Using Bayesian methods to analyze data from N-of-1 trials

Christopher H Schmid

Brown University School of Public Health Department of Biostatistics

Recent Advances in Meta-Analysis Symposium Göttingen, Germany 29 August 2024

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline

- N-of-1 Design
- Examples
- Model for One Individual
- Combining N-of-1 trials
- Study Networks

э

(日) (四) (三) (三)

Single Case Experimental Designs

- Personalized protocol for each participant
- Contains multiple treatment periods in which different intervention given
- Repeated measurements taken in each period
- Many types:
 - Multiple Baseline (stepped wedge)
 - Alternating Treatment
 - Changing Criterion
 - Withdrawal/Reversal (multiple crossover)
 - N-of-1 (randomized multiple crossover)
- Can measure individual treatment efficacy
- Can combine single-case trials in multilevel structure
 - Estimate average effects
 - Assess heterogeneity
 - Improve individual estimates

Nikles et al. (2015) The Essential Guide to N-of-1 Trials in Health

3/36

- Single patient multiple period blocked crossover trials to estimate individual treatment effects
- Multiple measurements per period
- Potential missing data
- Compare measurements in A periods with those in B periods
- May need washout to control for carryover

Kravitz and Duan (2014), Design and Implementation of N-of-1 Trials: A User's Guide, AHRQ Publication

イロト 不得下 イヨト イヨト

- Substantial therapeutic uncertainty about treatment
- Heterogeneous treatment effects
- Stable chronic condition
- Short-acting treatments with rapid ramp-up
- Negligible persistence of treatment effect (no carryover)
- Outcome expected to return to baseline after each period
- Measurable, easily collected outcomes

A B F A B F

Motivation for Personalized (N-of-1) Trials

- Traditional clinical trials focused on average participant often sampled from specialized population
- Implement research in community and local practice
- Expand experimental research into underrepresented populations and everyday life
- Facilitate individual decision making
- Estimate individual treatment effects
- Assess heterogeneity of treatment effects

< ロト < 同ト < ヨト < ヨト

N-of-1 Trials: Personalized protocols

- Design own study
- Select own (multiple) outcomes
- Select own treatments
- Determine data collection process
- Use mobile platforms: design setup, randomization, data collection, reminders, analysis

< ロト < 同ト < ヨト < ヨト

Key Design Elements For Type 1 N-of-1 Trials

• Assigning Treatments

- Randomization within crossovers
- Systematic counterbalanced design (AB/BA)
- Alternating Treatments
- Allocation concealment
- Blinding
- Replication to assess within and between period variability
 - Number of study periods, number of measurements per period
 - Patients may not finish their protocol
- Carryover of treatment effect usually biases toward null
 - Designed washout period lengthens study and may be impractical/counterproductive or unethical
 - Analytic washout reduces sample size
- Multiple outcomes
 - May want to weight to make decision

イロト 不得 トイヨト イヨト

Condition	Pts	Xovrs	Tx length	Outcome	Comparison
Fibromyalgia	58	3	6 wk	FIQ	AM/AM + FL
Chronic Pain	98	2-4	1-2 wk	Various	Various
Inflammatory Bowel	54	2	8 wk	Various	$Strict/relaxed\ diet$
Atrial Fibrillation	446	3	1 wk	Episodes	Trigger/none
Daily mood	447	3	5 day	Various	Various

• Many other application in literature now

э

イロト イボト イヨト イヨト

PREEMPT Study: Design

- Compares N-of-1 trials versus usual care for treating adults with chronic musculoskeletal pain (215 randomized)
- Compare outcomes 3, 6, 12 months after baseline for N-of-1 vs. usual care
- Outcomes: Pain, Quality of life, Participatory decision making, Satisfaction, Trust, Adherence

Kravitz et al., JAMA Internal Medicine 178:1368-1378, 2018

PREEMPT N-of-1 Study Arm Protocol

- Develop mobile application to conduct N-of-1 trials (108 patients)
- Compare 2 interventions within each patient
 - 1-2 week treatment periods
 - Cycle of 2 periods (2 to 4 weeks long, AB or BA)
 - Study of 2-4 cycles (4-16 weeks)
- Self-reported daily outcomes: pain, fatigue, drowsiness, sleep problems, cognitive function, constipation
- Choice of treatments by patient/clinician (pharmaceuticals, opiates, non-pharmaceutical)
- Patients continue on concomitant treatments

