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Comparison of Bayesian and frequentist
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Comparison of Bayesian and frequentist statistics

Definitions of probability

• Frequentist statistics:
Probability as the relative frequency with which an event occurs in a large number of identical,
repeated, independent random experiments.

• Bayesian statistics:
Probability as the degree of certainty for a statement (e.g. a range for a relative proportion, a
range for an intervention effect), given observations/data
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Comparison of Bayesian and frequentist statistics

Remarks:
• Interpretation:

Posterior distributions and derived quantities are easier to interpret than their frequentist
counterparts (e.g., credibility intervals versus confidence intervals, tail probabilities versus
p-values).

• For a long time:
Dominance of frequentist statistics because less computationally intensive

K. Ickstadt Bayesian model building August 28, 2024 4 / 37



Hierarchical modeling: An example

Hierarchical models in general:
Multiparameter models where parameters are structurally dependent. The joint distribution of

all parameters reflects these dependencies.
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Example: PRoMPT-study

PRoMPT-study (“PRimary care Monitoring for depressive Patients Trial“, Gensichen
et al., 2005 and 2009):

Background
Case management by health care assistants in small primary care practices provides unclear
benefit for improving depression symptoms.

Objective
To determine whether case management provided by health care assistants in small primary
care practices is more effective than usual care in improving depression symptoms and process
of care for patients with major depression.

K. Ickstadt Bayesian model building August 28, 2024 6 / 37



Example: PRoMPT-study

Design
Cluster randomized, controlled trial. The practices form the clusters.

Same and similar models apply in meta analyses.

Setting
74 small primary care practices in Germany from April 2005 to September 2007; 39 control
practices (standard); 35 case management practices with 1 practice that did not recruit any
patients.
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Example: PRoMPT-study

Patients
626 patents (316 in control practices, 310 in case management practices), age 18 to 80 years,
with major depression.

Intervention
Structured telephone interviews by healthcare assistants to monitor depression symptoms and
support for adherence to medication, with feedback to the family physician.

Measurements
Outcome: Depression symptoms at 12 months, as measured by the Patient Health
Questionnaire-9 (PHQ-9); PHQ-9 score: Sum of 9 variables, each given on a Likert scale with
4 possible answers (0= never,..., 3= almost daily); assumed to be normally distributed
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Example: PRoMPT-study

Data base
• 272 patients of the 39 control practices and 242 patients of the 34 case management

practices with baseline and a 12 months PHQ-9 scores.
• 44 and 68 patients, respectively, showed a baseline score only
• 16 and 25 patients, respectively, showed a baseline and an additional 6-months score

→ This 6-months score with an additional correlation assumption yields an estimation for an
unobserved 12-months score, leading to the data base of 288 patients in 39 control
practices and 267 patients in 34 case management practices for the primary analysis in
Gensichen et al. (2009).

→ now analyzed: 272 patients of the 39 control practices and 242 patients of the 34 case
management practices with baseline and a 12 months PHQ-9 scores.
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Example: PRoMPT-study

Assumptions

• Patients within each practice are similar (with respect to, e.g., age, sex, social status)
• Patients between practices could possibly show differences in prognostic relevant features,

treatment quality/treatment specificities, (and, perhaps, in the outcome variable)
• Yij random variables for measurement of patient j in practice i

• Outcome expectations: Ai

→ Practice affiliation might explain part of outcome variable’s variance
→ Practices are viewed as clusters of patients and as a random draw of a population of

practices
→ Practices are assumed independent and randomized in 2 groups (control (=0) and case

management (=1))
→ Hierarchy: Distribution of the Ai determines distribution of the Yij but not vice versa.
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Figure 1: Hierarchical structure

Treatment group
(Control, Intervention) Practice Measurement

Figure 2: Influence diagram
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Hierarchical models
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Important hierarchical model class in general

Linear Mixed Model, LMM:

Y = Xβ + Zγ + ε

The design matrices X(n × p1) and Z(n × p0) are given with p1 fixed effects and p0 random
effects parameters. Further:

ε ∼ MVN(0, R)

and
γ ∼ MVN(0, G)

with given covariance matrices G(p0 × p0) for random effects, γ(p0 × 1) and R(n × n) for the
residual errors ε(n × 1) which are independent from them.

The linear predictor is defined as Xβ + Zγ.

K. Ickstadt Bayesian model building August 28, 2024 13 / 37



Important hierarchical model class in general

Assuming normal distributions for γ and ε, we can write the model hierarchically as:

Y|γ ∼ MVN(Xβ + Zγ, R),

Xβ + Zγ ∼ MVN(Xβ, ZGZ⊤).

