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·· Meta-regression model
Let yi denote the observed value in the ith study
and θi the corresponding true parameter. We as-
sume that

yi = θi + εi, (1)

where εi ∼ N(0, νi) denotes the sampling error and
εi the sampling variance of the ith estimate. Ac-
cording to the random-effects model, the true effect
sizes are heterogenous and are given by

θi = µ + ui, (2)

where ui ∼ N(0, τ 2). Therefore, τ 2 denotes the
heterogeneity in the true effects and µ the average
true effect. A special case of the random-effects
model arises when τ 2 = 0, in which case the true
effects are homogeneous. We can then set up a
mixed-effects meta-regression model of the form
with p potential moderator variables.

θi = β + βixi1 + · · · + βpxip + µi, (3)

where xij denotes the observed value of the jth
moderator variable in the ith study. βj(j = 1, · · · , p)
denotes how E[θi] changes for a one-unit increase
in xij, and µi ∼ N(0, τ 2)) as before, and τ 2 now
denotes residual heterogeneity.

·· Model fitting and inference
Let X denote the (k × (p + 1)) model martix con-
taining the values of p moderator variables. Next,
let y denote the observed effect size estimates and
V a diagonal matrix with the sampling variances
along the diagonal. The random/mixed-effects model
can be then be written as

y ∼ N(Xβ,M ), (4)

where M = V +τ 2I and I denotes a identity mar-
tix. Letting W = M−1, the log likelihood function
is therefore given by
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The maximun likelihhod estimate of β is given by:

b = (X ′WX)
−1

X ′Wy (6)

Finding the maximum liklihood estimates of β

and τ 2 is considerably simplified by maximizing
the profiled log likelihood over τ 2
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The restricted log likelihood function is given by
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·· Selection via information criteria
Based on the p moderator variables, a total of R =

2p models can be fitted to the given data. Informa-
tion criteria, which penalize the maximized likeli-
hoods for model complexity, can be used for model
selection. Let ll deonte eithr llML or llREML

• AIC (Akaike Information Criterion)

AIC = −2ll + 2(s + 2) (9)

• BIC (Bayesian Information Criterion)

BIC = −2ll + (s + 2) ln(k∗) (10)

where k∗ = k for ML estimate and k∗ = k − s− 1

for REML estimation. When k∗ ≥ 8, the BIC pe-
nalizes the model fit more heavily than the AIC and
therefore should tend to select models with fewer
fixed effects.
• AICc (a finite sample size (second-order bias)

corrected version of the AIC)

AICc = −2ll + 2(s + 2)

 k∗

k∗ − (s + 2)− 1

(11)

where k∗ = max(k, s + 4) for ML estimation and
k∗ = max(k− s− 1, s+ 4) for REML estimation.
If k is small, AICc will favor models with fewer
parameters [1]. If k is large, AIC will favour mod-
els with more parameters.
• WAIC (Watanabe-Akaike information crite-

rion)

LPPD =
n∑
i=1

log
∫
p (yi | θ) ppost(θ)dθ

pWAIC =
n∑
i=1

varpost (log p (yi | θ))

WAIC = −2LPPD + 2pWAIC (12)

Where ppost(θ) for posterior distribution, and LPPD
for log pointwise predictive density which summa-
rize the predictive accucary of the fitted model to
data. And the penalty term pWAIC is “the vari-
ance of individual terms in the log predictive den-
sity summed over the n data points”.

• LOO (leave-one-out cross validation)

LOO = −2LPPDloo =

−2

n∑
i=1

log

∫
p (yi | θ) ppos(−i)(θ)dθ (13)

Based on the data minus the data point i, ppos(−i) is the posterior distribu-
tion. Data point i is only used for prediction, not computation, in contrast
to LPPD, which uses it for both prediction and posterior distribution
computation.

Table 1: Value of the AICc (based on llREMLr), WAIC and LOO for the 16 models fitted to the data examining the influence of mycorrhizal
inoculation on plant biomass

Model Moderator(s) AICc WAIC(N) WAIC(U) LOO(N) LOO(U)

01 FN + FP 203.21(01) 120.28(16) 118.02(13) 132.91(16) 126.45(11)
02 STER + FN + FP 205.16(02) 119.08(15) 119.23(15) 129.00(15) 130.71(15)
03 FUN + FN + FP 205.51(03) 117.22(13) 119.07(14) 128.63(14) 130.92(16)
04 FUN + STER + FP 207.54(04) 117.21(12) 116.19(11) 128.10(13) 126.12(10)
05 FUN+FP 207.57(05) 115.37(11) 113.64(07) 126.74(10) 122.18(04)
06 FUN + STER + FN + FP 207.61(06) 117.50(14) 120.06(16) 126.87(11) 128.22(14)
07 STER + FP 208.53(07) 114.56(07) 116.45(12) 125.45(08) 126.66(12)
08 FP 212.52(08) 112.88(04) 113.54(06) 123.98(06) 124.34(07)
09 FUN 213.05(09) 112.32(03) 112.06(02) 121.80(03) 120.57(01)
10 FUN + STER 214.16(10) 112.25(02) 112.87(03) 119.77(01) 121.95(03)
11 FUN + FN 215.74(11) 114.80(09) 113.34(05) 127.61(12) 123.40(06)
12 STER 216.28(12) 114.58(08) 111.83(01) 123.38(04) 121.12(02)
13 FUN + STER + FN 216.77(13) 114.15(05) 115.00(10) 125.36(07) 125.41(09)
14 FN 217.80(14) 114.29(06) 114.68(09) 125.89(09) 127.21(13)
15 STER + FN 218.33(15) 114.84(10) 113.17(04) 123.91(05) 122.35(05)
16 - 218.49(16) 110.98(01) 113.96(08) 120.86(02) 124.68(08)

(N): By using Normal(0,2.82) prior distribution for each moderator,
(U): By using Uniform(-2,2) prior distribution for each moderator,
(·): The rank of values in the corresponding information criteria,
AlCc: AlCc is ranked according to TABLE 2 from Cinar et al..

·· Conclusions
In Table 1, we consider two different Prior settings
for our binary value moderator, Normal(0, 2.82)[2,
3] and Uniform(−2, 2). And HalfNormal(0.5)

for the heterogeneity. A large variance makes the
Normal prior less informative, spreading the prob-
ability mass over a wider range. A Normal prior
becomes less specific as variance increases because
it allows almost any value of the parameter within
that range, which makes it more like a Uniform
prior. It is evident that the models are ranked very
differently based on different information criteria.
In contrast to the frequentist information criterion,
the Bayesian information criterion provides com-
pletely different ranking results. These differences
may be due to the fact that AIC does not work in
settings with strong prior information, and WAIC
uses a data partition that would make it difficult to
use structured models like spatial or network data.
However, cross-validation is computationally ex-
pensive as well as not always well defined in de-
pendent data settings. Considering that the Bayesian
Information Criterion is computationally very time-
consuming in model selection, especially when us-
ing MCMC, we will also examine whether the Laplace
approximation in ”INLA” [4] can provide better
computational assistance.
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