Empirical heterogeneity information on subgroup meta analysis

Renato Panaro, Christian Röver and Tim Friede

University Medical Center Göttingen, Germany

The Collection of Meta-analyses

UNIVERSITÄTSMEDIZIN GÖTTINGEN

Individual estimates y_{ij} (given along with standard errors s_{ij}) of study *i* within meta-analysis *j* are to be combined in a group of (independently) pooled analyses. The **random-effects model** may be stated as:

> $y_{ij}|\theta_{ij},\sigma_{ij} \sim \operatorname{Normal}\left(\theta_{ij},\sigma_{ij}^2\right),$ $\theta_{ij}|\mu_j, \tau_j \sim \operatorname{Normal}\left(\mu_j, \tau_j^2\right).$

The Cochrane library

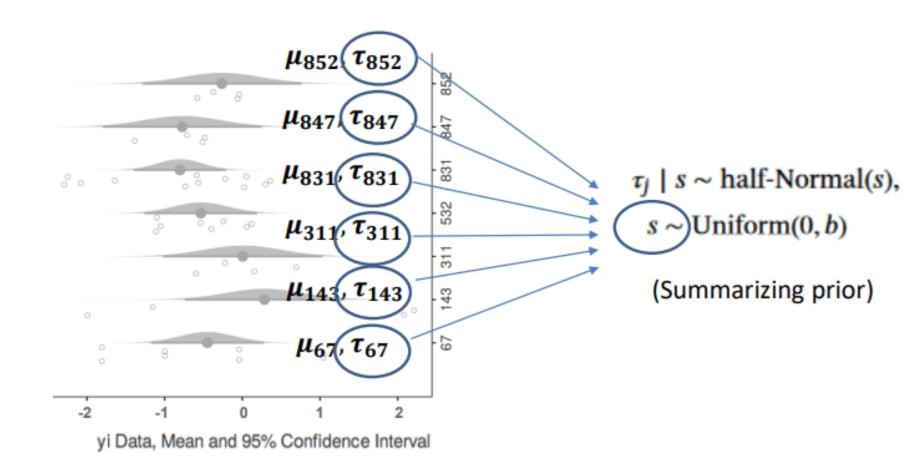
... contains data from many archived meta-analyses from clinical trials. Question is whether we can utilize this comprehensive data set to find empirical evidence on heterogeneity priors' scale.

The investigation includes 14358 published subgroup meta-analyses with 2 (randomly selected) subgroups. We have assumed the **positive correlation strategy** model instead of the previous **separation** strategy. With that, we may then empirically obtain informative priors for the between-trial subgroupspecific and interaction heterogeneities. Here we focus on Bayesian estimates using an **uninformative normal prior** on the overall values μ_i such as Normal $(0, 10^2)$ prior.

for $i = 1, \ldots, k_i$ and $j = 1, \ldots, n$. Interest usually is in estimating μ_i or in predicting θ_{k_i+1} . The **heterogeneity** τ_i then constitutes a analysis-specific nuisance parameter.