イロト イポト イヨト イヨト

PRODUCE Study

 54 N-of-1 trials comparing Specific Carbohydrate Diet (SCD) to liberalized SCD and baseline for 7-18 year old patients with Crohn's Disease (CD), Ulcerative Colitis (UC), or Indeterminate Colitis (IC)

Christopher Schmid (Brown University)

29 August 2024

12 / 36

I-STOP-AF Study Design

- Find triggers (e.g., alcohol, caffeine, exercise) for discrete episodes of periodic atrial fibrillation (AF)
- Patient networks including HealtheHeart Study and StopAfib.org

Marcus et al., JAMA Cardiology 7:167-174, 2022

Statistical Analysis

- Structured time series with treatment factor
- Descriptive analysis with graphics (visual inspection)
- Basic statistics comparing one treatment to another (e.g., paired t test)
- Modeling to address
 - Time-trends
 - Time-varying treatment effects
 - Autocorrelation
 - Carryover
 - Treatment Interactions

イロト イポト イヨト イヨト

Model for Single N-of-1 Trial: Treatment Only

$$y_j = \mu + \delta z_j + \epsilon_j; \quad j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

- y_j : measurement j for outcome y
- z_i : treatment indicator

イロン 不聞と 不良と 不良とう

Single Trial Model: Treatment + Linear Time Trend

$$y_j = \mu + \delta z_j + \beta t_j + \epsilon_j; \quad j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

- y_j : measurement j for outcome y
- z_i : treatment indicator
- t_i : time of j^{th} measurement

イロト イポト イヨト イヨト

Single Trial Model: Tx + Linear Trend + Correlated Error

$$y_j = \mu + \delta z_j + \beta t_j + \epsilon_j; j = 1, 2, \dots, J$$

$$\epsilon_j = \rho_e \epsilon_{j-1} + u_j$$

 $u_j \sim N(0, \sigma^2)$

- y_j : measurement j for outcome y
- z_i : treatment indicator
- t_j : time of j^{th} measurement

Under stationarity

$$\epsilon_j \sim N(0, \sigma^2/(1-
ho_e^2))$$

Marginally,

$$Y_j \sim N\left(\mu + \delta z_j + \beta t_j, \sigma^2/(1-
ho_e^2)\right)$$

イロト 不得下 イヨト イヨト

Extensions to Basic N-of-1 Models

• Add interaction of treatment with time

$$y_j = \mu + \delta z_j + \beta t_j + \gamma z_j \times t_j + \epsilon_j$$

• Use nonlinear time (e.g., cubic spline)

$$y_j = \mu + \delta z_j + F(t_j) + \epsilon_j$$

 $F(t_j) = m{B}(t_j)$ where $m{B}(t_j) = \sum_{m=1}^M \gamma_m B_m(t_j)$ is a spline

• Use period blocks as factor

$$y_j = \mu + \delta z_j + \sum_i \gamma_i p_{ij} + \epsilon_j$$

where p_{ij} is an indicator for block *i* at time *j*

- Carryover
- Lagged outcome

Christopher Schmid (Brown University)

イロト 不得下 イヨト イヨト

Rationale for Using Bayesian Models

- Personalized nature of decision
- Desire to incorporate external information (patient, clinician)
- Posterior distribution of difference between treatments
- Joint posterior distribution for composite statements
- Lack of sufficient data for frequentist to return 'significant' result
- Can handle missing data as parameters (imputation)
- Incorporate informative prior information
- Combining multiple N-of-1 studies together gives average treatment effect and better individual treatment effects through borrowing of strength

Schmid and Yang. Bayesian models for n-of-1 trials. Harvard Data Science Review, 2022

3

イロト イポト イヨト イヨト

Automating Model Fitting

- Real-time environment based on mobile applications requires automated analyses that can be returned quickly without need for statistician to check results
- Implemented using smartphones in real-time environment
- Use Bayesian model implemented via MCMC in R and JAGS so that probabilities can be returned
- Can use informative or non-informative priors
- May want to compare different prespecified models using Bayesian model fitting criteria (size of effect, DIC, posterior predictive checks)
- May wish to introduce some lag time for statistician to check results

3

イロト イポト イヨト イヨト

- Priors for mean parameters like μ , β , γ and δ usually noninformative, e.g., $N(0, 10^6)$
- Noninformative prior like U(-1, 1) on correlation may be too weak if likelihood ohas little information about correlation parameters
- Posterior inferences most sensitive to choice of prior for variance σ^2
- Must use distribution with support only on positive numbers
 - Bounded uniforms
 - Folded (half) normal or t
 - Lognormal

