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1 Introduction

Repeated measures are data which are observed repeatetily sante subjects. Such
data appear in many medical or biological trials and areedddigh-dimensional if the
dimensiond (i.e. the number of repeated measures per subject) is le@gewven much
larger) than the number of the independent subjects on which they are observed. Most
of the classical procedures require that d. If this is not the case then they break down
or cannot even be computed.

For example, Wald-type statistics can no loger be computezk $hey require an
inverse of the sample covariance matrix which becomes Engu: < d. The ANOVA-
type statistic (ATS), first mentioned by Box (1954) and furtheveloped by Geisser and
Greenhouse (1958) and Greenhouse and Geisser (1959), drowaw be computed. But
it may be noted that a test based on this statistic using aiplegtimator of the sample
covariance matrix becomes conservative i d.

Meanwhile a plethora of papers considers procedures fordhigensional data. The
ideas underlying the procedures developed may be clasa#ied

(1) approximations for fixech and fixed (but arbitrary largeJ assuming a multiva-
riate normal distribution but admitting any type of covaca matrices, so-called
unstructured covariance matrices,

(2) procedures assumingd — oo while d/n — k € (0,1) - assuming or not a multi-
variate normal distribution,

(3) procedures assumingfixed whiled — oo with different assumptions on the struc-
ture of the covariance matrix and the underlying distribmutof the repeated mea-
sures.

In this technical report we will focus on the first idea, i.e2 assume a multivariate nor-
mal distribution and want to provide approximations based® ANOVA-type statistic
considered by Box (1954). We note that it is our intention tovte approximations to
the distribution of the ATS while the quality of the approxtion is uniform with respect
to the dimensionl.
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2 The ANOVA-Type Statistic

2.1 Box-Approximation

We consider the simple repeated measures model and assaime th
Xk = (Xkla---and), ~ ]\[([1,,\/)7 k':l,...,n, (21)

are independent vectors representing the subjectdiLe¢note an appropriate contrast
matrix for testing the hypothesid, : Hu = 0 and letT = H'(HH')"H denote the
unique projection matrix derived frodd. We allow for any suitable factorial structure of
the repeated measures by partitioning the index1, . .., d in sub-indices, for example,
s = 1,...,bandsy, = 1,...,t such thatd = bt. One special example may be that
the d repeated measures are obtained @he points undeb consecutive treatments or
conditions.

We consider the projectiol, = TX; ~ N(Tpu,S), whereS = TVT andTp =0
under the hypothesis. To test the hypothdéis Hu = 0 <— Tu = 0, we consider
the statisticQ,, = n YY. = n X TX_, whereY. = IS YyandX = 15 X,
denote the means. Note thgh Y. ~ A/(0,S) underH,. Then, using the representation
theorem of quadratic forms it follows undéf, : T = 0 that

d
Q. = nY Y =nXTX = ) NG, (2.2)
i=1

whereC; ~ x? are independent and the are the eigenvalues &. Based on an idea
of Patniak (1949), Box (1954) suggested to approximate tteilolition onle A:Ci by

a scaledy*-distributiong - x7 such that the first two moments S, \C; andyg - X7
coincide.

gf=E(9x37) = E(ZAZCZ):ZAZ-:W(S)

d d
2¢°f = Var (gx3) = Var Z/\ici> = 22)\? =2 tr(S?).
i=1 i=1

Straightforward computation leads to

tf%é) = T;iETT\}f() L XG/f = F(f,00), (2.3)

where f = [tr(S)]?/ tr(S?). In practice, howevelS is unknown and must be estimated
from the data. It is important to note that two quantitiesiawelved in the estimation of
S, namely the sample size and the numbed of the repeated measures. This shall be
considered in detail in the next subsection.
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2.2 Consistency of Estimators

We consider an array of estimato%d of a quantityd,, , which becomes larger with

increasingd. Thus we consider the ratiﬁ,d/ahd. Then it follows from Tschebychev’s
inequality

P ( 010/ 00 — 1( > g) < éE (
< E%E ( §n,d/en,d - F <§n,d/0n,d> +FE (@,d/%d) — 1‘2)
% v (Buattna) + [ (Buattna) 1] |

We note that the right-hand side is uniformly boundedijif £(6, ) = 6,4 and
Var(6,.4/00.4) < K,, wherek,, denotes a sequence converging to 0 which is uniformly
bounded with respect i@ This leads to the following definition.