Conditional on each fixed β we obtain marginally:

Y ∼ MVN(Xβ, R + ZGZ⊤),

the marginal variance-covariance matrix R + ZGZ⊤ is also called V. The expected value of
Y is Xβ.
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Hierarchical model for PRoMPT example

For the PRoMPT-study example:

• β =
(µ0

µ1

)
mean values of p1 = 2 treatment groups,

• X =


1 0
...

...
1 0
0 1
...

...
0 1

 the indicators for p1 = 2 treatments,
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Hierarchical model for PRoMPT example

• Z =



1
...
1

0

0

1
...
1

. . .
1
...
1


a matrix with blocks Jni×1 for the assignment of patients to medical practices, and

• γ = (a1, . . . , ak) the indicators for the expected values in the p0 medical practices (both
treatments together), centered on 0. Due to the independence between γ and all εi

• R and G also have a block structure
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Hierarchical model for PRoMPT example

I.e.:

• R = σ2In,

• G = τ2Ip0 and

• V = R + ZGZT =



τ2 + σ2 τ2 · · · τ2

τ2
. . .

...
. . .

τ2 τ2 + σ2

0

0 · · ·


the marginal variance-covariance matrix with 1 block per medical practice.
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Hierarchical model for PRoMPT example

We assume a normal distribution for the expected value of practice (cluster) i in each
treatment group if the practices are independent given their treatment group:

Ai ∼ N(µ0, τ2), i = 1, . . . , k0 i.i.d.

resp.
Ai ∼ N(µ1, τ2), i = k0 + 1, . . . , k0 + k1 i.i.d.,

where the variance τ2 of Ai is equal for all practices and, in particular, is independent of the
treatment group.

The distribution for Ai for both treatment groups are called population distributions.
Parameters of these population distributions are called hyperparameters, in our example:
τ, µ0 and µ1.
Population distributions combine information across units (pooling).
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Hierarchical model for PRoMPT example

At the patient level, the individual values are assumed to be identically normally distributed,
independently around the practice expectation value Ai = ai, with standard deviation σ:

Yij = ai + εij , j = 1, . . . , ni, i = 1, . . . , k0 + k1,

where all individual deviations εij = Yij − ai are independent of each other and of all practice
expectations Ai.

The actual expectation values of the practices ai are not observable (latent). Only the
measured values yij themselves can be observed.
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Hierarchical model for PRoMPT example

In summary the hierarchical model can be specify as follows:

Yij |Ai = ai ∼ N(ai, σ2)

and
Ai ∼ N(µ0, τ2) for control practices (i = 1, . . . , k0) resp.

Ai ∼ N(µ1, τ2) for intervention practices (i = k0 + 1, . . . , k0 + k1)

The parameters in this model are: σ2, µ0, µ1, τ2 and ai, where the distributions of Ai are
conditional on µ0, µ1 and τ .
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Hierarchical model for PRoMPT example

 

Figure 3: Directed acyclic graph for data and parameters

The Ai are independent given the hyperparameters. With the product representation for the
prior distribution of all Ai, σ, µ0, µ1, τ , the joint prior distribution is invariant with respect to
the permutation of the Ai. This invariance carries through to the posterior distribution, and is
called exchangeability.
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Estimation and prediction
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Classical analysis for PRoMPT example

Only ai and σ2 are to be estimated (cf ANOVA). → ML-estimates:

âi
(ML) = ȳi and σ̂2(ML)

= 1/n
∑
i,j

(yij − ȳi)2 .

I.e., if we consider the ai as fixed parameters (more generally: the conditional likelihood, given
the random effects, for an ML estimation) then the ML estimator for ai is equal to ȳi.

Further, if µ0 is fixed but unknown and σ and τ are known: Then, according to DerSimonian
and Laird (1986), the ML-estimate is the weighted mean:

µ̂0
(ML) =

∑
i

1
σ2
ni

+τ2
ȳi∑

i
1

σ2
ni

+τ2

.
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Classical analysis for PRoMPT example

The conditional expected value E(Ai|Y = y):

For each given µ0, µ1, σ, τ we obtain

E(Ai|Y = y) = E(Ai|ȳi) = µ0 + (ȳi − µ0)wi

with weights:

wi = τ2

τ2 + σ2

ni

∈ [0, 1] .

Thus the Âi are shrunk towards the joint mean µ0. The same applies to µ1.
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Classical analysis for PRoMPT example

Properties for wi:
• wi is practice-specific
• If the intraclass correlation coefficient (ICC) is defined as τ2

τ2+σ2 , then wi = ni·ICC
1+(ni−1)·ICC .

→ E(Ai|ȳi) − µ0 for practice i is therefore reduced compared to the "raw" difference
(ȳi − µ0) → ’Shrinkage’

• wi close to 1, if τ is large in relation to σ i.e. the practices are heterogeneous, or if the
number of patients ni of the practice i is large.