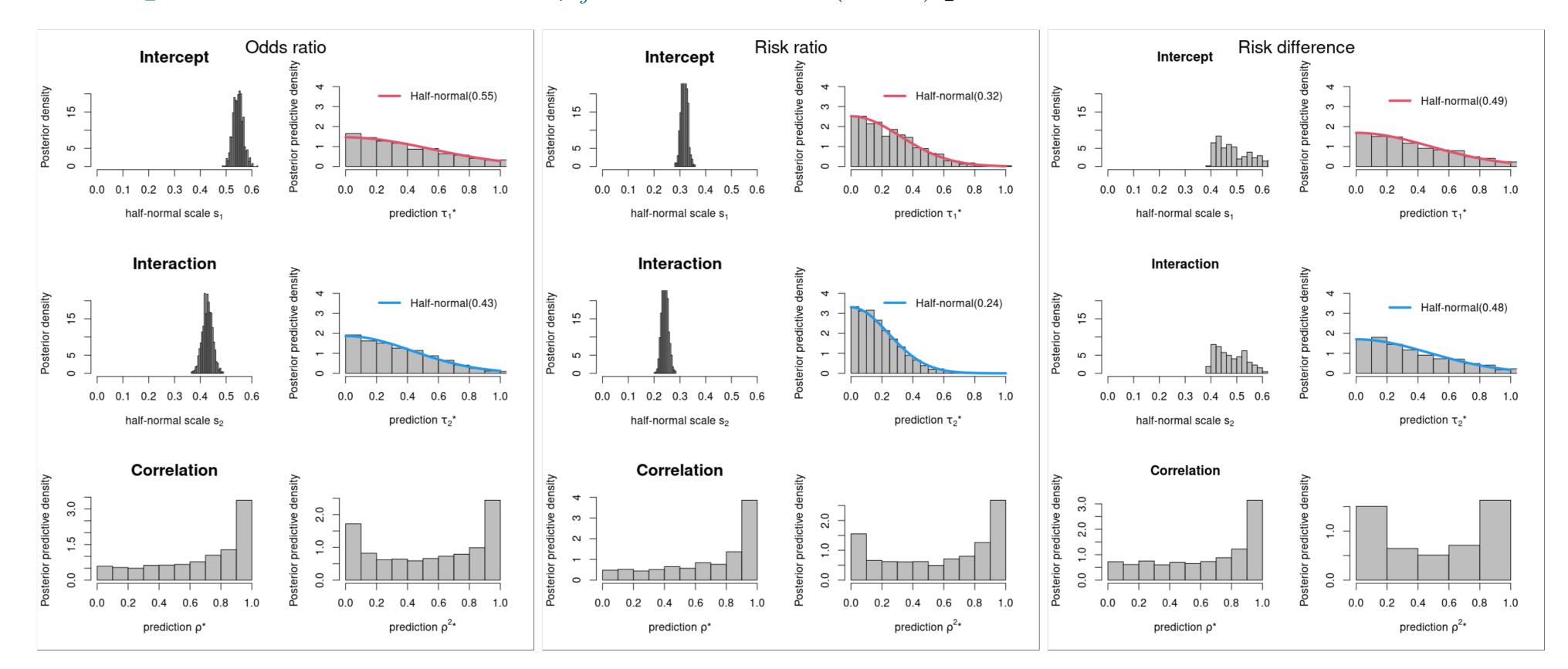
The Summarizing (hyper-)Prior

The **summarizing prior** will detect a suitable scale for scale-family the heterogeneity priors $\tau_i \sim$ $\frac{1}{s}p_i(\frac{t}{s})$ in a collection of *n* meta-analyses [1, 2].



Extension to subgroups

The subgroup version of the random-effects model



Empirical information from Cochrane Library data on heterogeneity matrices (subgroup-specific and interaction heterogeneity) in a collection of several bivarite subgroup meta-analysis q = 1, 2 of varied sizes sizes k_i).

The Positive Correlation Strategy

The **positive correlation strategy** in Bayesian models allows for flexibility on scale prior choices but does not compared to the subgroup-specific heterogeneallow for negative correlation.

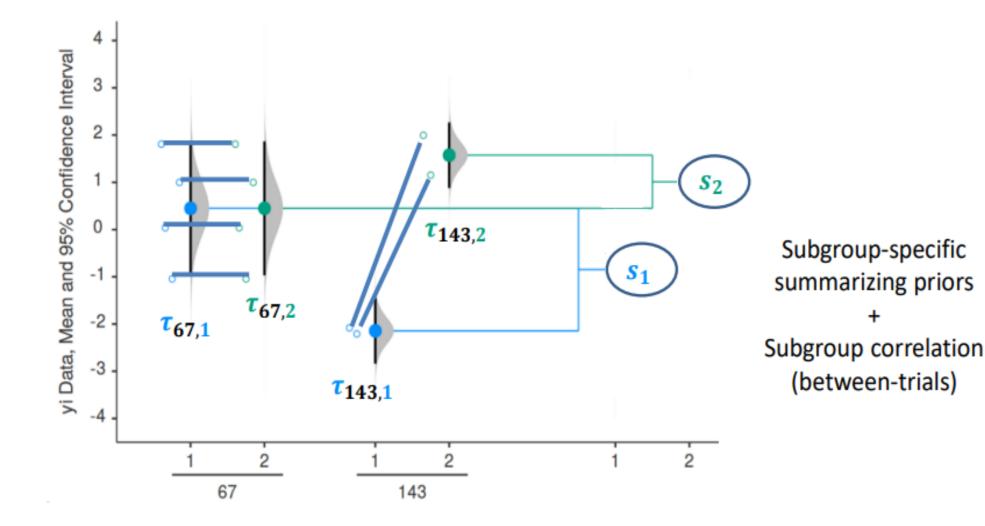
Conclusions

Summarizing priors work well on subgroups as long as the interaction heterogeneity is small to moderate (moderate to large correlation) ity, and tend to yield **overly informative** prior recommendations if subgroups are not correlated.

