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1 Introduction

Repeated measures are data which are observed repeatedly on the same subjects. Such
data appear in many medical or biological trials and are called high-dimensional if the
dimensiond (i.e. the number of repeated measures per subject) is larger(or even much
larger) than the numbern of the independent subjects on which they are observed. Most
of the classical procedures require thatn > d. If this is not the case then they break down
or cannot even be computed.

For example, Wald-type statistics can no loger be computed since they require an
inverse of the sample covariance matrix which becomes singular if n < d. The ANOVA-
type statistic (ATS), first mentioned by Box (1954) and further developed by Geisser and
Greenhouse (1958) and Greenhouse and Geisser (1959), however, can be computed. But
it may be noted that a test based on this statistic using a plug-in estimator of the sample
covariance matrix becomes conservative ifn < d.

Meanwhile a plethora of papers considers procedures for high-dimensional data. The
ideas underlying the procedures developed may be classifiedas

(1) approximations for fixedn and fixed (but arbitrary large)d assuming a multiva-
riate normal distribution but admitting any type of covariance matrices, so-called
unstructured covariance matrices,

(2) procedures assumingn, d → ∞ while d/n → κ ∈ (0, 1) - assuming or not a multi-
variate normal distribution,

(3) procedures assumingn fixed whiled → ∞ with different assumptions on the struc-
ture of the covariance matrix and the underlying distribution of the repeated mea-
sures.

In this technical report we will focus on the first idea, i.e. we assume a multivariate nor-
mal distribution and want to provide approximations based on the ANOVA-type statistic
considered by Box (1954). We note that it is our intention to provide approximations to
the distribution of the ATS while the quality of the approximation is uniform with respect
to the dimensiond.

1First draft (German): October 2004, update (English): November 2009
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2 The ANOVA-Type Statistic

2.1 Box-Approximation

We consider the simple repeated measures model and assume that

Xk = (Xk1, . . . , Xkd)
′ ∼ N(µ,V), k = 1, . . . , n, (2.1)

are independent vectors representing the subjects. LetH denote an appropriate contrast
matrix for testing the hypothesisH0 : Hµ = 0 and letT = H

′(HH
′)−H denote the

unique projection matrix derived fromH. We allow for any suitable factorial structure of
the repeated measures by partitioning the indexs = 1, . . . , d in sub-indices, for example,
s1 = 1, . . . , b and s2 = 1, . . . , t such thatd = bt. One special example may be that
thed repeated measures are obtained att time points underb consecutive treatments or
conditions.

We consider the projectionYk = TXk ∼ N(Tµ,S), whereS = TVT andTµ = 0

under the hypothesis. To test the hypothesisH0 : Hµ = 0 ⇐⇒ Tµ = 0, we consider
the statisticQn = n Y

′

·Y· = n X
′

·TX·, whereY· = 1
n

∑n
k=1 Yk andX· = 1

n

∑n
k=1 Xk

denote the means. Note that
√

n Y· ∼ N (0,S) underH0. Then, using the representation
theorem of quadratic forms it follows underH0 : Tµ = 0 that

Qn = n Y
′

· Y· = n X
′

·TX· =
d∑

i=1

λiCi, (2.2)

whereCi ∼ χ2
1 are independent and theλi are the eigenvalues ofS. Based on an idea

of Patniak (1949), Box (1954) suggested to approximate the distribution of
∑d

i=1 λiCi by
a scaledχ2-distributiong · χ2

f such that the first two moments of
∑d

i=1 λiCi andg · χ2
f

coincide.

g f = E
(
g χ2

f

)
= E

(
d∑

i=1

λiCi

)
=

d∑

i=1

λi = tr(S)

2 g2f = Var
(
g χ2

f

)
= Var

(
d∑

i=1

λiCi

)
= 2

d∑

i=1

λ2
i = 2 tr(S2).

Straightforward computation leads to

Qn

tr(S)
=

nX
′

·TX·

tr(TV)

.∼. χ2
f/f = F (f,∞), (2.3)

wheref = [tr(S)]2/ tr(S2). In practice, however,S is unknown and must be estimated
from the data. It is important to note that two quantities areinvolved in the estimation of
S, namely the sample sizen and the numberd of the repeated measures. This shall be
considered in detail in the next subsection.
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2.2 Consistency of Estimators

We consider an array of estimatorŝθn,d of a quantityθn,d which becomes larger with
increasingd. Thus we consider the ratiôθn,d/θn,d. Then it follows from Tschebychev’s
inequality

P
(∣∣∣θ̂n,d/θn,d − 1

∣∣∣ > ε
)

≤ 1

ε2
E

(∣∣∣θ̂n,d/θn,d − 1
∣∣∣
2
)

≤ 1

ε2
E

(∣∣∣θ̂n,d/θn,d − E
(
θ̂n,d/θn,d

)
+ E

(
θ̂n,d/θn,d

)
− 1
∣∣∣
2
)

≤ 2

ε2

{
Var

(
θ̂n,d/θn,d

)
+
[
E
(
θ̂n,d/θn,d

)
− 1
]2}

.

