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Introduction
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• Standard beta-binomial (BB) model has shown good statistical properties for meta-
analyses of binary outcomes, in challenging situations with a low number of studies or 
(very) few events [1, 2,3,4]

• However it ignores the randomisation level (arm-based)

• Aim: To introduce BB models that respect randomization and compare these models in a 
simulation study in case of (very) few events 



Standard (common-rho) beta-binomial 
model (BBST) 
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• E(𝜋i) = 𝜇i = 𝛼∕(𝛼 + 𝛽) 

• Var(𝜋i) = 𝜇i(1 − 𝜇i) ϑ ∕(1 + ϑ), where ϑ = 1∕(𝛼 + 𝛽)

• Assumption correlation equal between study groups, corr(zij, zik) = 𝜌 = 1∕(𝛼 + 𝛽 + 1), 
is the same for all observations

→ (𝛼C+𝛽C) = (𝛼+𝛽) = (𝛼T+𝛽T)



BBST estimation of treatment effect
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• The treatment effect 𝜃 = 𝑏𝑇 = Τ𝑔−1 𝜇𝑇 𝑔−1 𝜇𝐶 is modelled via the link function
𝑔 𝜇𝑖 = 𝑏0 + 𝑏𝑇 × 𝑖

→ ignores the randomization level



Common-beta beta-binomial model (BBCB)
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• Alternative assumption is that 𝛽 is the same across studies/groups, so that 𝛽𝐶 =
𝛽𝑇 = 𝛽 but the alphas (𝛼𝐶 , and 𝛼𝑇) differ between studies/groups



Common-beta beta-binomial model
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• Suppose a fixed-effects negative binomial regression (FE-NegBin) with response y, an 
intercept c0, a binary indicator c1, and the interaction of c1 and the treatment effect cT

• If we set 𝛽 = exp(c0), 𝛼T = exp(c0 + c1 + cT), and 𝛼C = exp(c0 + c1), then the likelihood of the 
common-beta FE-NegBin and the common-beta BB coincide, if the FE-NegBin is 
estimated by conditional maximum likelihood [5]
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The ML estimation can be conditioned on the counts in each study_group (ignores 
randomization) [6] or each study (respects randomisation)
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Estimating CBBBs using panel count data models



Simulation setup 
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• Design factors based on real-world meta-analyses [7, 8]

• Mirrors non-Cochrane (median number of studies=8) and Cochrane (median number of 
studies=3) meta-analyses

• Median odds ratio (OR) under H1=0.69

• Event probabilities: 0.01; 0.02; 0.05

• Data were generate from an inverse variance model

• 10,000 meta-analyses

• Results are only presented for H1



Comparator models 

9

• Generalized linear mixed model with a random intercept and random treatment effect 
(GLRR) [9]:  𝑔 𝜋𝑘𝑖 = 𝛾𝑘 + 𝑖 × 𝜃 + 𝑖 × 𝜖𝑘

• Inverse variance random-effects model 

‐ Heterogeneity variance estimated using the Paule-Mandel method

‐ Hartung-Knapp-Sidik-Jonkman 95%CIs (HKPM)

‐ Refined version of Hartung-Knapp-Sidik-Jonkman 95%CIs (MHKPM): variance 
correction is only applied if the 95%CIs of the original HKSJ-method are 
smaller than the Wald-type 95%CIs



Bias
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Coverage
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Power
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Agreement of treatment effect
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• In situations were models disagreed 
ORs were often unrealistic high in 
consideration of the data

• BBCB_resp tends to show implausible 
results when sample sizes between 
studies varied strongly

• BBCB_ignor tends to show implausible 
results when there was (very) large 
heterogeneity



Conclusion
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• Theoretical advantage: no continuity correction is necessary and never falls back to a 
fixed-effect model

• The preliminary results of this simulation study indicate that the BBCB respecting 
randomization might be a promising candidate for pooling studies in the case of very 
rare events

• The BBCBs have a closed-form and can be conveniently implemented using standard 
procedures from statistical software as used in econometrics (e.g. PROC COUNTREG SAS, 
plm package in R, xtnbreg in Stata)

• The idea of using panel count data estimation routines opens the door for using any 
panel data model that has been introduced previously, e.g. zero inflated Poisson-
regression, random-effects negative binomial regression
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Description simulation study 
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Parameter Distributional assumption and parameter 

specification

Description of resulting data set

Sample size of single study 𝑛𝑘 Generated from a log-normal distribution with 

𝜇𝑁𝐷 = 4.615 and 𝜎𝑁𝐷 = 1.1

Q1 = 50.0, median = 102.0, mean = 185.7, Q3 

= 213.0

Sample size of treatment (control) arm of 

single study 𝑛𝑘𝑇 (𝑛𝑘𝐶)

For 𝑛𝑘𝑇: Generated from a binomial distribution 

with event probability 0.5 (1:1 randomisation) 

and 𝑛𝑘 as number of experiments

For 𝑛𝑘𝐶: 𝑛𝑘 − 𝑛𝑘𝑇

Based on Fleishman power transformation

Event probability in control group 𝜋𝐶,𝑡𝑟𝑢𝑒 Generated from a beta distribution with 𝛼 = 0.42 

and 𝛽 = 1.43

Q1 = 0.024, median = 0.129, mean = 0.230, 

Q3 = 0.369

Variation 𝜎2 within study Is implicitly given by random sample size of single 

study and event probability in control group

Heterogeneity 𝜏2 between the studies 

(for 𝜃 = log OR)

Generated from a log normal distribution with 
𝜇𝑁𝐷 = –1.47, 𝜎𝑁𝐷 = 1.65 and skewness = –0.55 
using Fleishman’s power transformation to 
generate the skewed distribution[44, 45]

𝜏2:

Q1 = 0.079, median = 0.273, mean = 0.621, 

Q3 = 0.802

Effect size of 𝜃 = log OR under H1 Generated from a log normal distribution with 

𝜇𝑁𝐷 = –0.59, 𝜎𝑁𝐷 = 0.61, skewness = –1.28 and 

kurtosis = 3.68 

OR:

Q1 = 0.527, mean = 0.673, median = 0.694, 

Q3 = 0.838

OR: odds ratio; SD: standard deviation; Q1: 1st quartile; Q3: 3rd quartile



Number of zero studies 
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Scenario Proportion of zero studies

Number of 

studies in meta-

analysis 

Effect Baseline 

probability 

in the 

control arm

Proportion 

of zero 

studies in 

treatment 

arm 

Proportion 

of zero 

studies in 

control 

arm

Proportion 

of single zero 

studies in 

either 

control or 

treatment 

arm

Proportion 

of double 

zero studies

"CO" "H0" 0.01 0.54 0.55 0.73 0.36

"CO" "H0" 0.02 0.38 0.37 0.55 0.2

"CO" "H0" 0.05 0.19 0.17 0.29 0.06

"CO" "H1" 0.01 0.62 0.55 0.77 0.4

"CO" "H1" 0.02 0.47 0.37 0.61 0.24

"CO" "H1" 0.05 0.26 0.16 0.35 0.08

"NC" "H0" 0.01 0.54 0.55 0.73 0.36

"NC" "H0" 0.02 0.38 0.37 0.55 0.2

"NC" "H0" 0.05 0.19 0.16 0.29 0.06

"NC" "H1" 0.01 0.62 0.55 0.77 0.4

"NC" "H1" 0.02 0.47 0.37 0.6 0.24

"NC" "H1" 0.05 0.27 0.16 0.35 0.08