inherits a heterogeneity matrix structure that allows for the inclusion of **more than one endpoint per trial (subgroups)** in the analysis. The bivariate random effects case includes g = 1, 2 subgroups as:

$$\begin{pmatrix} y_{1ij} \\ y_{2ij} \end{pmatrix} \mid \theta, \sigma \sim \operatorname{Normal} \left(\begin{pmatrix} \theta_{1ij} \\ \theta_{2ij} \end{pmatrix}, \begin{pmatrix} \sigma_{1ij}^2 & 0 \\ 0 & \sigma_{2ij}^2 \end{pmatrix} \right),$$
$$\begin{pmatrix} \theta_{1ij} \\ \theta_{2ij} \end{pmatrix} \mid d \sim \operatorname{Normal} \left(\begin{pmatrix} \beta_{1j} \\ \beta_{2j} \end{pmatrix}, \begin{pmatrix} \tau_{1j}^2 & \rho_j \tau_{1j} \tau_{2j} \\ \rho_j \tau_{1j} \tau_{2j} & \tau_{2j}^2 \end{pmatrix} \right).$$

for a vector of parameters $d = (\beta, \tau, \rho)'$. In contrast to the case of a scalar heterogeneity [3, 4], there is no widespread consensus on the prior choices for heterogeneity matrices.