We note that the right-hand side is uniformly bounded ind, if E(θ̂n,d) = θn,d and
Var(θ̂n,d/θn,d) ≤ Kn, whereKn denotes a sequence converging to 0 which is uniformly
bounded with respect tod. This leads to the following definition.

DEFINITION 2.1 An array of estimators θ̂n,d of a quantity θn,d is called dimensionally
stable if

1.
∣∣∣E(θ̂n,d/θn,d) − 1

∣∣∣ ≤ Dn,

2. Var(θ̂n,d/θn,d) ≤ Kn,

where Dn → 0 and Kn → 0 are uniformly bounded with respect to d.

As an example, consider the sample covariance matrix

Ŝn =
1

n − 1

n∑

k=1

(Yk − Y·)(Yk − Y·)
′,

whereY· = 1
n

∑n
k=1 Yk denotes the mean vector of the observationsYk, k = 1, . . . , n.

Then it is easily seen that the plug-in estimatortr(Ŝ2
n) of tr(S2) is not dimensionally

stable since it is biased and the bias increases withd. Therefore it is our aim to derive
unbiased estimators of the traces involved in (2.3) and thenshow that their variances
fulfill the requirement (2) of Definition 2.1.

We note that Bai and Saranadasa (1996) have derived an unbiased estimator oftr(S2)

using the sample covariance matrixŜn and showed its ratio consistency, i.e. ifn, d → ∞
while d/n → κ ∈ (0, 1). As we intend, however, to derive an approximation for fixedn
and fixedd, we will derive other unbiased estimators of the quantitiestr(S), [tr(S)]2, and
tr(S2) which are dimensionally stable. This will be worked out in the next section.
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3 Unbiased Estimators

3.1 Derivation of the estimators

In the sequel we will derive unbiased estimators of[tr(TV)]2 andtr [(TV)2]. Numerator
and denominator off = [tr(S)]2/ tr(S2) will be separately estimated consistently and
then the ratio is taken as an estimator off . The bias of this estimator is obtained from a
Taylor expansion.

For Model (2.1) we will provide procedures for testing the linear hypothesisH0 :
Hµ = 0, whereH denotes a suitable hypothesis matrix. As we will need the properties
thatH is symmetric and idempotent, we will equivalently work withthe unique projecti-
on matrixT = H

′(HH
′)−H and note thatHµ = 0 ⇐⇒ Tµ = 0. For convenience, let

Yk = TXk denote the projection of the observation vectors and letSk = YkY
′
k. Then,

underH0 : Tµ = 0, it follows thatE(Yk) = 0 and it is easily seen that

S̃n =
1

n

n∑

k=1

Sk (3.4)

is an unbiased estimator ofS = TVT underH0. Using the invariance of the trace under
cyclic permutations, a natural estimator oftr(TV) = tr(S) is given by

B0 =
1

n

n∑

k=1

Ak = A· , (3.5)

whereAk = Y
′
kYk. The estimatorB2

0 , however, is a biased estimator of[tr(TV)]2 and
the biasτ 2 follows from

E
(
[tr(S̃n)]2

)
= Var(tr(S̃n)) +

(
E[tr(S̃n)]

)2

= Var(tr(S̃n))︸ ︷︷ ︸
:= τ 2

+[tr(S)]2 . (3.6)

Since by independence,τ 2 = Var
(
tr(S̃n)

)
= Var

(
1
n

∑n
k=1 Ak

)
= 1

n
Var(A1), it fol-

lows that

τ̂ 2 =
1

n(n − 1)

n∑

k=1

(Ak − A·)
2

is an unbiased estimator ofτ 2. Combining this result with (3.6), one obtains an unbiased
estimatorB1 of [tr(TV)]2, namely

B1 = [tr(S̃n)]2 − 1

n(n − 1)

n∑

k=1

(Ak − A·)
2 . (3.7)
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To derive an unbiased estimatorB2 of tr [(TV)2], a simple result from matrix algebra
is used. LetA,B ∈ R

n×n, thentr(AB
′) = 1

′
n(A#B)1n, whereA#B denotes the Ha-

damard product ofA andB. Using this result and (3.4), the bias oftr(S̃2
n) can be obtained

from

E[tr(S̃2
n)] = 1

′
dE[S̃n#S̃n]1d = 1

′
dE

[(
1

n

n∑

k=1

Sk

)
#

(
1

n

n∑

k=1

Sk

)]
1d

= 1
′
d

[
1

n2

n∑

k=1

n∑

k′=1

E(Sk#Sk′)

]
1d

= 1
′
d

[
n − 1

n
S#S +

1

n2

n∑

k=1

E(Sk#Sk)

︸ ︷︷ ︸
:= π2

]
1d .