イロト 不得 トイヨト イヨト

Analysis of PRODUCE Diet Trials

- Use weekly Pediatric IBD Symptom Scale, reported as a T-score (standardized mean of 50 and standard deviation of 10)
- Clinically important change is defined as a 3-point change in the scale in either direction
- Did not analyze first weekly measurement in any experimental diet period to account for carryover
- Among 54 randomized participants, 21 completed the full four-period sequence, 9 completed the study early after a single crossover (two periods), and 24 withdrew during the first or second period before completing both diets
- 12/21 full completers, 5/9 early completers, and 4/24 withdrawals classified as responders on SCD compared to UD
- 12/21 full completers, 4/9 early completers, and 1/24 withdrawals classified as responders on MSCD compared to UD

イロト 不得下 イヨト イヨト 二日

PRODUCE GI Symptoms: Individual Results

Christopher Schmid (Brown University)

29 August 2024

∃ →

23 / 36

PRODUCE GI Symptoms: Individual Results

IBD Symptom Scale: SCD vs. Usual Diet (Withdrawals)

*P9 is child response data +P12 started on incorrect diet (not randomized diet)

< ロト < 同ト < ヨト < ヨト

PRODUCE Study Conclusions

- 39% of patients who completed a full trial had high probability of improvement
- Heterogeneity in response
- Low probability that SCD was better than MSCD (individually and on average)
- Most electing to continue dietary intervention chose to stay on less restrictive MSCD
- 61% of patients withdrew or completed the study early
- N-of-1 trials are useful for determining not just whether dietary therapy with the SCD or MSCD works on average, but also for whom it works

イロト イポト イヨト イヨト

Combining N-of-1 Studies

- Can treat each N-of-1 trial as a study and combine via meta-analysis (multilevel models)
- Get average estimate of treatment efficacy
- Get improved estimates for individuals by borrowing strength
- Compromise between population estimate (complete pooling) and individual's observed results (no pooling)
 - Weighted to observed if low variation or many crossovers
 - Weighted to pooled (or subgroup) if little information for individual
- Can include covariates for heterogeneity and subgroups
- Can include terms for carryover, correlation
- If treatments differ, can form network

Zucker et al. Combining Single Patient (N-of-1) Trials to Estimate Population Treatment Effects and to Evaluate Individual Patient Responses to Treatment. Journal of Clinical Epidemiology 50:401-410, 1997

イロト 不得下 イヨト イヨト 二日

Combining N-of-1 Studies via Meta-Analysis

Observation at time j from person (study) i:

$$y_{ij} = \mu_i + \delta_i z_{ij} + (\mathsf{Trend} + \mathsf{Carryover}) + \epsilon_{ij}$$

$$\epsilon_{ij} =
ho_{e_i} \epsilon_{i(j-1)} + u_{ij}$$

 $u_{ij} \sim N(0, \sigma_i^2)$

- $\delta_i \sim N(d, \sigma_{\delta}^2)$ are individual treatment effects
- d is average treatment effect
- Fixed or random effect for μ_i
- Random effect ρ_{e_i} for correlation
- Separate/common within-study variances $\sigma_i^2 = \sigma^2$
- Can also add covariates into model either for adjustment or as treatment interactions
- Can have these modify the individual parameters such as δ_i , μ_i

Combining N-of-1 Studies via Meta-Analysis

- If intercepts are treated as random, then model can incorporate correlation $\rho_{\mu\delta}$ between intercepts and treatment effects
- Within-individual correlations ρ_{ei} more complicated to model because they are typically skewed and bounded
- Can use inverse hyperbolic tangent (Fisher z) transformation $z_{e_i} = \frac{1}{2} \ln \left(\frac{1+\rho_{e_i}}{1-\rho_{e_i}} \right)$ and assume that

$$z_{e_i} \sim N(z_e, \sigma_{z_e}^2)$$

- Then $\rho_{e_i} = \exp(2z_{e_i} 1)/(1 + \exp(2z_{e_i}))$
- Can estimate average effects of hyperparameters and updated estimates of individuals parameters

イロト 不得下 イヨト イヨト 二日

Two Bivariate Model Forms

Intercept-Slope form

$$Y_{ij} = \mu_i + \delta_i Z_{ij} + \epsilon_{ij}$$
$$\epsilon_{ij} = \rho_e \epsilon_{ij-1} + u_{ij}$$
$$u_{ij} \sim N(0, \sigma^2)$$

$$\begin{pmatrix} \mu_i \\ \delta_i \end{pmatrix} \sim \mathcal{N} \begin{bmatrix} m \\ d \end{pmatrix}, \begin{pmatrix} \sigma_{\mu}^2 & \rho_{md}\sigma_{\mu}\sigma_{\delta} \\ \rho_{md}\sigma_{\mu}\sigma_{\delta} & \sigma_{\delta}^2 \end{bmatrix}$$

