bayesian approaches for the meta-analysis of normal means or difference of normal means; distributions of the statistics with respect to the nuisance parameters are included and no prior distributions for the parameters are needed.
- One approach was implemented in the R package metagen (Not on CRAN in the moment).
- Exact confidence intervals in the common mean problem can be easily extended the meta-analysis for a common difference of normal means.
- Even for a common standardized difference of means, an exact confidence interval can be determined (Knapp, 2017).

Common Mean Problem	Meta-Analysis Model	Inference with Normal Means	Example	Final Remarks
000000	000		00000	○●○

General Remarks

- Meta-analysis is retrospective data analysis.
- Each new meta-analysis is a new challenge in data analysis.
- A best statistical method for meta-analysis does not exist.
- Performance of the statistical methods should be only discussed with respect to a effect size of interest, not generally.
- Use several available statistical methods for meta-analysis to make decisions.

Common Mean Problem	Meta-Analysis Model 000	Inference with Normal Means	Example 00000	Final Remarks 00●

References

Fairweather, W.R. (1972). A method of obtaining an exact confidence interval for the common mean of several normal populations. *Applied Statistics*, 21, 229–233.

Graybill, F.A. and Deal, R.B. (1959). Combining unbiased estimators. Biometrics, 15, 543-550.

Hartung, J. (1999). An alternative method for meta-analysis. Biometrical Journal, 41, 901-916.

Hartung, J., Knapp, G. (2005). Models for combining results of different experiments: retrospective and prospective. American Journal of Mathematical and Management Sciences, 25, 149–188.

Knapp, G. (2017). An exact confidence interval for a common effect size. Journal of Statistical Theory and Practice, DOI: 10.1080/15598608.2016.1278060.

Li, Y., Shi, L., Roth, H.D. (1994). The bias of the commonly used estimate of variance in meta-analysis. Communications in Statistics – Theory and Methods, 23, 1063–1085.

Meier, P. (1953). Variance of a weighted mean. Biometrics, 9, 59-73.

Sinha, B.K. (1985). Unbiased estimation of the variance of the Graybill-Deal estimator of the common mean of several normal distributions. Canadian Journal of Statistics, 13, 243–247.

Weerahandi, S. (1993). Generalized confidence intervals. Journal of the American Statistical Association, 88, 899–905.

イロト イポト イヨト イヨト