To estimate the unknown quatityπ2, again the above quoted result from matrix algebra is
used and one obtains1′

d(Sk#Sk)1d = tr(S2
k). Finally, this leads to the desired unbiased

estimatorB2 of tr [(TV)2], namely

B2 = tr

(
n

n − 1
S̃

2
n − 1

n(n − 1)

n∑

k=1

S
2
k

)
. (3.8)

To reduce memory space and computation time (which is important for simulations), the
traces of thed×d matricesSk,S2

k, andS̃2
n are computed from simple bilinear and quadratic

forms. This is summarized in the following lemma.

LEMMA 3.1 Let Xk = (Xk1, . . . , Xkd)
′, k, l = 1, . . . , n be i.i.d. random vectors, let T

denote a projection matrix and denote Yk = TXk. Further let Akl = X
′
kTXl denote a

symmetric bilinear form in Xk and Xl and for k = l let Ak := Akk denote a quadratic
form. Then

1. B1 =
[
tr(S̃n)

]2
− 1

n(n − 1)

n∑

k=1

(Ak − A·)
2 =

1

n(n − 1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6=l

AkAl

2. B2 = tr

(
n

n − 1
S̃

2
n − 1

n(n − 1)

n∑

k=1

S
2
k

)
=

1

n(n − 1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6=l

A2
kl .

PROOF:

1. First note thatYk = TXk andSk = YkY
′
k. Thus,

tr(S̃n) = tr

(
1

n

n∑

k=1

Sk

)
=

1

n

n∑

k=1

tr (Sk) =
1

n

n∑

k=1

tr (YkY
′
k)

=
1

n

n∑

k=1

(Y′
kYk) =

1

n

n∑

k=1

X
′
kTTXk︸ ︷︷ ︸

=Ak

=
1

n

n∑

k=1

Ak = A·
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using invariance under cyclic permutations. Replacingtr(S̃n) with A· leads to

B1 =
[
tr(S̃2

n)
]2

− 1

n(n − 1)

n∑

k=1

(Ak − A·)
2

= A
2

· −
1

n(n − 1)

[
n∑

k=1

A2
k − nA

2

·

]
=

n

n − 1
A

2

· −
1

n(n − 1)

n∑

k=1

A2
k

=
1

n(n − 1)



(

n∑

k=1

Ak

)2

−
n∑

k=1

A2
k


 =

1

n(n − 1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6=l

AkAl .

2. Furthermore,

n

n − 1

(
1

n

n∑

k=1

Sk

)2

− 1

n(n − 1)

n∑

k=1

S
2
k =

1

n(n − 1)

[
n∑

k=1

SkSl −
n∑

k=1

S
2
k

]
=

1

n(n − 1)

∑

k 6=l

SkSl .

Then, taking traces and observing the invariance under cyclic permutations one
obtains fork 6= l

tr(SkSl) = tr(YkY
′
kYlY

′
l) = Y

′
lYkY

′
kYl = AlkAkl = A2

kl

sinceAkl = Alk.

This leads to an unbiased estimatorB2 of tr(S2)

B2 =
1

n(n − 1)

n∑

k=1

n∑

l=1︸ ︷︷ ︸
k 6=l

A2
kl .

Combining all the results above, one obtains the new estimator f̃ of f = [tr(S)]2/ tr(S2)

f̃ =
B1

B2

=

∑

k 6=l

AkAl

∑

k 6=l

A2
kl

. (3.9)

3.2 Quadratic and Bilinear Forms

In order to derive the properties of the estimatorsB0 in (3.5),B1 in (3.7), andB2 in (3.8),
some results on bilinear and quadratic forms are needed.

Let T be a symmetric matrix. Then the quantityAkl = X
′
kTXl is called abilinear

form if k 6= l and ifk = l the quantityAk = X
′
kTXk is called aquadratic form. First we

consider the representation of a quadratic form in a random vectorX.
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LEMMA 3.2 (REPRESENTATION OF AQUADRATIC FORM) Let X = (X1, . . . , Xd)
′ de-

note a random vector with E(X) = µ and Cov(X) = V > 0 and let T be a symmetric
matrix. Then,

A = X
′
TX =





d∑

i=1

λi(Ui + bi)
2 if E(X) = µ 6= 0

d∑

i=1

λiU
2
i if E(X) = 0

where the λi are the eigenvalues of V
1/2

TV
1/2. Moreover, U = (U1, . . . , Ud) is a ran-

dom vector with E(U) = 0, Cov(U) = I, and (b1, . . . , bd) = (P′
V

1

2 µ)′ where PP
′ = I

denotes an orthogonal matrix.

