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Introduction
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Common effect 
model

Random-effects 
model

No quantitative 
synthesis

(narrative description,
subgroups, etc.)

small Heterogeneity large

𝜃𝑖~𝑁 𝜇, 𝜏2𝜃𝑖 = 𝜇

• Meta-analysis generally requires that studies are sufficiently homogeneous to be synthesized 

• In the presence of heterogeneity, a random effects model is usually considered more 
appropriate

• “meta-analyses of very diverse studies can be misleading” 

• “the presence of heterogeneity affects the extent to which generalizable conclusions can be 
formed”

• collection of meta-analyses combining RCTs with observational studies: 𝜏2=369, 419, 1152!
Cheurfa et al. Syst Rev 2024

Cochrane Handbook



Common practice in published meta-analyses
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• A tendency in the literature to ignore the extent of variation of study results and to focus on 
the estimated summary effect 

• e.g. several meta-epidemiological studies comparing results from observational studies and 
RCTs

𝜃𝑖~𝑁 0.5, 0.0001 𝜃𝑖~𝑁 0.5, 2.63

0.52[0.44,0.59] 0.52[-0.03,1.06]

favors placebo        favors treatment favors placebo        favors treatment 

𝝉𝟐=0 𝝉𝟐=1.94



Conventional random effects meta-analysis
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Random-effects 
model

𝜃𝑖~𝑁 𝜇, 𝜏2

• outlying studies

• effect modifiers

▪ known and observed

▪ unknown or unobserved

• A systematic review to identify alternative flexible meta-analysis models that relax the
between study normality assumption

• A simulation study to investigate and compare their performance under the presence
of substantial heterogeneity for normal and non-normal data



Results of systematic review

5

16 eligible articles suggesting 14 alternative between-study distributions:

1. long-tail and skewed extensions

2. mixture of distributions

3. models using based on Dirichlet Process priors

• most in Bayesian framework

• most provided code and few accompanied by an R package



Identified alternative random effects models
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long-tail and skewed distributions (1)

• t-distribution model 𝜃𝑖~𝑡 𝜇, 𝜔, 𝜈

▪ with  𝜏2 =
𝑣

𝑣−2
𝜔2

▪ more weight in the tails – outliers less influential

▪ metaplus package in R

• skew-normal model 𝜃𝑖~𝑆𝑁 𝜉, 𝜔, 𝛾

▪ with 𝜇 = 𝜉 + 𝜔𝑏𝛿, 𝜏2 = 𝜔2[1 − 𝑏𝛿 2, 𝑏 =
2

𝜋
, 𝛿 =

𝛾

1+𝛾2

▪ flexmeta package in R

𝜔: scale parameter
𝜈: degrees of freedom 

(determining the weight of the tails)
𝜉: location parameter
𝛾: shape parameter 

(determining the level of skewness)



Identified alternative random effects models
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long-tail and skewed distributions (2)

• skew-t model 𝜃𝑖~𝑆𝑇(𝜉, 𝜔, 𝜈, 𝛾)

▪ with 𝜇 = 𝜉 + 𝜔𝑏𝜈𝛿, 𝜏2 = 𝜔2 𝜈

𝜈−2
− 𝑏𝜈 𝛿

2 ,

𝑏𝜈 =
𝜈Γ

𝜈−1

2

𝜋Γ
𝜈

2

, Γ 𝜈 = 𝜈 − 1 !

▪ flexmeta package in R

▪ bivariate extensions (assuming correlation of treatment effect and baseline risk or 
DTA meta-analysis) 

• other skewed distributions
▪ asymmetric Subbotin II    𝜃𝑖~𝐴𝑆2(𝜉, 𝜔, 𝜈, 𝛾)

sharper skewness and excess kurtosis for very small 𝜈
▪ Jones–Faddy 𝜃𝑖~𝐽𝐹(𝜉, 𝜔, 𝛾, 𝑑) – equivalent  to a t-distribution with 𝛾 + 𝑑 dof

▪ sinh-arcsinh 𝜃𝑖~𝑆𝐴𝑆 𝜉, 𝜔, 𝛾, 𝑑
allows for both symmetric and skewed shapes as well as heavy or light tail-weight 

▪ flexmeta package in R

𝜔: scale parameter
𝜈: degrees of freedom 

(determining the weight of the tails)
𝜉: location parameter
𝛾: shape parameter 

(determining the level of skewness)

Lee  & Thompson Stat Med 2008, Negeri et al. Biom J 2020



Identified alternative random effects models
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mixture of distributions (1)