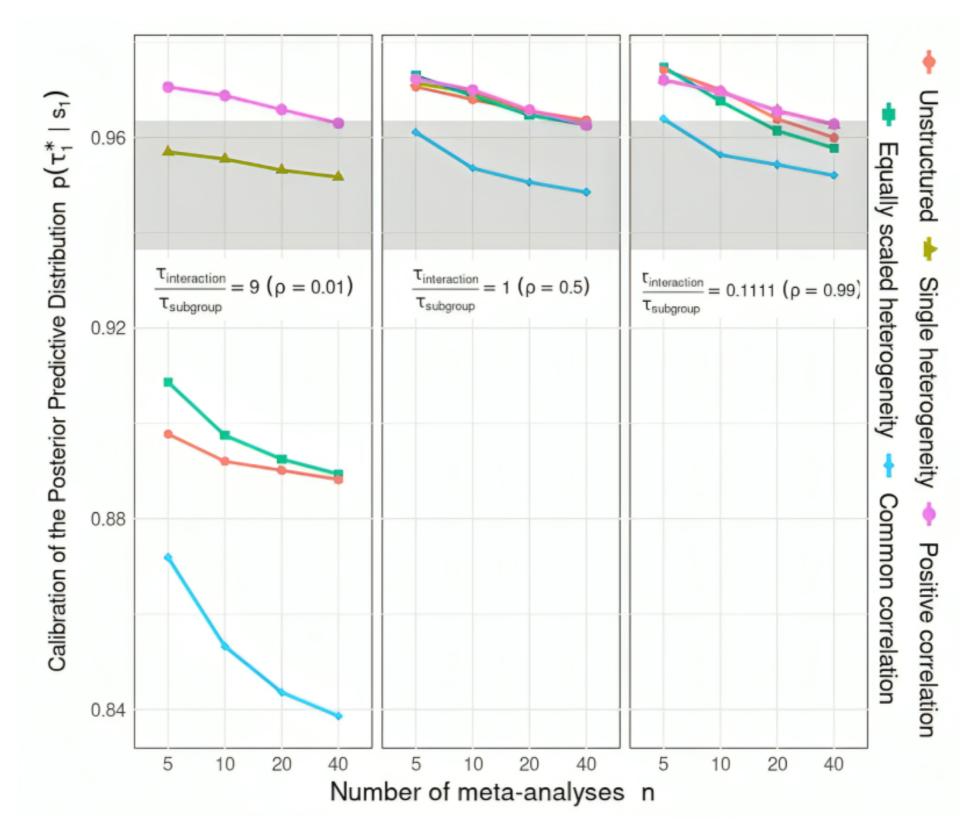


$$\begin{pmatrix} \tau_{1j}^2 & \tau_{1j}^2 \\ \tau_{1j}^2 & \tau_{1j}^2 + \tau_{2j}^2 \end{pmatrix} = \begin{pmatrix} \tau_{1j} & 0 \\ 0 & \tau_{2j} \end{pmatrix} \begin{pmatrix} 1 & \sqrt{\frac{\delta_j}{1+\delta_j}} \\ \sqrt{\frac{\delta_j}{1+\delta_j}} & 1+\delta_j \end{pmatrix} \begin{pmatrix} \tau_{1j} & 0 \\ 0 & \tau_{2j} \end{pmatrix}.$$

where the ratio between heterogeneities is $\sqrt{\delta_j} = \frac{\tau_{1j}}{\tau_{2i}}$. The heterogeneity here is parameterized in terms of "main effect / interaction" (intercept/slope). For instance, heterogeneity $\tau_{qj} \sim \text{half-Normal}(s_q)$.

Simulation Study

The simulation data was generated using an IPD model [6] that yields approximately a **positive correlation struc**ture $\tau_{subgroup}^2 vv' + \tau_{interaction}^2 uu'$ in the AgD level. The investigation includes 5 alternatives including the correlation strategy and separation strategy alternatives and yields the resulting calibrations for the nominal credible level of **95%** (see figure).



In the latter case, the use of a standard weakly informative heterogeneity priors may be more appropriate [7]. For odds ratios, relative risks and risk differences in Cochrane database the posterior predictive correlation was found to be large, that is 0.77(0.04, 1), 0.82(0.05, 1) and 0.74(0.04, 1) respectively.

References

- [1] Turner RM et al. Predictive distributions for between-study heterogeneity and simple methods for their application in bayesian meta-analysis. Statistics in Medicine, 34(6):984–998, 2015.
- [2] Turner RM et al. Predicting the extent of heterogeneity in metaanalysis, using empirical data from the cochrane database of systematic reviews. International Journal of Epidemiology, 41(3): 818-827, 2012.
- [3] Lilienthal J et al. Bayesian random-effects meta-analysis with empirical heterogeneity priors for application in health technology assessment with very few studies. Research Synthesis Methods, 15(2):275–287, 2024.
- [4] Röver C et al. Summarizing empirical information on betweenstudy heterogeneity for bayesian random-effects meta-analysis.

The Separation Strategy

The separation strategy in Bayesian models allows for flexibility on prior choice as it relies on **separate choices** of scale- and correlation-prior [5].

 $\begin{pmatrix} \tau_{1j}^2 & \rho_j \tau_{1j} \tau_{2j} \\ \rho_j \tau_{1j} \tau_{2j} & \tau_{2j}^2 \end{pmatrix} = \begin{pmatrix} \tau_{1j} & 0 \\ 0 & \tau_{2j} \end{pmatrix} \begin{pmatrix} 1 & \rho_j \\ \rho_j & 1 \end{pmatrix} \begin{pmatrix} \tau_{1j} & 0 \\ 0 & \tau_{2j} \end{pmatrix}.$

For instance, heterogeneity $\tau_{qj} \sim \text{half-Normal}(s_q)$ and correlation $(\rho_j + 1)/2 \sim \text{Beta}(c, c)$. The heterogeneity here is parameterized in terms of "two effects".

Statistics in Medicine, 42(14):2439–2454, 2023.

[5] Gelman A et al. Bayesian Data Analysis. Chapman and Hall/CRC, 1995.

[6] Hua H et al. One-stage individual participant data meta-analysis models: Estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and acrosstrial information. *Statistics in Medicine*, 36(5):772–789, 2017.

[7] Röver C et al. On weakly informative prior distributions for the heterogeneity parameter in bayesian random-effects metaanalysis. Research Synthesis Methods, 12(4):448–474, 2021.

Most of the methods fail to reach nominal coverage when interaction heterogeneity is large.