PROOF: see MATHAI and PROVOST(1992), p. 28f.

If X has a multivariate normal distribution, then the distribution of a quadratic form
is given in the following corollary.

COROLLARY 3.3 (DISTRIBUTION OF A QUADRATIC FORM) Let X = (X1, . . . , Xd)
′ ∼

N (0,V), |V| 6= 0, V = V
′ and let T denote a symmetric matrix. Then,

A = X
′
TX =

d∑

i=1

λiCi ,

where Ci ∼ χ2
1 are i.i.d. random variables and λi are the eigenvectors of TV, i =

1, . . . , d.

PROOF: Note that|V| 6= 0 andV = V
′ ⇒ ∃V

1/2 andV
−1/2 is symmetric and regular

⇒ V
1/2

V
−1/2 = I.

X
′
TX = X

′
V

−1/2
V

1/2
TV

1/2
V

−1/2
X

= X
′
V

−1/2
P

′
PV

1/2
TV

1/2
P

′
PV

−1/2
X

SinceV
1/2 andT are symmetric it follows thatV1/2

TV
1/2 is also symmetric. Thus, by

singular value decomposition theorem it follows that thereexists an orthogonal matrixP
such thatPV

1/2
TV

1/2
P

′ = diag{λ′
1, . . . , λ

′
d} = ∆. The quantitiesλ′

i are the eigenvec-
tors ofV1/2

TV
1/2. Thus

X
′
TX = (PV

−1/2
X)′ PV

1/2
TV

1/2
P

′

︸ ︷︷ ︸
∆

(PV
−1/2

X) = Z
′∆Z =

d∑

i=1

λ′
iZ

2
i ,

whereZ = PV
−1/2

X ∼ N (0,PV
−1/2

VV
−1/2

P
′) = N (0, Id). Thus it remains to show

thatλi = λ′
i. To this end letλ denote an arbitrary eigenvalue ofV

1/2
TV

1/2. Then,

0 = |V1/2
TV

1/2 − λI| = |I||V1/2
TV

1/2 − λI|
= |V−1/2||V1/2

TV
1/2 − λI||V1/2|

= |V−1/2
V

1/2
TV

1/2
V

1/2 − λV
−1/2

IV
1/2|

= |TV − λI|
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Thus, it follows thatλ is also an eigenvalue ofTV. 2

This corollary shows that a quadratic form is distributed asa sum of uncorrelated (in
case of a normal distribution independent)χ2

1-distributed random variables. With this in
mind, we will derive the central moments of quadratic forms.

LEMMA 3.4 (MOMENTS OF A QUADRATIC FORM)
Let Xk = (Xk1, . . . , Xkd) ∼ N (µ,V), k = 1, . . . , n, i.i.d. random variables and let T

denote a projection matrix. Then for the quadratic form Ak = X
′
kTXk, it holds in general

that

1. E(Ak) = tr(TV) + µ
′
Tµ

2. Var(Ak) = 2 tr [(TV)2] + 4µ′
TVTµ

Moreover, if Tµ = 0 then,

3. E(Ak) = tr(TV) =: ν

4. Var(Ak) = 2 tr [(TV)2] =: τ 2

5. For the pairs AkAl and ArAs (where k 6= l and r 6= s) it holds that

Cov(AkAl, ArAs) =





τ 4 + 2 τ 2ν2 : if (k, l) = (r, s)
or if (k, l) = (s, r)

τ 2ν2 : if k = r and l 6= s
or if k 6= r and l = s

0 : otherwise

PROOF:

1. this is the well-known Lancaster theorem.

2. see MATHAI and PROVOST(1992), p.53

3. follows immediately from (1)

4. follows immediately from (2)

5. • Var(AkAl) = E(AkAlAkAl) − [E(AkAl)]
2

= [E(A2
k)]

2 − [E(Ak)]
4 = (τ 2 + ν2)2 − ν4

= τ 4 + 2 τ 2ν2

• Cov(AkAl, AkAr) = E(AkAlAkAr) − E(AkAl)E(AkAr)

= (τ 2 + ν2)ν2 − ν4 = τ 2ν2

• Cov(AkAl, ArAs) = ν4 − ν4 = 0 2

Next we consider the representation, distribution and moments of bilinear forms.
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LEMMA 3.5 (REPRESENTATION OF A BILINEAR FORM)
Let X = (X1, . . . , Xd)

′ and Y = (Y1, . . . , Yd)
′ be independent identically distributed

random vectors satisfying E(X) = E(Y) = µ and Cov(X) = Cov(Y) = V > 0 and
let T denote a symmetric matrix. Then,

A = X
′
TY =





d∑

i=1

λi(Ui + bi)(Wi + bi) if E(X) = E(Y) = µ 6= 0

d∑

i=1

λiUiWi if E(X) = E(Y) = 0

where the λi are the eigenvalues of V
1/2

TV
1/2. Moreover, U = (U1, . . . , Ud),W =

(W1, . . . ,Wd) are random vectors with E(U) = E(W) = 0, Cov(U,W) = 0 and
Cov(U) = Cov(W) = I and (b1, . . . , bd) = (P′

V
1

2 µ)′, where PP
′ = I denotes an

orthogonal matrix.