~ 2
Qn,d/en,d - 1) )

IN

DEFINITION 2.1 An array of estimators é\n,d of a quantity 6, ; is called dimensionally
stable if

1. |E(Bya/0na) — 1| < D,
2. Var(Bn,a/0n.4) < K,
where D,, — 0 and K,, — 0 are uniformly bounded with respect to d.

As an example, consider the sample covariance matrix

n

~ 1 _ _
S, = -Y. -Y.)
n n—lZ<Yk Y)(Y,—-Y),
k=1
whereY. = %22:1 Y, denotes the mean vector of the observatit¥hask = 1,...,n.

Then it is easily seen that the plug-in estimato@§i) of tr(S?) is not dimensionally
stable since it is biased and the bias increases avithherefore it is our aim to derive
unbiased estimators of the traces involved in (2.3) and #iew that their variances
fulfill the requirement (2) of Definition 2.1.

We note that Bai and Saranadasa (1996) have derived an uthieists®ator oftr(S?)
using the sample covariance matix and showed its ratio consistency, i.enifd — oo
while d/n — x € (0,1). As we intend, however, to derive an approximation for fixed

and fixedd, we will derive other unbiased estimators of the quantiti€S), [¢r(S)]?, and
tr(S?) which are dimensionally stable. This will be worked out ie tiext section.
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3 Unbiased Estimators

3.1 Derivation of the estimators

In the sequel we will derive unbiased estimator$tof TV)]? and¢r[(TV)?]. Numerator
and denominator of = [tr(S)]?/ tr(S?) will be separately estimated consistently and
then the ratio is taken as an estimatorfofThe bias of this estimator is obtained from a
Taylor expansion.

For Model (2.1) we will provide procedures for testing theelar hypothesigi, :
Hp = 0, whereH denotes a suitable hypothesis matrix. As we will need thegntes
thatH is symmetric and idempotent, we will equivalently work wiltte unique projecti-
on matrixT = H'(HH')"H and note thaHu = 0 <= T = 0. For convenience, let
Y, = TX denote the projection of the observation vectors an§jlet Y, Y. Then,
underH, : Tp = 0, it follows that £(Y,) = 0 and it is easily seen that

- 1<

S, = —E Si (3.4)
n
k=1

is an unbiased estimator 8f= TVT underH,. Using the invariance of the trace under
cyclic permutations, a natural estimatortofTV) = ¢r(S) is given by

1 & —
By, = gZAk:A.7 (3.5)
k=1

where A, = Y, Y. The estimatoB2, however, is a biased estimator [of(TV)]* and
the biasr? follows from

E(1r@P) = Var(ir(.) + (E[tr(gn)])2
= Var(tr(S,)) +[tr(S)]>. (3.6)

———

=7

Since by independence? = Var (tr(gn)> = Var (130, Ay) = L Var(4,), it fol-
lows that

S

~ 1 —
22

= ———= ) (A -A)

n(n —1) <
is an unbiased estimator of. Combining this result with (3.6), one obtains an unbiased
estimatorB; of [tr(TV)]?, namely

n

B - [tr(é’n)]z—mZ(Ak—Z)?. 3.7)
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To derive an unbiased estimatBs of ¢r[(TV)?], a simple result from matrix algebra
is used. LetA, B € R™*", thentr(AB') = 1, (A#B)1,, whereA#B denotes the Ha-
damard product oA andB. Using this result and (3.4), the biasifS?) can be obtained

from
k=1 k=1

k=1 k'=1

E[tr(S?)] = 1,E[S,#S,]14=1,E

= 1,

n

,[n—1 1 &
- 16{ S#S + — D E(Sk#Sk)} 1,.
k=1

J/

v~

= 71'2

To estimate the unknown quatity, again the above quoted result from matrix algebra is
used and one obtaing (S, #8S)1, = tr(S;). Finally, this leads to the desired unbiased
estimatorB, of tr[(TV)?], namely

n ~ 1 -
B, =t S —— S?2 | . 3.8
2 r(n—l " n(n—l); k) (3.8)

To reduce memory space and computation time (which is irapofor simulations), the
traces of the/x d matricesS;, S, andS? are computed from simple bilinear and quadratic
forms. This is summarized in the following lemma.

