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Why to use HC-type estimators in meta-analysis?

• They have a long tradition in heteroscedastic settings, particularly for

linear models (White, 19801, MacKinnon & White, 1985).

• Their use is often suggested, e.g. in econometrics but also in the

social sciences (Rosopa et al., 2013) and

• they can often lead to distributional robust approaches.

• Personal reason: I also had good experience with it outside MA :-),

especially in combination with small sample size approximations, e.g.

• for univariate (Pauly et al., 2015) and multivariate factorial designs

(Konietschke et al., 2015, Friedrich & Pauly, 2018, Friedrich et al.,

2019).

• However, you don’t meet them very often in biostatistics

1one of the most cited econometrics papers of all time with > 30k citations
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What we did

• That’s why our project group investigated a.o. the usefulness of

different so-called HC-type (heteroscedasticity consistent) or

sandwich-type estimators in meta analysis

covering math and

simulation analyses for

• the classical random-effect meta-analysis setting

(Welz, 2018, Pauly & Welz, 2018)

• ’truncated versions’ of it to deal with Pearson correlations

(Welz, Doebler, Pauly, 2022)

• univariate mixed-effects meta regressions without and with interaction

(Welz & Pauly, 2020, Welz et al., 2022, Knop et al., 2023)

• bivariate mixed-effects meta regression

(Welz et al., 2023)
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How do these HC-estimators look like?

Consider a univariate mixed-effects meta-regression model:

yi = β0 + β1xi1 + . . .+ βmxim + ui + εi , i = 1, . . . ,K

where ui ∼ N(0, τ 2), εi ∼ N(0, σ2
i ) are independent, K > m.

Matrix notation:

y = Xβ + u + ε

Weighted least squares estimator:

β̂ = (X′ŴX)−1X′Ŵy,

where Ŵ = diag(σ2
i + τ̂ 2)−1.

To construct confidence regions or tests for β, e.g.

H0 : {βj = 0} vs. H1 : {βj 6= 0}

we need ’good’ covariance estimators Σ̂ = ĉov(β̂)
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How do these HC-estimators look like?

For fixed-effects regressions y = Xβ + ε, White (1980) suggested the

HC0-type estimator

Σ̂HC0 = (X′X)−1X′Ω̂0X(X′X)−1,

where Ω̂0 = diag(ε̂2
1, . . . , ε̂

2
K ).

Plain idea behind: Estimate the variance of

εi with one observation (yi − xi β̂ − 0)2/1 = ε̂2
1.

As HC0 often leads to liberal results, there exist refinements HC1−HC5 for

the fixed effects model (MacKinnon & White, 1985, Long & Ervin, 2000,

Cribari-Neto, 2004, Cribari-Neto et al., 2007), where Ω̂0 is replaced by

Ω̂i = diag((1− xjj)
−λi )Kj=1 · diag(ε̂2

j )Kj=1,

where xjj = j-th diagonal element of X(X′X)−1X′ and which differ in the

exponents λi , e.g. λ2 = 1/2 or λ3 = 1.

Motivation behind: Adjust for observations with large variances. xjj stems

from Var(ε̂j) = σ2(1− xjj) in the homoscedastic case.

4
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j )Kj=1,

where xjj = j-th diagonal element of X(X′X)−1X′ and which differ in the
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Properties: Asymptotically consistent. HC2 is even unbiased in the

homoscedastic case. Often HC3 or HC4 recommended for small samples
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How do these HC-estimators look like?

Previous definitions for fixed-effects model y = Xβ + ε.

Adjustments for mixed-effects model:

• Ŵ = diag(σ2
i + τ̂ 2)−1 appears in weighted LSE

• β̂ = (X′ŴX)−1X′Ŵy

• New hat matrix: X(X′ŴX)−1X′Ŵ

• Gives new ’bread’ in sandwich estimators for meta regression:

Σ̂HCi = (X′ŴX)−1X′ŴΩ̂iŴX(X′ŴX)−1
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What we studied and found out – univariate meta regression

• HC0 and HC1 are known in MA and were, e.g. studied in Viechtbauer

et al. (2015) for meta regression with rather poor small K results.