PROOF: Let ZX = (V−1/2
X − V

−1/2
µ) andZY = (V−1/2

Y − V
−1/2

µ). Then, by the
singular value decomposition theorem, there exists an orthogonal matrixP such that

PV
1/2

TV
1/2

P
′ = diag{λ′

1, . . . , λ
′
d} = ∆,

wherePP
′ = I. Then setU = P

′
ZX andW = P

′
ZY . Thus,

E(U) = E(W) = 0 Cov(U) = Cov(W) = I.

Then it follows for the bilinear formA = X
′
TY that

X
′
TY = X

′
V

−1/2
V

1/2
TV

1/2
V

−1/2
Y

= (ZX + V
−1/2

µ)′V1/2
TV

1/2(ZY + V
−1/2

µ)

= (ZX + V
−1/2

µ)′P′
PV

1/2
TV

1/2
P

′

︸ ︷︷ ︸
∆

P(ZY + V
−1/2

µ)

= (U + b)′∆(W + b) .
2

If X andY have multivariate normal distributions, then the distribution of a bilinear
form is given in the following corollary.

COROLLARY 3.6 (DISTRIBUTION OF A BILINEAR FORM)
Let X = (X1, . . . , Xd)

′ and Y = (Y1, . . . , Yd)
′ ∼ N (0,V) be independent random vec-

tors with |V| 6= 0, V = V
′ and let T denote a symmetric matrix. Then,

A = X
′
TY ∼

d∑

i=1

λiCiDi ,

where Ci, Di ∼ N (0, 1) are independent and the λi are the eigenvalues of TV.
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PROOF: From |V| 6= 0 andV = V
′ ⇒ ∃V

1/2 andV
−1/2, symmetric and regular

⇒ V
1/2

V
−1/2 = I.

X
′
TY = X

′
V

−1/2
V

1/2
TV

1/2
V

−1/2
Y

= X
′
V

−1/2
P

′
PV

1/2
TV

1/2
P

′
PV

−1/2
Y .

SiceV
1/2 andT are symmetric it follows thatV1/2

TV
1/2 is also symmetric. Thus, by

singular value decomposition theorem it follows that thereexists an orthogonal matrixP
such thatPV

1/2
TV

1/2
P

′ = diag{λ′
1, . . . , λ

′
d} = ∆. The quantitiesλ′

i are the eigenvec-
tors ofV1/2

TV
1/2. Thus

X
′
TY = (PV

−1/2
X)′ PV

1/2
TV

1/2
P

′

︸ ︷︷ ︸
∆

(PV
−1/2

Y) = C
′∆D =

d∑

i=1

λ′
iCiDi ,

where
C = PV

−1/2
X ∼ N (0,PV

−1/2
VV

−1/2
P

′) = N (0, In),

D = PV
−1/2

Y ∼ N (0,PV
−1/2

VV
−1/2

P
′) = N (0, In).

Thus it remains to show thatλi = λ′
i. This has already been shown in the proof of

Corollary 3.3. 2

By this corollary it is possible to derive the central momentsof bilinear forms.

LEMMA 3.7 (MOMENTS OF A BILINEAR FORM)
Let Xk = (Xk1, . . . , Xkd)

′, Xl = (Xl1, . . . , Xld)
′ ∼ N (0,V), be i.i.d. for (k 6= l ∈

{1, . . . , n}) and let T denote a projection matrix. Then,

1. E(Akl) = 0

2. Var(Akl) = E(A2
kl) = tr [(TV)2]

3. E(A4
kl) = 6 tr [(TV)4] + 3 (tr [(TV)2])2

4. E(A2
klA

2
kn) = 2 tr [(TV)4] + (tr [(TV)2])2

PROOF:

1. E (Akl) = E

(
d∑

i=1

λiCiDi

)
=

d∑

i=1

λi E(Ci)E(Di)︸ ︷︷ ︸
=0

= 0

2. Var(Akl) = E(A2
kl) = E

(
d∑

i=1

λiCiDi

d∑

j=1

λjCjDj

)

= E

(
d∑

i=1

λ2
i C

2
i D

2
i

)
=

d∑

i=1

λ2
i E(C2

i )︸ ︷︷ ︸
=1

E(D2
i )︸ ︷︷ ︸

=1

=
d∑

i=1

λ2
i = tr [(TV)2]
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3. E(A4
kl) = E



