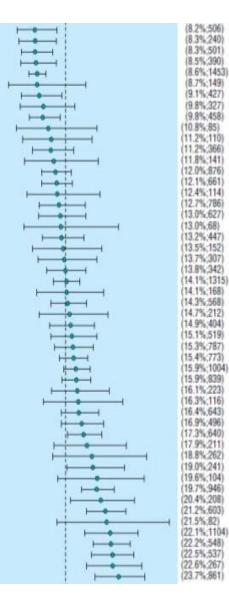
# Improving Forest/Caterpillar Plots

David Rindskopf CUNY Graduate Center


Wolfgang Viechtbauer Maastricht University

Göttingen 2024

#### **Example Caterpillar Plot**

w.icnarc.org

Manchester Fertility Services **Fazakerley Hospital** Ninewells Hospital Hull IVF Unit King's College Hospital **BMI Chiltern Hospital Cromwell IVF Centre ARU Aberdeen University** Walsgrave Hospital Hartlepool General Hospital **BUPA Hospital, Leicester** University College Hospital Wirral Fertility Centre Glasgow Royal Infirmary Sheffield Fertility Centre Leicester Royal Infirmary London Fertility Centre St Mary's Hospital Newham General Hospital Edinburgh ACU **BMI Portland Hospital** Washington Hospital **Royal Victoria Infirmary Bourne Hall Clinic** University Hospital Wales **Bridge Fertility Centre** Esperance Hospital, Eastbourne Wessex Fertility Services **Churchill Clinic Midland Fertility Services** University of Bristol Wolfson Family Clinic **Royal Masonic Hospital** Northampton Fertility Service North Staffordshire Hospital London Women's Clinic Guy's and St Thomas's Hospitals **BMI Park Hospital BUPA Roding Hospital** Holly House Fertility Unit **BMI Priory Hospital** South Cleveland Hospital Leeds General Infirmary **BMI Cheisfield Park Hospital** Oxford IVF Unit Southmead General Lister Hospital Royal Maternity Hospital, Belfast St James's Hospital Birmingham Women's Hospital NURTURE, Nottingham



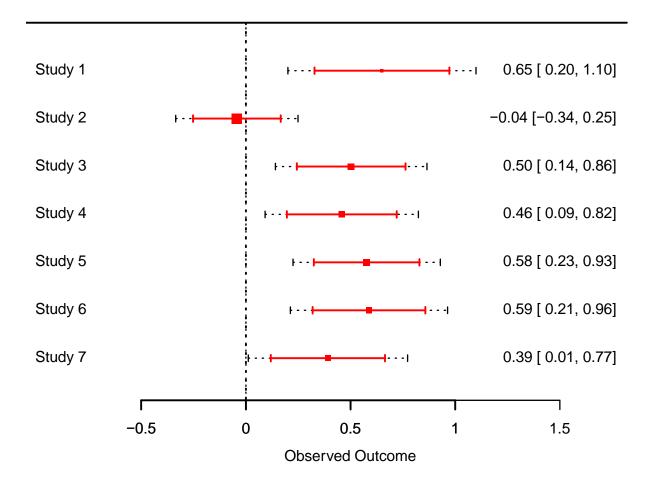
# **Typical Uses and Interpretations**

- Display data from "league tables" that rank institutions
- Display data from meta-analysis
- Interpretations
  - Accuracy of each mean or other estimate
  - Comparison of two means based on overlap
- Note: one is correct, the other not

### Outline of Method

$$V_{diff} = V_1 + V_2 = 2V$$
$$SE_{diff} = \sqrt{2SE} \gg 1.4SE$$

- Means would have to differ by
  2 SE<sub>diff</sub> = 2(1.4) SE to be significant
- Thus we need intervals based on 1.4 SE, not 2 (or 1.96) SE
- For a normal distribution, this is an 84% interval


## **Ref and Procedure**

- Goldstein H, Healy MJR. (1995). The graphical presentation of a collection of means. *Journal of the Royal Statistical Society A*, 158, 175–177.
- Ideally: display both 84% and 95% intervals
- Method 1: Modify plot function forest() in R package metafor (Viechtbauer)
- Method 2: Use built-in metafor functions
- https://www.metaforproject.org/doku.php/plots:forest\_plot\_with\_multiple\_cis

### Small example Usual forest plot

| Study 1          |      |        |          | 0.65 [ 0.20, 1.10]  |  |  |
|------------------|------|--------|----------|---------------------|--|--|
| Study 2          | +-   | •••••• |          | -0.04 [-0.34, 0.25] |  |  |
| Study 3          |      |        | }·····   | 0.50 [ 0.14, 0.86]  |  |  |
| Study 4          |      |        | <b>⊦</b> | 0.46 [ 0.09, 0.82]  |  |  |
| Study 5          |      |        | }·····-  | 0.58 [ 0.23, 0.93]  |  |  |
| Study 6          |      |        | }······  | 0.59 [ 0.21, 0.96]  |  |  |
| Study 7          |      | +      | ·····    | 0.39 [ 0.01, 0.77]  |  |  |
|                  |      | t      |          |                     |  |  |
|                  | -0.5 | 0      | 0.5 1    | 1.5                 |  |  |
| Observed Outcome |      |        |          |                     |  |  |

### New Forest Plot (Method 1)



### New Forest Plot (built-in functions)

Study

Estimate [95% CI]

|         | •                |                     |
|---------|------------------|---------------------|
|         |                  |                     |
| Study 1 | <b>_</b>         | 0.65 [ 0.20, 1.10]  |
| Study 2 |                  | -0.04 [-0.34, 0.25] |
| Study 3 | - <b></b> =      | 0.50 [ 0.14, 0.86]  |
| Study 4 | =                | 0.46 [ 0.09, 0.82]  |
| Study 5 | =                | 0.58 [ 0.23, 0.93]  |
| Study 6 | =                | 0.59 [ 0.21, 0.96]  |
| Study 7 |                  | 0.39 [ 0.01, 0.77]  |
|         |                  |                     |
|         |                  |                     |
|         | -0.5 0 0.5 1 1.5 |                     |
|         |                  |                     |
|         | Observed Outcome |                     |

#### Non meta-analysis example: Surgical complications

| Study                   |           | Estimate [95% CI]   |
|-------------------------|-----------|---------------------|
| Bariatrics              | -         | 0.04 [0.04, 0.05]   |
| Cholecystectomy         | -         | 0.05 [0.04, 0.06]   |
| Hernia                  | -         | 0.02 [0.01, 0.03]   |
| Colectomy               |           | 0.11 [0.10, 0.13]   |
| Appendectomy            | -         | 0.02 [0.01, 0.02]   |
| Hiatal.hernia           | -         | 0.04 [0.03, 0.05]   |
| Ventral.HerniaComponent | -         | 0.05 [0.03, 0.06]   |
| Ileostomy.Closure       | =         | 0.12 [0.07, 0.16]   |
| Pancreatectomy          | <b>-</b>  | - 0.23 [0.16, 0.31] |
| Hepatic                 | - <b></b> | 0.07 [0.03, 0.12]   |
|                         | •         |                     |

## Conclusions

- With only 95% intervals, we can be misled by overlap/nonoverlap
- With only 84% intervals, we won't have intervals we want for individual studies
- With both in one combined plot, we get everything we need
- Easy to do with *metafor* package, using suggested options or choose Ity, Iwd, col

## Limitations

- Assumption of equal variances/standard errors
- Goldstein and Healy have more nuanced technique for unequal variance case
- Nothing is perfect for unequal variance case (always approximate)
- Approximate (but conservative) post hoc multiple comparisons are possible