Э

イロン イ理 とく ヨン イ ヨン

Two Bivariate Model Forms

Intercept-Slope form

$$Y_{ij} = \mu_i + \delta_i Z_{ij} + \epsilon_{ij}$$
$$\epsilon_{ij} = \rho_e \epsilon_{ij-1} + u_{ij}$$
$$u_{ij} \sim N(0, \sigma^2)$$

$$\begin{pmatrix} \mu_i \\ \delta_i \end{pmatrix} \sim N\left[\begin{pmatrix} m \\ d \end{pmatrix}, \begin{pmatrix} \sigma_{\mu}^2 & \rho_{md}\sigma_{\mu}\sigma_{\delta} \\ \rho_{md}\sigma_{\mu}\sigma_{\delta} & \sigma_{\delta}^2 \end{pmatrix} \right]$$

Separate means form

$$y_{ij} = (1 - z_{ij})\mu_{i0} + z_{ij}\mu_{i1} + \epsilon_{ij}$$

$$\epsilon_{ij} = \rho_e \epsilon_{ij-1} + u_{ij}$$

$$u_{ij} \sim N(0, \sigma^2)$$

$$\binom{\mu_{i0}}{\mu_{i1}} \sim N\left[\binom{\mu_0}{\mu_1}, \binom{\sigma_0^2 \quad \rho_{01}\sigma_0\sigma_1}{\rho\sigma_0\sigma_1 \quad \sigma_1^2}\right]$$

29 August 2024

29 / 36

Christopher Schmid (Brown University)

Two Bivariate Model Forms

- 1:1 mapping between parameters of two models
- When $\sigma_0 = \sigma_1$,
 - either $\sigma_{\delta} = 0$,i.e., no heterogeneity
 - or $ho_{\it md}=-\sigma_{\delta}/2\sigma_{\mu}$, i.e., slope and intercept are negatively correlated
- ρ_{md} only non-negative if $\rho_{01} \ge 1/k$, i.e., only if correlation between group means is large or variance of treated much greater than variance of controls
- Variety of values for ρ_{01} compatible with negative ρ_{md}
- U(-1,1) prior may work better for ρ_{01} than for ρ_{md}
- \bullet Instead might want to use prior for $\rho_{\textit{md}}$ weighted toward negative values

イロト 不得下 イヨト イヨト 二日

I-STOP-AF Study: Network Meta-Analysis

- Set of trigger comparisons forms network of triggers
- Compare triggers indirectly through common control using network meta-analysis
- Combine all trials for a participant into one trial with several arms, one for each trigger and one combining no trigger periods
- OR Treat each participant's trials as separate and introduce a common participant effect into a mixed model