[

d∑

i=1

λiCiDi

]4



=
d∑

i=1

d∑

j=1

d∑

r=1

d∑

s=1

λiλjλrλsE(CiDiCjDjCrDrCsDs)

=
d∑

i=1

λ4
i E(C4

i D
4
i )︸ ︷︷ ︸

9

+3
d∑

i6=j

λ2
i λ

2
j E(C2

i D
2
i C

2
j D

2
j )︸ ︷︷ ︸

1

= 6
d∑

i=1

λ4
i + 3

d∑

i,j

λ2
i λ

2
j = 6 tr [(TV)4] + 3 (tr [(TV)2])2

4. E(A2
klA

2
kr) = E



(

d∑

i=1

λiCiDi

)2( d∑

i=1

λiCiEi

)2



=
d∑

i=1

d∑

j=1

d∑

r=1

d∑

s=1

λiλjλrλsE(CiDiCjDjCrErCsEs)

=
d∑

i=1

λ4
i E(C4

i D
2
i E

2
i )︸ ︷︷ ︸

3

+
d∑

i6=j

λ2
i λ

2
j E(C2

i D
2
i C

2
j E

2
j )︸ ︷︷ ︸

1

= 2
d∑

i=1

λ4
i +

d∑

i=1

d∑

j=1

λ2
i λ

2
j = 2 tr [(TV)4] + (tr [(TV)2])2

2

3.3 Consistency and dimensional stability of the estimators

In the following lemma, a regularity condition is given fromwhich it follows that the new
estimators are consistent and dimensionally stable.

LEMMA 3.8 Let λi, (λi ≥ λ0 > 0) denote the eigenvalues of TVT and let m :=
max

i
λi < ∞. Then,

1. lim
d→∞

m
∑d

i=1 λi

= 0 ⇒ lim
d→∞

tr [(TV)2]

[tr(TV)]2
= 0 ,

2. lim
d→∞

m2

∑d
i=1 λ2

i

= 0 ⇒ lim
d→∞

tr [(TV)4]

(tr [(TV)2])2
= 0 .

11



PROOF:

1.
tr [(TV)2]

[tr(TV)]2
=

∑d
i=1 λ2

i

(
∑d

i=1 λi)2
≤ m

∑d
i=1 λi

(
∑d

i=1 λi)2
=

m
∑d

i=1 λi

d→∞−→ 0 .

2.
tr [(TV)4]

(tr [(TV)2])2
=

∑d
i=1 λ4

i

(
∑d

i=1 λ2
i )

2
≤ m2

∑d
i=1 λ2

i

(
∑d

i=1 λ2
i )

2
=

m2

∑d
i=1 λ2

i

d→∞−→ 0 .

REMARK 3.1 The first condition follows from the second condition sinceλi ≥ 0 and

m2

(
∑d

i=1 λi)2
≤ m2

∑d
i=1 λ2

i

which follows from
(∑d

i=1 λi

)2

≥∑d
i=1 λ2

i .

In the sequel it will be shown by Lemma 3.7 that the unbiased estimatorsB1 andB2

are consistent and dimensionally stable - provided that theconditions of Lemma 3.8 are
fulfilled. To this end it has to be shown that the variance of the ratio of the estimator
and the quantity to be estimated is uniformly bounded ind and that this bound does not
depend ond.

The following trivial properties of the variance of a sum of random variables will be
used in the sequel:

Var

(
n∑

i=1

Xi

)
=

n∑

i=1

Var(Xi) +
n∑

i6=j

Cov(Xi, Xj)

Var

(
n∑

i=1

Xi

)
= E

(
n∑

i,j

XiXj

)
−
[
E

(
n∑

i=1

Xi

)]2

.

Thus, one obtains forV1 = Var(B1)

n2(n − 1)2V1 = Var

(
n∑

k 6=l

AkAl

)
=

n∑

k 6=l

Var(AkAl) +
n∑

k 6=l

n∑

r 6=s︸ ︷︷ ︸
(k,l) 6=(r,s)

Cov(AkAl, ArAs) .

Moreover, by Lemma 3.4,

n2(n − 1)2V1 = n(n − 1)Var(AkAl)

+n(n − 1)(n − 2)(n − 3)Cov(AkAl, ArAs)

+4n(n − 1)(n − 2)Cov(AkAl, AkAr)

+n(n − 1)Cov(AkAl, AlAk)︸ ︷︷ ︸
=Var(AkAl)

= 2n(n − 1)(σ4 + 2 σ2µ2) + 4 n(n − 1)(n − 2)σ2µ2

= 2n(n − 1)σ4 + (4n3 − 8 n2 + 4n)σ2µ2 .

12



Note thatµ4 = [tr(TV)]4 does no longer appear in the variance. Thus, it can be shown
by Lemma 3.8 thatV1/[tr(TV)]4 → 0 if d → ∞.