LEMMA 3.1 Let Xy = (Xy1, ..., Xpa), k,0 = 1,...,n bei..d. random vectors, let T
denote a projection matrix and denote Y, = TX,,. Further let A, = X}, TX, denote a
symmetric bilinear formin X, and X; and for £ = [ let A, := Ay, denote a quadratic
form. Then

~ 12 1 — 1
1. By = |tr(S, _— A, — AP = —— AL A
! [7’( )} n(n—l);< F ) n(n—l);; R
k£l
0B, - tr|-—" g1 Xn:SQ :;iiﬁ
2 n—1" n(n—l)k:1 k n(n—l)k:1 — kL
k£l

PROOF

1. First note thal';, = TX,, andS; = Y;Y,. Thus,

n

tr(S,) = tr <% i Sk) = % i tr (Sk) = % Z tr (YrYy,)
k=1 k=1

k=1
EL TNITEL SR S
n Lk n k k n k .
k=1 k=1 —A, k=1
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using invariance under cyclic permutations. Replact'w@n) with A. leads to

B — [tr(gi)}z—;i(flk—z.f

n(n —1)

k=1
—9 1 - 2 n —2 1 -
= A - A2 —pA| = AT — A2
" nn-—1) ; R n—1" n(n—l); b
2
1 n n 1 n n
— Ak — Az = — AkAl .
e |(B0) 24 -k
——
k£l
2. Furthermore,
1 & ’ 1 "
n
_ S _ SQ —
n—1 (n k) n(n —1) b
k=1 k=1
1 u u 1
_— SiS; — Sl = —— S.S; .
n(n—1) [Z e Z k] n(n—l)Z i
k=1 k=1 k£l

Then, taking traces and observing the invariance undeiccpelrmutations one
obtains fork # [

tT(SkSl) = tT’(YkY;YlY;) = Y;YkY;CYl = AlkAkl = AZl
SinceAkl = Alk-

This leads to an unbiased estimatgy of ¢r(S?)

k£l N
Combining all the results above, one obtains the new estinfawb f = [tr(S)]?/ tr(S?)

Z ALA,

~ By k£l
f = == = (3.9)
Br ) A
k£l

3.2 Quadratic and Bilinear Forms

In order to derive the properties of the estimatBgan (3.5), B; in (3.7), andBs in (3.8),
some results on bilinear and quadratic forms are needed.

Let T be a symmetric matrix. Then the quantity;, = X} TX, is called abilinear
formif k # [ and ifk = [ the quantity4, = X, TX, is called aguadratic form. First we
consider the representation of a quadratic form in a randectovX.
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LEMMA 3.2 (REPRESENTATION OF AQUADRATIC FORM) Let X = (X,..., X ) de-
note a random vector with £(X) = p and Cov(X) = V > 0 and let T be a symmetric
matrix. Then,

( d

D XU+ b)) FEX)=p#0
A=XTX={
> NU? if B(X)=0
\ =1
where the \; are the eigenvalues of V/2TV'/2. Moreover, U = (U, ...,U,) isaran-

dom vector with E(U) = 0, Cov(U) =1, and (by, ..., bs) = (P'V2p) where PP’ =1
denotes an orthogonal matrix.

PROOF. see MATHAI and RROVOST(1992), p. 28f.

If X has a multivariate normal distribution, then the distnitatof a quadratic form
is given in the following corollary.

COROLLARY 3.3 (DISTRIBUTION OF A QUADRATIC FORM) LetX = (Xy,..., X,) ~
N(0,V),|V|#0,V = V’"and let T denote a symmetric matrix. Then,

d
A = X'TX =) )G,

=1
where C; ~ x? are i.i.d. random variables and ); are the eigenvectors of TV, i =
1,....d
PROOF Note that| V| # 0 andV = V' = 3V/2 andV /2 is symmetric and regular
= VI2y-1/2 = 1.

X'TX = X'V 12vieryl2y-12x
X'VPPPVIATVIPP PV 2X

SinceV'/2 and T are symmetric it follows thaV'/?TV'/2 is also symmetric. Thus, by
singular value decomposition theorem it follows that thexists an orthogonal matriR
such thaPV/2TV/2P’ = diag{)\,,...,\,} = A. The quantities\] are the eigenvec-
tors of VI/2TV'/2, Thus

d
X'TX = (PV™'2X) PV!2TV!PP/(PV X)) = Z/AZ = > NZ7,
A i=1
whereZ = PV~1/2X ~ N(0,PV~/2VV~-1/2P") = N/(0,1,). Thus it remains to show
that)\; = .. To this end let denote an arbitrary eigenvalue 6f/2TV'/2, Then,
0=|VY2TVY2 _\I| = [I||[VV2TVY2 -\l

— ‘V71/2Hvl/2Tvl/2 —)\IHV1/2’

— |V—1/2vl/2Tvl/2vl/2 _ )\V_1/21V1/2|

= |TV = AJ|
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Thus, it follows that) is also an eigenvalue af'Vv. O

This corollary shows that a quadratic form is distributecdasim of uncorrelated (in
case of a normal distribution independegf)ydistributed random variables. With this in
mind, we will derive the central moments of quadratic forms.