• when the data come from sub-populations or several outliers are present

• common-mean mixture model 𝜃𝑖~𝑤1𝑁 𝜇, 𝜏1
2 + 𝑤2𝑁 𝜇, 𝜏2

2

▪ for outlier detection

▪ weights propotional to the number of studies

▪ summary effect is estimated including all studies but with outliers being down-
weighted due to the larger variance assumed for their class

▪ if 𝜏1
2 ≈ 𝜏2

2, suggests the absence of outliers

▪ extension for covariates

▪ metaplus package in R 𝑤: the weight in the mixture



Identified alternative random effects models
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mixture of distributions (2) 

• mixture of bivariate normal distributions

𝜃𝑖1
𝜃𝑖2

~𝑤1𝑁
𝜇11
𝜇12

𝜇11
𝜇12

, 𝛴1
𝜇11
𝜇12

, 𝛴1 +⋯+ 𝑤𝑘𝑁
𝜇𝑘1
𝜇𝑘2

𝜇𝑘1
𝜇𝑘2

, 𝛴𝑘
𝜇𝑘1
𝜇𝑘2

, 𝛴𝑘

▪ DTA meta-analyses

▪ to identify latent subgroups of studies and estimate sensitivity and specificity for 
each subgroup

▪ CAMAN and mada R packages

▪ extension for covariates predicting the latent subgroup classification

• mixture of multivariate normal distributions
▪ longitudinal data

• random-intercept mixture of regressions
▪ meta-analysis with multiple outcome reports nested within studies

𝑘: number of mixture 
components (subgroups)
𝑤𝑘 > 0: the weight in the 
mixture



Identified alternative random effects models

10

Dirichlet process (DP) prior mixture models

• to identify the potential underlying clustering of the data (e.g. relevant subgroups of 
studies)

𝜃𝑖~𝐹
𝐹~𝐷𝑃 𝛼, 𝐹0
𝐹0~𝑁 𝜇𝑏 , 𝜏𝑏

2

▪ with 𝛼 the concentration parameter that measures the variability of  𝐹 around 𝐹0
(high values suggest that 𝐹 is ‘close’ to 𝐹0) 

▪ 𝐹0 is the base distribution that controls the mean of the process

▪ a truncation that allows obtaining a plausible approximation to 𝐹 is usually 
applied (e.g. the number of studies)

▪ assumption of a discrete (mixture of points) or a continuous distribution (mixture 
of distributions)

▪ conditional DP for small number of studies: conditional distribution for 𝐹 given 
that the posterior median of 𝐹 is 𝜇𝑏

▪ bspmma, DPpackage R packages



Models compared in the simulation
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Framework fitted Within-study

distribution

Between-study

distribution

Prior distributions

1 Bayesian Binomial Normal 𝜏~𝐻𝑁 0,1

2 Bayesian Binomial Normal 𝜏~𝑈 0,10

3 Frequentist Normal Normal -

4 Bayesian Binomial t-distribution 𝜔~𝑈 0,20

5 Frequentist Normal t-distribution -

6 Bayesian Binomial Skew Normal 𝜔~𝑈 0,20

7 Frequentist Normal Mixture of 2 normal 

distributions with 

common mean

-

8 Bayesian Binomial DP mixture of points 𝜏~𝐻𝑁 0,1 , 𝛼~𝑈(0.3,5)

9 Bayesian Binomial DP mixture of points 𝜏~𝐻𝑁 0,1 , 𝛼~𝑈(0.3,10)
10 Bayesian Binomial DP mixture of points 𝜏~𝑈 0,10 , 𝛼~𝑈(0.3,5)

11 Bayesian Binomial DP mixture of points 𝜏~𝑈 0,10 ,𝛼~Γ(1,1)



Data generating process
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Shape of the true distributions

Normal Skew normal Mixture of two normal 
distributions

22 scenarios varying
• the number of studies 𝑛 = 14,26
• the true mean treatment effect 𝜇 = 0,0.5 or 𝜇1 = 0 and 𝜇2 = 1 (for the mixture scenarios) 
• the heterogeneity, 𝜏2 = 0.12, 2.63

For each scenario we generated 1000 datasets



Simulation results

13

Average bias for the mean treatment effect (𝝁)
𝒏 = 𝟏𝟒 𝒏 = 𝟐𝟔

• normal true dist.
• sc. 1, 3, 5, 7: 𝜏2 = 0.12
• sc. 2, 4, 6, 8: 𝜏2 = 2.63
• sc. 1, 2, 5, 6: 𝜇 = 0
• sc. 3, 4, 7, 8: 𝜇 = 0.5

• skew-normal true dist.
• sc. 9, 11, 13, 15: 𝜏2 = 0.12
• sc. 10, 12, 14, 16: 𝜏2 = 2.63
• sc. 9, 10, 13, 14: 𝜇 = 0
• sc. 11, 12, 15, 16: 𝜇 = 0.5

• normal mixture true dist.
• 𝜇1 = 0, 𝜇2 = 1
• 𝜏1

2 = 0.12
• sc. 17, 20: 𝜏2

2 = 0.005
• sc. 18, 21:𝜏2

2 = 0.12
• sc. 19, 22:𝜏2

2 = 2.63

more distinct dist.      less distinct dist. more distinct dist.      less distinct dist.