• wi close to 0 if both the practices are homogeneous (τ small) and there are only a few
observations in the practice.
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Bayesian estimation and prediction for PRoMPT example
Bayesian inference for analyzing the hierarchical model:

Specification of prior distributions:

• weakly informative prior distributions for ai and σ2:

Ai ∼ N(0, 106) (i = 1, . . . , k0 + k1), 1
σ2 ∼ Gamma(0.001, 001)

• prior distributions for the hyperparameters:

µ0 ∼ N(0, 106), µ1 ∼ N(0, 106), τ ∼ unif(0, M) for large M

Remark: Alternative for the scale parameter τ2

τ2 ∼ half-t with ≥ 1 degrees of freedom.
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Bayesian analysis

• Gibbs sampling for Linear Mixed Models (e.g., Gelfand and Sahu, 1999)
• 2 chains for each parameter, with 100000 iterations following 4000 iterations of burn-in
• Monte Carlo error less than 5% of posterior standard deviation
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Median (95% CrI)
intervention 10.75 (9.87, 11.64)
control 12.14 (11.30, 12.97)
intervention - control −1.39 (−2.59, −0.16)
σ 5.66 (5.31, 6.05)
σ2 32.1 (28.2, 36.6)
τ 1.42 (0.55, 2.18)
τ2 2.00 (0.30, 4.75)
ICC 0.059 (0.009, 0.133)

Table 1: MCMC estimation of µ1, µ0, the difference µ1 − µ0,variance components and the ICC.
Intervention: n = 242 in 34 practices. Control: n = 272 in 39 practices
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Posterior distribution of τ and µ1 − µ0 depending on the upper bound M of  the prior distribution of τ
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Figure 4: Sensitivity analysis
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Figure 5: Conditional prediction of the measurement of a new patient in practice 40 (control),
probability for Ỹ40 ≤ a

Figure 6: Conditional prediction of the measurement of a new patient in practice 13 (intervention),
probability for Ỹ13 ≤ a
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Figure 7: Prediction of the expected value of a new control practice, probability for Ã0 ≤ a

Figure 8: Prediction of the expected value of a new intervention practice, probability for Ã1 ≤ a
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Figure 9: Prediction of the measurement of a new patient in new control practice, probability for
Ỹ |Ã0 ≤ a

Figure 10: Prediction of the measurement of a new patient in new intervention practice, probability for
Ỹ |Ã1 ≤ a
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Discussion

1 Meta analyses can be viewed as specific cases of analyzing hierarchical models
2 Here, exemplified for a cluster randomized trial
3 A weakness for a frequentist analysis of Linear Mixed Models is that usually τ is assumed

to be known. In Bayesian inference we can easily treat τ as a parameter.
4 A sensitivity analysis for the formulation of the prior distribution of τ should be

performed. In our example: the analysis is robust to the specific choice of the prior.
5 Prediction of new patients for a specific practice, but also for a new practice are straight

forward within the Bayesian framework.
6 The whole framework can be extended to Generalized Linear Mixed Models.
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Comparison of Bayesian and frequentist
statistics, Part 2
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Comparison of Bayesian and frequentist statistics

Including prior knowledge generally desirable: Even if informative prior knowledge is
not desired/existent, weakly informative prior distributions have advantages:

• downweight unimportant parameter values
• remedy against overfitting
• elegant formulation of parameter constraints.

Accuracy of the posterior distribution:
Posterior distribution can be specified exactly except approximation error (e.g. Monte Carlo
error). Hence, in Bayesian statistics large-sample approximations e.g. via the asymptotic
normal distribution at the Maximum Likelihood estimators play a minor role compared to
frequentist statistics.
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Comparison of Bayesian and frequentist statistics

Nuisance Parameters:
Can be integrated out of the posterior distribution, which is hard in a frequentist setting.
Again, remedy against overfitting.

Uncertainty Propagation:
Sampling procedures, e.g., MCMC approaches lead to natural uncertainty propagation for
derived quantities.
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Comparison of Bayesian and frequentist statistics

Avoiding null-hypothesis significance tests:
Posterior distributions allow connections to cost-benefit considerations and to rational
decisions. Frequentist analyses often result in typical null-hypothesis significance testing, which
is being criticized to an increasing degree (e.g., McShane et al., 2019). It is especially
problematic for null-hypotheses consisting of only one point in parameter space. In Bayesian
analyses null-hypothesis testing this is not as common as in frequentist analyses.

Posterior predictive checks (PPCs):
Part of the so-called Bayesian Workflow (Gelman et al., 2020); easy to perform and intuitive
way of a Bayesian model diagnosis. Expertise needed, but model diagnosis is often difficult in
a frequentist setting.
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