LEMMA 3.4 (MOMENTS OF A QUADRATIC FORM

Let Xy = (Xk1,---, Xpa) ~ N(w, V), k =1,... n,iid randomvariablesand let T
denote a projection matrix. Then for the quadratic form A, = X}, TXj, it holdsin general
that

1. E(Ay) = tr(TV) + w/'Th
2. Var(Ax) =2 tr[(TV)? + 44/ TVT
Moreover, if T = 0 then,
3. E(Ay) =tr(TV) =:v
4. Var(Ax) =2 tr[(TV)?] =: 72
5. For thepairs A, A; and A, A, (Where k £ [ and r # s) it holds that

™ +27202 o if (k1) = (r,s)
orif (k,1) = (s,r)
Cov(A A, AL A,) = 22 ifk=randl #s
orifk#randl=s
0 : otherwise

PROOF.
1. this is the well-known Lancaster theorem.
2. see MATHAI and RROvVOST(1992), p.53
3. follows immediately from (1)
4. follows immediately from (2)
5

o Var(A A) = E(ARAALA) — [E(ARA)]?
= [E(ADP = [E(AR)]* = (T2 + %) = !
=71+ 27202
o Cov(ApA, AA) = E(AyAAGA,) — E(AyA)E(AGA,)
= (T2 + v - vt =122

o Cov(ALA;, AA) =vt—1vt=0 a
Next we consider the representation, distribution and nmisef bilinear forms.
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LEMMA 3.5 (REPRESENTATION OF A BILINEAR FORN

Let X = (Xy,...,Xy) andY = (Y7,...,Y,) beindependent identically distributed
random vectors satisfying £(X) = E(Y) = p and Cov(X) = Cov(Y) =V > 0 and
let T denote a symmetric matrix. Then,

( d
S ON(U+0) (Wi + b)) if B(X)=E(Y)=p+#0
A= XTY={ "
d
> NUW; if B(X) = E(Y) =0
\ =1
where the )\; are the eigenvalues of VY/2TV'/2. Moreover, U = (Uy,...,U;), W =
(Wh,...,Wy) are random vectors with £(U) = E(W) = 0, Cov(U,W) = 0 and
Cov(U) = Cov(W) = Iand (by,...,bs) = (P'V2pu), where PP’ = I denotes an
orthogonal matrix.

PROOF LetZy = (V712X — V~12p) andZy = (V-V/2Y — V~1/2). Then, by the
singular value decomposition theorem, there exists argdhal matrixP such that

PVY2TVY2P = diag{\,,..., \;} = A,
wherePP’ = 1. Then selU = P’Zy andW = P’Zy.. Thus,
E(U) = E(W)=0 Cov(U) = Cov(W) =1
Then it follows for the bilinear formd = X'TY that
X'TY = XV IAvieryiiy-12y
= (Zx +V 'Pu)V'PTVY(Zy + V2p)

= (ZX _|_V—l/?u)/P/Pvl/2Trvl/2P:P<ZY +V_1/2/J,)
A

— (U+b)A(W +b).

If X andY have multivariate normal distributions, then the disttib of a bilinear
form is given in the following corollary.

COROLLARY 3.6 (DISTRIBUTION OF A BILINEAR FORM)
Let X = (Xy,...,Xy) andY = (Y3,...,Yy) ~ N(0,V) beindependent random vec-
torswith | V] £ 0, V = V'’ and let T denote a symmetric matrix. Then,

d
A = X'TY ~ Y NGD;

=1

where C;, D; ~ N (0, 1) areindependent and the \; are the eigenvalues of TV.
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PROOF. From|V| # 0andV = V ’/ = 3VY2 and V-2, symmetric and regular
= VI2V-l2 =1

X'TY = X'V \2vi2pvizy-1zy
X'V-I2PPVIATVIZPPV12Y |
SiceV!/2 and T are symmetric it follows thaV'/>?TV!/2 is also symmetric. Thus, by
singular value decomposition theorem it follows that thexists an orthogonal matrik

such thaPV'/2TV/2P’ = diag{)\,,...,\,} = A. The quantities\, are the eigenvec-
tors of VY/2TV?/2. Thus

d
X'TY = (PV'/?X)PV'2TV'ZP/(PV2?Y)=CAD =Y XCiD;,
where . .