V1

[tr(TV)]4
=

2

n(n − 1)

(tr [(TV)2])2

[tr(TV)]4︸ ︷︷ ︸
→0

+
(4n3 − 8 n2 + 4n)

n2(n − 1)2

tr [(TV)2]

[tr(TV)]2︸ ︷︷ ︸
→0

. (3.10)

Further note that this ratio is bounded for alld, n > 1 by 4n
(n−1)2

.

V1

[tr(TV)]4
=

2

n(n − 1)

(tr [(TV)2])2

[tr(TV)]4︸ ︷︷ ︸
≤1

+
(4n3 − 8 n2 + 4n)

n2(n − 1)2

tr [(TV)2]

[tr(TV)]2︸ ︷︷ ︸
≤1

≤ 2

n(n − 1)
+

(4n2 − 8 n + 4)

n(n − 1)2
≤ 4n2 − 6n + 2

n(n − 1)2
≤ 4n

(n − 1)2
.

For the varianceV2 = Var(B2) of the second estimator it follows that

n2(n − 1)2V2 = Var

(
n∑

k 6=l

A2
kl

)

= E

(
n∑

k 6=l

n∑

r 6=s

A2
klA

2
rs

)
−
[
E

(
n∑

k 6=l

A2
kl

)]2

. (3.11)

Moreover, by Lemma 3.7,

n2(n − 1)2V2 = 2n(n − 1)E(A4
kl)

+4n(n − 1)(n − 2)E(A2
klA

2
kn)

+n(n − 1)(n − 2)(n − 3)E(A2
kl)

2

−n2(n − 1)2 Var(Akl)
2

= 2n(n − 1)(6 tr [(TV)4] + 3(tr [(TV)2])2)

+4n(n − 1)(n − 2)(2 tr [(TV)4] + (tr [(TV)2])2))

+n(n − 1)(n − 2)(n − 3)(tr [(TV)2])2)

−n2(n − 1)2(tr [(TV)2])2)

= n(n − 1)[(8n − 4) tr [(TV)4] + 4(tr [(TV)2])2)] .

Unfortunately, the termV2/(tr [(TV)2])2 does not vanish ford → ∞ and for fixedn. One
obtains

V2

(tr [(TV)2])2
=

8n − 4

n(n − 1)

tr [(TV)4]

(tr [(TV)2])2

︸ ︷︷ ︸
→0

+
4

n(n − 1)
. (3.12)
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This ratio is bounded, however, for alld, n > 1 by 8
n−1

V2

(tr [(TV)2])2
=

8n − 4

n(n − 1)

tr [(TV)4]

(tr [(TV)2])2

︸ ︷︷ ︸
≤1

+
4

n(n − 1)
≤ 8n − 4 + 4

n(n − 1)
≤ 8

(n − 1)
.

Here it has been shown that for fixedn and d → ∞ the quantityB1/[tr(TV)]2 is
L2-consistent and thus it is dimensionally stable. Moreover,B1/[tr(TV)]2 is alsoL2-
consistent forn → ∞. The quantityB2/ tr [(TV)2], however, is onlyL2-consistent for
n → ∞ and arbitrary fixedd. For fixedn andd → ∞, it is at least uniformly bounded by
8/(n − 1) und thus, it is also dimensionally stable.

3.4 Bias of the Ratio [tr(TV)]2/ tr [(TV)2]

It has been shown thatB1 andB2 are unbiased estimators of[tr(TV)]2 andtr [(TV)2],
respectively. The ratioB1/B2, however may be biased. This shall be investigated in the
sequel using a Taylor expansion for the ratio of two random variables.

E

(
B1

B2

)
≈ E(B1)

E(B2)

(
1 +

Var(B2)

[E(B2)]2
− Cov(B1, B2)

E(B1)E(B2)

)
, (3.13)

where the sign≈ means “approximately equal”. Using the derivation in the previous
section, one obtains

E

(
B1

B2

)
≈ [tr(TV)]2

tr [(TV)2]

(
1 +

4

n(n − 1)
− Cov(B1, B2)

[tr(TV)]2 tr [(TV)2]

)
. (3.14)

It is easily seen that the last term in (3.14) can be neglectedfor larged or for largen. From
Cauchy-Schwarz-inequality and by (3.10) and (3.12), it follows under the assumptions of
Lemma 3.8 that

Cov(B1, B2)

[tr(TV)]2 tr [(TV)2]
= O

(
1

n
√

d

)
.

Thus, the ratioCov(B1, B2)/([tr(TV)]2 tr [(TV)2]) vanishes forn fixed andd → ∞ as
well as ford fixed andn → ∞. 2

The bias off̃ = B1/B2 can be approximately determined by plugging in this result
in (3.13).