ISTOP-AFIB Network Meta-Analysis

A Intention to treat								
	On		Off					
Tripper type	No.	Total No.	No.	Total No.	08 (95% C/D	Less AF	More AF	PR (0R >1
Alcohol	164	923	154	924	1.30 (0.85-1.96)			.89
Caffeine	301	1045	310	1047	1.03 (0.65-1.65)	_	_	.55
Lack of sleep	125	750	110	726	1.03 (0.68-1.59)	_	_	.57
Exercise	162	794	135	761	1.05 (0.67-1.63)	_	_	59
Dehydration	51	375	43	410	1.12 (0.58-2.10)			.64
Cold food and drink	22	106	29	111	0.49 (0.17-1.51)	-		.10
Lving on the left side	101	424	115	445	1.05 (0.62-1.81)		-	.57
Large meals	106	348	106	348	0.88 (0.46-1.68)			.36
Diet	46	227	43	226	1.21 (0.54-2.49)		_	.68
Custom	45	228	35	209	0.91 (0.36-2.31)	_		.43
					0.1	0.5 1 DR (95%	Crt)	10
B Per protocol								
	On I		0.64					
	UII.		011					
	011	Total	UII	Total				
Trigger type	No.	Total No.	No.	Total No.	OR (95% Crl)	Less AF	More AF	PR (OR >1)
Trigger type Alcohol	No.	Total No. 578	No.	Total No. 913	OR (95% Crl) 2.15 (1.27-3.61)	Less AF	More AF	PR (OR >1) 1.00
Trigger type Alcohol Caffeine	No. 148 291	Total No. 578 841	No. 141 268	Total No. 913 885	OR (95% Crl) 2.15 (1.27-3.61) 0.84 (0.51-1.40)	Less AF	More AF	PR (OR >1) 1.00 .26
Trigger type Alcohol Caffeine Exercise	No. 148 291 88	Total No. 578 841 508	No. 141 268 99	Total No. 913 885 448	OR (95% Crl) 2.15 (1.27-3.61) 0.84 (0.51-1.40) 1.10 (0.58-2.06)	Less AF	More AF	PR (OR >1) 1.00 .26 .61
Trigger type Alcohol Caffeine Exercise Cold food and drink	No. 148 291 88 6	Total No. 578 841 508 52	No. 141 268 99 6	Total No. 913 885 448 56	OR (95% Crl) 2.15 (1.27-3.61) 0.84 (0.51-1.40) 1.10 (0.58-2.06) 0.74 (0.14-3.80)	Less AF	More AF	PR (OR >1) 1.00 .26 .61 .37
Trigger type Alcohol Caffeine Exercise Cold food and drink Lying on the left side	No. 148 291 88 6 105	Total No. 578 841 508 52 462	No. 141 268 99 6 108	Total No. 913 885 448 56 403	OR (95% Crl) 2.15 (1.27-3.61) 0.84 (0.51-1.40) 1.10 (0.58-2.06) 0.74 (0.14-3.80) 0.92 (0.52-1.66)	Less AF	More AF	PR (OR >1) 1.00 .26 .61 .37 .39
Trigger type Alcohol Caffeine Exercise Cold food and drink Lying on the left side Large meals	No. 148 291 88 6 106 67	Total No. 578 841 508 52 462 243	No. 141 268 99 6 108 143	Total No. 913 885 448 56 403 448	OR (95% Crl) 2.15 (1.27-3.61) 0.84 (0.51-1.40) 1.10 (0.58-2.06) 0.74 (0.14-3.80) 0.92 (0.52-1.66) 0.67 (0.30-1.45)	Less AF	More AF	PR (OR >1 1.00 .26 .61 .37 .39 .14
Trigger type Alcohol Caffeine Exercise Cold food and drink Lying on the left side Large meals Diet	No. 148 291 88 6 106 67 49	Total No. 578 841 508 52 462 243 180	No. 141 268 99 6 108 143 34	Total No. 913 885 448 56 403 448 224	0R (95% Crl) 2.15 (1.27-3.61) 0.84 (0.51-1.40) 1.10 (0.58-2.06) 0.74 (0.14-3.80) 0.92 (0.52-1.66) 0.67 (0.30-1.45) 2.11 (0.91-4.73)	Less AF	More AF	PR (OR >1 1.00 .26 .61 .37 .39 .14 .96

• Similar to results from separate meta-analysis of each trigger

イロト 不得 トイヨト イヨト 三日

Shrinkage Estimation

The treatment effect of kindness on self-reported stress

Patient Trt/Non-Trt ITE (95% Crit) **Posterior Pr of Benefit** 512610 -0.40(-1.28, 0.51) 643054 -1.36 (-4.23, 2.08) 243957 5.2 -1.86 (-6.24, 3.17) 0.21 605278 32 -0.621-3.77.2.425 0.30 510062 15/10 -0.191-2.43, 1.94 0.40 87 -0.20 (-3.35, 3.00) 0.45 13/13 0.01 (-2.40, 2.68) 35 415267 0.18 (-5.25, 5.53) 148901 1411 0.22 (-2.13, 2.58) 0.58 -----120177 10/11 0.521-213.3.10 0.66 255254 1313 0.51 (-1.57, 2.99) 0.69 #13035 4.6 1.20 (-2.45, 4.45) 0.76 771971 35 -0.81 (-1.70, 3.29) 20204 58 1.501-0.77.3.68 0.52 119125 -0.20 (-0.97, 0.50) 0.29 Summary * - **B**- 4 -4 -8 -2 -1 0 1 More about 2 3 4

Conclusions

- N-of-1 trials can be a useful tool to personalize treatments and discover individual effects
- They require some infrastructure, but tools are under development
- Need to determine how best to return information to individual participants
- Trials from different individuals can be combined to inform population effects and to improve predictions for individuals
- Can be part of a larger network to inform treatment comparisons

< □ > < 同 > < 回 > < 回 > < 回 >

References: Harvard Data Science Review Special Issue

https://hdsr.mitpress.mit.edu/specialissue3

Thank you!

Christopher Schmid (Brown University)

э

イロト イヨト イヨト イヨト