Beta-binomial-models that respect randomization for meta-analysis of the odds ratio in case of very few events

Tim Mathes

Symposium "Recent Advances in Meta-Analysis" 29. August 2024

Introduction

- Standard beta-binomial (BB) model has shown good statistical properties for metaanalyses of binary outcomes, in challenging situations with a low number of studies or (very) few events [1, 2,3,4]
- However it ignores the randomisation level (arm-based)
- Aim: To introduce BB models that respect randomization and compare these models in a simulation study in case of (very) few events

Standard (common-*rho)* beta-binomial model (**BBST**)

- $E(\pi_i) = \mu_i = \alpha/(\alpha + \beta)$
- $Var(\pi_i) = \mu_i(1 \mu_i) \vartheta / (1 + \vartheta)$, where $\vartheta = 1 / (\alpha + \beta)$
- Assumption correlation equal between study groups, $corr(z_{ij}, z_{ik}) = \rho = 1/(\alpha + \beta + 1)$, is the same for all observations

 $\rightarrow (\alpha_{\rm C} + \beta_{\rm C}) = (\alpha + \beta) = (\alpha_{\rm T} + \beta_{\rm T})$

BBST estimation of treatment effect

- The treatment effect $\theta = b_T = g^{-1}(\mu_T)/g^{-1}(\mu_C)$ is modelled via the link function $g(\mu_i) = b_0 + b_T \times i$
- \rightarrow ignores the randomization level

Common-*beta* beta-binomial model (**BBCB**)

Original Article	RESEARCH METHODS IN MEDICINE& HEALTH SCIENCES
Beta-binomial models for meta-analysis with binary outcomes: Variations, extensions, and additional insights from econometrics	Research Methods in Medicine & Health Sciences 2011, Vol. 2(2) 82–89 © The Author(s) 2021 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/ds3204821996225 journals.sagepub.com/home/mm

• Alternative assumption is that β is the same across studies/groups, so that $\beta_C = \beta_T = \beta$ but the alphas (α_C , and α_T) differ between studies/groups

Common-beta beta-binomial model

- Suppose a fixed-effects negative binomial regression (FE-NegBin) with response y, an intercept c₀, a binary indicator c₁, and the interaction of c₁ and the treatment effect c_T
- If we set $\beta = \exp(c_0)$, $\alpha_T = \exp(c_0 + c_1 + c_T)$, and $\alpha_C = \exp(c_0 + c_1)$, then the likelihood of the common-*beta* FE-NegBin and the common-*beta* BB coincide, if the FE-NegBin is estimated by conditional maximum likelihood [5]

Estimating CBBBs using panel count data models

The ML estimation can be conditioned on the counts in each study_group (ignores randomization) [6] or each study (respects randomisation)

Study	Treatment	Study Group	Success	У	BBCB_ignor	BBCN_resp	BBST
Ι	I	1	I	16	٦ ٢	7	٦٢]
1	I.	I. I.	0	8	ے ا	7	
1	0	2	1	17	7 [
1	0	2	0	- 11	ſΖ		
2	I.	3	1	12	7 7	7	
2	I.	3	0	0	ſΖ	~	
2	0	4	1	7	7 ∫	<u>ک</u> ۲	
2	0	4	0	3	ſΖ		∫ Z _

Simulation setup

- Design factors based on real-world meta-analyses [7, 8]
- Mirrors non-Cochrane (median number of studies=8) and Cochrane (median number of studies=3) meta-analyses
- Median odds ratio (OR) under H1=0.69
- Event probabilities: 0.01; 0.02; 0.05
- Data were generate from an inverse variance model
- 10,000 meta-analyses

• Results are only presented for H1

Comparator models

- Generalized linear mixed model with a random intercept and random treatment effect
 (GLRR) [9]: g(π_{ki}) = γ_k + i × θ + i × ε_k
- Inverse variance random-effects model
 - Heterogeneity variance estimated using the Paule-Mandel method
 - Hartung-Knapp-Sidik-Jonkman 95%Cls (HKPM)
 - Refined version of Hartung-Knapp-Sidik-Jonkman 95%CIs (MHKPM): variance correction is only applied if the 95%CIs of the original HKSJ-method are smaller than the Wald-type 95%CIs

BBCB1 --- BBST --- HKPM

11

Power

Agreement of treatment effect

- In situations were models disagreed ORs were often unrealistic high in consideration of the data
- BBCB_resp tends to show implausible results when sample sizes between studies varied strongly
- BBCB_ignor tends to show implausible results when there was (very) large heterogeneity

Conclusion

- Theoretical advantage: no continuity correction is necessary and never falls back to a fixed-effect model
- The preliminary results of this simulation study indicate that the BBCB respecting randomization might be a promising candidate for pooling studies in the case of very rare events
- The BBCBs have a closed-form and can be conveniently implemented using standard procedures from statistical software as used in econometrics (e.g. PROC COUNTREG SAS, plm package in R, xtnbreg in Stata)
- The idea of using panel count data estimation routines opens the door for using any panel data model that has been introduced previously, e.g. zero inflated Poisson-regression, random-effects negative binomial regression