C = PV Y2X ~ N(0,PV-2VV~Y2P") = N(0,1,,),

D = PV '2Y ~ N(0,PV2VV~12P") = N(0,1,).

Thus it remains to show that, = \.. This has already been shown in the proof of
Corollary 3.3. O

By this corollary it is possible to derive the central momesftbilinear forms.

LEMMA 3.7 (MOMENTS OF A BILINEAR FORM)
Let X, = (inlu ... ,Xkd)/, X; = (Xlla .. ,de)/ ~ N(O,V), be i.i.d. for (]{3 7é l €
{1,...,n}) and let T denote a projection matrix. Then,

1. E(Ay) =0

2. Var(Akl) = E(Ail) = t’l‘[(TV)Q]
3. E(Ay) =6 tr[(TV)*] + 3 (tr[(TV)?])?
4. E(AYAL,) =2 tr[(TV)Y] + (tr[(TV)?])?
PrROOFE
E(Aw) = (Z \CiD; > =Y NE(C)E(D;) =0

—
=0

2. Var(Ay) = E(A}) = (Z XCiD; Z \,C;D; )

d d
= F \NC?D? | = \2 E(C?) E(D?
(; (3 KA Z) ; 1 (_1Z) (_11)

= Z A = tr[(TV)?]
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d
Z \C;D;

3. B(4}) = E(

4)
d
> Y ANANE(CDC;D,C,D,C.D;)

1 r=1 s=1

M:“

-

=1 3

d
Z C4D4 +3 Zm? E(C?D?C?D?)

9 i#]

1

_s ZXL 43 Z)\Q)\Q =6 tr[(TV)"] + 3 (tr[(TV)?])?

(S (Sacr)

i=1 i=1

=S N E(CIDIE?) + Z NN B(CEDICTES)
i=1 3 i#j 1
d d d
=23 X 4D Y NN = 2 u((TV)]+ (ir[(TV)?) O

3.3 Consistency and dimensional stability of the estimators

In the following lemma, a regularity condition is given frommich it follows that the new
estimators are consistent and dimensionally stable.

LEMMA 3.8 Let \;, (A\; > Ao > 0) denote the eigenvalues of TVT and let m :=
max \; < oo. Then,

2
Lm0 = g IVIT
d—oo Zz . z d—o0 [t’l”(TV)]
2 T 4
2. llmm——Oﬁlival]Q:O.
T SN 5 G l(TV)?)



PrROOF

L EITVYL SR m A m e
. [tr(TV)P (Z?—l )\i)z - (z‘j_l >\i)2 22121 A\ .
, tUTV)] LA _m N m RSy

C@(TVPD?2 (a2~ (L) LA

REMARK 3.1 The first condition follows from the second condition sin¢ge> 0 and
m2 m2
<

(Z?—IA')2 - Zz 1>\3
which follows from(ZZ L ) > S0 A2

In the sequel it will be shown by Lemma 3.7 that the unbiasdinesors B, and B,
are consistent and dimensionally stable - provided thatdmelitions of Lemma 3.8 are
fulfilled. To this end it has to be shown that the variance @f tatio of the estimator
and the quantity to be estimated is uniformly bounded and that this bound does not
depend on.

The following trivial properties of the variance of a sum ahdom variables will be
used in the sequel:

Var (Z Xz) =Y V() + Y Con(X, X,
i—1 i=1 1#£]
(5]

n?(n— 12V, = Var (Z AkAl) = > Var(AA) + ) > Cov(AAL ALA,) .

Thus, one obtains for; = Var(B;)
k£l k£l k#l rs

——
(k,D)#(r,s)

Moreover, by Lemma 3.4,
n*(n—1)2V; = n(n—1) Var(A,4A)
+n(n —1)(n —2)(n — 3) Cov(ArA;, A As)
+4n(n — 1)(n — 2) COU(AkAl, AkAr)
+n(n - 1) CO’U(AkAl, AlAk)

~
= VQT(AkAZ)

= 2n(n—1)(c* +20%u?) +4n(n —1)(n — 2)ou?
= 2n(n —1)o* + (4n® — 8n?* 4 4n)o?p* .
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Note thatu? = [tr(TV)]* does no longer appear in the variance. Thus, it can be shown
by Lemma 3.8 that; /[tr(TV)]* — 0if d — .
Vi 2 (tr[(TV)?])?  (4n® —8n? +4n) tr[(TV)?