Simulation results
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Average bias for the heterogeneity (𝝉𝟐)
𝒏 = 𝟏𝟒 𝒏 = 𝟐𝟔

• normal true dist.
• sc. 1, 3, 5, 7: 𝜏2 = 0.12
• sc. 2, 4, 6, 8: 𝜏2 = 2.63
• sc. 1, 2, 5, 6: 𝜇 = 0
• sc. 3, 4, 7, 8: 𝜇 = 0.5

• skew-normal true dist.
• sc. 9, 11, 13, 15: 𝜏2 = 0.12
• sc. 10, 12, 14, 16: 𝜏2 = 2.63
• sc. 9, 10, 13, 14: 𝜇 = 0
• sc. 11, 12, 15, 16: 𝜇 = 0.5

• normal mixture true dist.
• 𝜇1 = 0, 𝜇2 = 1
• 𝜏1

2 = 0.12
• sc. 17, 20: 𝜏2

2 = 0.005
• sc. 18, 21:𝜏2

2 = 0.12
• sc. 19, 22:𝜏2

2 = 2.63

more distinct dist.      less distinct dist. more distinct dist.      less distinct dist.



Simulation results
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Average bias for the study-specific effects (𝜽𝒊)
𝒏 = 𝟏𝟒 𝒏 = 𝟐𝟔

• normal true dist.
• sc. 1, 3, 5, 7: 𝜏2 = 0.12
• sc. 2, 4, 6, 8: 𝜏2 = 2.63
• sc. 1, 2, 5, 6: 𝜇 = 0
• sc. 3, 4, 7, 8: 𝜇 = 0.5

• skew-normal true dist.
• sc. 9, 11, 13, 15: 𝜏2 = 0.12
• sc. 10, 12, 14, 16: 𝜏2 = 2.63
• sc. 9, 10, 13, 14: 𝜇 = 0
• sc. 11, 12, 15, 16: 𝜇 = 0.5

• normal mixture true dist.
• 𝜇1 = 0, 𝜇2 = 1
• 𝜏1

2 = 0.12
• sc. 17, 20: 𝜏2

2 = 0.005
• sc. 18, 21:𝜏2

2 = 0.12
• sc. 19, 22:𝜏2

2 = 2.63

more distinct dist.      less distinct dist. more distinct dist.      less distinct dist.



Simulation results
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Coverage probability and mean square error

Mean square error

• For scenarios with large heterogeneity

▪ normal-normal and binomial-DP models – generally smaller MSE for the mean 
treatment effect estimate

▪ binomial-normal(HN) – the smallest MSE for the heterogeneity estimate followed by 
the binomial-DP(HN) and the normal-normal models

Coverage probability

• For scenarios with large heterogeneity

▪ normal and skew-normal scenarios with 26 studies: normal models – best coverage of 
the mean treatment effect 

▪ mixture scenarios: binomial-DP models best coverage overall of the mean treatment 
effect followed by the binomial-normal models

▪ choice of prior more important than the choice of the model for heterogeneity



Discussion
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• When substantial heterogeneity among studies is suspected or outlying studies are present, 
focusing on the mean treatment effect may lead to spurious conclusions

• Average bias of both the mean treatment effect and the heterogeneity is substantial in 
presence of high heterogeneity regardless of the model used

• These results are in agreement with smaller simulations studies when they found the 
alternative models mostly beneficial in terms of precision and model fit

• In meta-analyses where the distribution of the data seems multimodal, mixture models may 
result in more accurate estimates of the study-specific effects and should be considered

• Semi-parametric models (e.g. DP models) may assist identifying homogeneous subgroups 
of studies when potential effect modifiers are unobserved



Limitations
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• Using scenarios with more studies might have improved the performance of some models

• We used a fixed skewness parameter that might have not resulted in many highly skewed 
datasets to properly assess the performance of the skew-normal model  

• We did not compare all the identified models in our simulation

• We only used the normal distribution as base distribution in the DP models
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