References

- 1. Beisemann, M., Doebler, P., & Holling, H. (2020). Comparison of random-effects meta-analysis models for the relative risk in the case of rare events: A simulation study. Biometrical Journal, 62(7), 1597-1630.
- 2. Jansen, K., & Holling, H. (2023). Random-effects meta-analysis models for the odds ratio in the case of rare events under different data-generating models: A simulation study. Biometrical Journal, 65(3), 2200132.
- 3. Kuss O. Statistical methods for meta-analyses including information from studies without any events—add nothing to nothing and succeed nevertheless. Statistics in Medicine. 2015;34(7):1097-116.
- 4. Mathes T, Kuss O. A comparison of methods for meta-analysis of a small number of studies with binary outcomes. Res Synth Methods. 2018;9(3):366-81.
- 5. Guimaraes, P. (2005). A simple approach to fit the beta-binomial model. The Stata Journal, 5(3), 385-394.
- 6. Mathes, T. and O. Kuss, Beta-binomial models for meta-analysis with binary outcomes: Variations, extensions, and additional insights from econometrics. Research Methods in Medicine & Health Sciences, 2021: p. 2632084321996225.
- 7. Page MJ, Shamseer L, Altman DG, Tetzlaff J, Sampson M, Tricco AC, et al. Epidemiology and Reporting Characteristics of Systematic Reviews of Biomedical Research: A Cross-Sectional Study. PLOS Medicine. 2016;13(5):e1002028.
- 8. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JPT. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. International journal of epidemiology. 2012;41(3):818-27.
- 9. Jackson D, et al. A comparison of seven random-effects models for meta-analyses that estimate the summary odds ratio. Statistics in medicine, 2018, 37. Jg., Nr. 7, S. 1059-1085.

Description simulation study

Parameter	Distributional assumption and parameter specification	Description of resulting data set			
Sample size of single study n_k	Generated from a log-normal distribution with μ_{ND} = 4.615 and σ_{ND} = 1.1	Q1 = 50.0, median = 102.0, mean = 185.7, Q3 = 213.0			
Sample size of treatment (control) arm of single study n_{kT} (n_{kC})	For n_{kT} : Generated from a binomial distribution with event probability 0.5 (1:1 randomisation) and n_k as number of experiments For n_{kC} : $n_k - n_{kT}$	Based on Fleishman power transformation			
Event probability in control group $\pi_{\mathit{C,true}}$	Generated from a beta distribution with α = 0.42 and β = 1.43	Q1 = 0.024, median = 0.129, mean = 0.230, Q3 = 0.369			
Variation σ^2 within study	Is implicitly given by random sample size of single study and event probability in control group				
Heterogeneity $ au^2$ between the studies (for $ heta$ = log OR)	Generated from a log normal distribution with $\mu_{ND} = -1.47$, $\sigma_{ND} = 1.65$ and skewness = -0.55 using Fleishman's power transformation to generate the skewed distribution[44, 45]	τ ² : Q1 = 0.079, median = 0.273, mean = 0.621, Q3 = 0.802			
Effect size of θ = log OR under H ₁	Generated from a log normal distribution with μ_{ND} = -0.59, σ_{ND} = 0.61, skewness = -1.28 and kurtosis = 3.68	OR: Q1 = 0.527, mean = 0.673, median = 0.694, Q3 = 0.838			
OR: odds ratio; SD: standard deviation; Q1: 1st guartile; Q3: 3rd guartile					

Number of zero studies

Scenario			Proportion of zero studies			
Number of studies in meta- analysis	Effect	Baseline probability in the control arm	Proportion of zero studies in treatment arm	Proportion of zero studies in control arm	Proportion of single zero studies in either control or treatment arm	Proportion of double zero studies
"CO"	"H0"	0.01	0.54	0.55	0.73	0.36
"CO"	"H0"	0.02	0.38	0.37	0.55	0.2
"CO"	"H0"	0.05	0.19	0.17	0.29	0.06
"CO"	"H1"	0.01	0.62	0.55	0.77	0.4
"CO"	"H1"	0.02	0.47	0.37	0.61	0.24
"CO"	"H1"	0.05	0.26	0.16	0.35	0.08
"NC"	"H0"	0.01	0.54	0.55	0.73	0.36
"NC"	"H0"	0.02	0.38	0.37	0.55	0.2
"NC"	"H0"	0.05	0.19	0.16	0.29	0.06
"NC"	"H1"	0.01	0.62	0.55	0.77	0.4
"NC"	"H1"	0.02	0.47	0.37	0.6	0.24
"NC"	"H1"	0.05	0.27	0.16	0.35	0.08