E(f̃) ≈ [tr(TV)]2

tr [(TV)2]

(
1 +

4

n(n − 1)

)
. (3.15)

Obviously, the new estimator is slightly biased, but the bias disappears rapidly with incre-
asingn. Furthermore, numerator and denominator off are dimensionally stable andf is
asymptotically unbiased forn → ∞ and arbitraryd.

Simulations show that the bias of̃f is much smaller than the bias of the simple plug-in
estimatorf̂ = [tr(Ŝn)]2/ tr(Ŝ2

n) in the ANOVA-type statistic.
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3.5 F -Approximation (continued)

Now all relevant estimators have been derived and theirs properties have been investiga-
ted. Thus, theF -approximation started in Section 2.1 can be resumed and thedistribution
of the statisticQn/B0 shall be approximated by aF -distribution such that the first two
moments coincide.

Fn =
Qn

B0

.∼. F (f1, f2).

We need the following moments:

LEMMA 3.9 Let B0 = 1
n

∑n
k=1 Ak and Qn = 1

n

∑n
k=1

∑n
l=1 Akl, where Akl = X

′
kTXl

are symmetric bilinear forms. Then,

1. E(B0) = tr(TV)

2. Var(B0) = 2
n
tr [(TV)2]

3. Cov(Qn, B0) = Var(B0).

Proof: The statements follow easily using the results from Lemma 3.4 on the moments of
quadratic forms and from Lemma 3.7 on the moments of bilinearforms.

1. E

(
1

n

n∑

k=1

Ak

)
=

1

n

n∑

k=1

E(Ak) = tr(TV)

2. Var

(
1

n

∑
Ak

)
=

1

n2

n∑

k=1

Var(Ak) =
2

n
tr [(TV)2]

3. Cov(Qn, B0) = E(QnB0) − E(Qn)E(B0) =

= E

(
1

n2

n∑

k=1

n∑

l=1

Akl

n∑

m=1

Am

)
− E

(
1

n

n∑

k=1

n∑

l=1

Akl

)
tr(TV)

=
1

n2

n∑

k=1

n∑

l=1

E(AkAl) − [tr(TV)]2

=
1

n
E(A2

k) +
n − 1

n
[E(Ak)]

2 − [tr(TV)]2 =
2

n
tr [(TV)2].

2

Thus,B0 = 1
n

∑n
k=1 Ak is an unbiased, consistent and dimensonally stable estimator

of tr(TV).

The first two central moments ofFn are approximately determined by a Taylor expan-
sion for the ratio of two random variablesX andY with Var(X) < ∞ andVar(Y ) < ∞.
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The approximation for the expectationE(X/Y ) is given in (3.13) replacingB1 with X
andB2 with Y . For the varianceVar(X/Y ) we have

Var

(
X

Y

)
.
=.

E(X)2

E(Y )2

(
Var(X)

[E(X)]2
+

Var(Y )

[E(Y )]2
− 2

Cov(X,Y )

E(X)E(Y )

)

By noting thatE(Qn) = tr(TV), Var(Qn) = 2 tr [(TV)2], andCov(Qn, B0) =
Var(B0), one obtains

E(Fn)
.
=.

E(Qn)

E(B0)

[
1 +

Var(B0)

[E(B0)]2
− Cov(Qn, B0)

E(Qn)E(B0)

]

.
=.

tr(TV)

tr(TV)

[
1 +

Var(B0)

[tr(TV)]2
− Var(B0)

[tr(TV)]2

]
.
=. 1

Var(Fn)
.
=.

(E(Qn))2

[E(B0)]2

[
Var(Qn)

[E(Qn)]2
+

Var(B0)

[E(B0)]2
− 2Cov(Qn, B0)

E(Qn)E(B0)

]

.
=.

[tr(TV)]2

[tr(TV)]2

[
Var(Qn) − Var(B0)

[tr(TV)]2

]

.
=.

(2 − 2
n
) tr [(TV)2]

[tr(TV)]2
.

Now, E(Fn) and Var(Fn) are equated with the first two moments of theF (f1, f2)-
distribution

E Var

F (f1, f2)
f2 − 2

f2

f 3
2 + 2f 2

2 f1 − 4f 2
2

(f1f 2
2 − 4f2f1 + 4f1)(f2 − 4)

Fn 1
(2 − 2

n
) tr [(TV)2]

[tr(TV)]2

and one obtains

f̃ = f1 =
[tr(TV)]2

(1 − 1
n
) tr [(TV)2]

, f2 = ∞.

The distribution ofFn can be approaximated by aχ2
f̃
/f̃ -distribution, where

f̃ =
B1

(1 − 1
n
)B2

=
n

n − 1

B1

B2

.

Obviously,f̃/f → 1 for n → ∞, wheref = B1/B2. The bias in (3.15) is reduced by the
factorn/(n − 1).
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