• We introduced the HC2 − HC5 versions and analyzed inference

procedures based upon and

• compared its behaviour with the gold-standard (untruncated)

Knapp-Hartung approach

7



What we studied and found out – univariate meta regression

• In particular, for testing H0 : {βj = 0} vs. H1 : {βj 6= 0} we (a)

proved the asymptotic validity of t-type tests

1
(
β̂j/Σ̂

1/2

jj > tK−m−1,1−α
2

)
for all choices of HC-estimators

and (b) run extensive simulation

comparisons.

• Findings for one moderator model yi = β0 + β1xi1 + ui + εi :

- HC3 − HC5 preferred HC-choices wrt type-I-error control and power

- In most settings, the gold-standard Knapp-Hartung was comparable

(K ∈ {10, 20, 50}) or even better (K = 5)

- Exception: Binary moderators (K ≤ 10)

- Choice of distribution of ui had no or only minor effect on type-I-error

and power for all approaches.

- Details for all 30k configurations can be found in Welz & Pauly (2020)
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What we studied and found out – univariate meta regression

• First findings for model yi = β0 + β1xi1 + β2xi2 + β12xi1xi2 + ui + εi :

- HC0 and HC1 too liberal

- HC2 too liberal wrt coverage for β1, accurate for β12

- HC3 − HC5 (slightly) conservative wrt coverage for β1 and β12

- KH most accurate wrt coverage for β1 and β12

- Choice of distribution of ui had an effect on coverage and length for

all approaches.

- Example plot (similar behaviour for HC2 − HC5):
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What we studied and found out – univariate meta regression

Figure 1: Coverage for β12 wrt different random effects distributions, K = 10 10



What we studied and found out – univariate meta regression

• First findings for model yi = β0 + β1xi1 + β2xi2 + β12xi1xi2 + ui + εi :

- HC0 and HC1 too liberal

- HC2 too liberal wrt coverage for β1, accurate for β12

- HC3 − HC5 (slightly) conservative wrt coverage for β1 and β12

- KH most accurate wrt coverage for β1 and β12

- Choice of distribution of ui had an effect on coverage and length for

all approaches.

- Varying results regarding interval lengths wrt K and distributions.

- Details for all ≈ 80k simulatoin settings in Welz, Knop, Friede &

Pauly (2022, under major revision)

(Need to run more simulations, e.g. investigate distribution of εi etc.)

- Recommendation: KH for most settings (greetings to Guido :-))
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What we also studied and found out in bivariate meta analyses

• We also proposed new HC-type estimators for d-dimensional

multivariate meta regression

Y i = X iβ + u i + εi , i = 1, . . . ,K

• Form is similar to above

Σ̂CR = (X ′ŴX )−1

(
K∑
i=1

X′iŴiΩ̂iŴiXi

)
(X ′ŴX )−1

while the choices of Ω̂i are a bit more complex and include so-called

adjustment matrices. Here, they are often called CR-(cluster robust)

estimators (e.g., Tipton & Pustejovsky 2015).

• Findings from Welz, Viechtbauer, Pauly (2023):

• Refinements CR∗
3 and CR∗

4 (extensions of HC3 and HC4) most

tempting for inference about β in the bivariate case

• Considerable improvements wrt to the bias reduced linearization

approach CR2 considered in Tipton & Pustejovsky (2015) or

Pustejovsky & Tipton (2018)
12



Some Closing Remarks

• Robust estimators of HC- or CR-type are worth a try, especially in

multivariate settings

• Need to study in more detail robustness wrt distributions

• Want fo find better solutions for constrained estimators such as

Pearson correlation (one idea: refined or adaptive transformations)

and non-metric outcome/moderators

• I apologize for omitting all practical motivations, the performed real

data analyses and the concrete simulation settings and resulting

graphics and tables – looking forward to discuss this with you during

the coffee breaks :-)
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