[tr(TV)]4 - n(n—1) [tr(TV)] + n2(n —1)? [tT(TV)P' (3.10)

—0 —0

Further note that this ratio is bounded for@lh > 1 by (n‘f—’;)Q

Vi B 2 (tr[(TV)2))?  (4n® —8n% +4n) tr[(TV)?
[tr(TV)]4 N nn—1) [tr(TV)]* n?(n —1)2 [tr(TV)]?
<1 <1
2 (4n?> —8n+4) _4n* —6n+2 4n
S G- T amo12 S amo12 S o

For the variancé, = Var(B;) of the second estimator it follows that

n*(in — 12V, = Var (Z A%)
" 2
E (Z Ail)
k£l

k£l
(3.11)
2) E(Aj A)

_ 5 (Zn:i:AilAﬁs> .

k#l r#s

Moreover, by Lemma 3.7,
n*(n — 12V, = 2n(n—1)E(A})
+4n(n —1)(n —

2)(n — 3)E(Af)*

+n(n—1 )
2 VGT'(AM)

(n—
n*(n —1)
= 2n(n —1)(6tr[(TV)*] + 3(tr[(TV)?])?)

)(n = 2)2 tr[(TV)!] + (tr[(TV)?])?))
+n(n —1)(n—2)(n — 3)(tr[(TV)?))?)
—n*(n —1)*(tr[(TV)?))?)

= n(n—1)[(8n —4) tr[(TV)"] + 4(tr[(TV)?])*)] .

1
)
1
+4n(n — 1
)

Unfortunately, the ternivy /(¢r[(T'V)?])? does not vanish faf — oo and for fixedn. One
obtains

W 8n-4 tr[(TV)?] 4
(tr[(TV)?])? nn—1) (T2 nn=1) (3.12)
—

—0
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This ratio is bounded, however, for alln > 1 by -5~

Vs _ 84 w[(TV)] 4 _Sn—d+d 8
(tr[(TV)?])2 n(n—1) (&[(TV))2 n(n—1) = nn—-1) = (n—1)"
—_————

<1

Here it has been shown that for fixedandd — oo the quantity B, /[tr(TV)]? is
L,-consistent and thus it is dimensionally stable. Moreogy,[tr(TV))? is also L,-
consistent fom — oo. The quantityB,/ tr[(TV)?], however, is onlyC,-consistent for
n — oo and arbitrary fixed!. For fixedn andd — oo, it is at least uniformly bounded by
8/(n — 1) und thus, it is also dimensionally stable.

34 Biasof theRatio [tr(TV)]2/ tr[(TV)?]

It has been shown thd®; and B, are unbiased estimators @f (TV)]? andtr[(TV)?],
respectively. The ratid@; / Bs, however may be biased. This shall be investigated in the
sequel using a Taylor expansion for the ratio of two randonaies.

Bl - E(Bl) V(IT’(BQ) COU(Bl,BQ)
b (E) ~ E(B,) (1 TEG)E E(Bl)E(Bz)) ’ (313)

where the sign~ means “approximately equal”. Using the derivation in thevpus
section, one obtains

B\ _ [tr(TV)]? 4 Cov(By, Bs)
s <E) - W <1 * n(n —1) B [tr(TV)]2 tT’[(TV)2]) : (3.14)

It is easily seen that the last term in (3.14) can be negldotddrged or for largen. From
Cauchy-Schwarz-inequality and by (3.10) and (3.12), iole# under the assumptions of
Lemma 3.8 that

Cov(By, Bs) _ 0 ( 1 )
[tr(TV)]? tr[(TV)?] nd)

Thus, the ratiocCov(By, By)/([tr(TV))? tr[(TV)?]) vanishes for fixed andd — oo as

well as ford fixed andn — oc. O

The bias off = By /B, can be approximately determined by plugging in this result

in (3.13).
o [tr(TV))? 4
E(f) ~ STV (1 + s 1)) . (3.15)

Obviously, the new estimator is slightly biased, but theslisappears rapidly with incre-
asingn. Furthermore, numerator and denominatoy @re dimensionally stable anfdis
asymptotically unbiased for — oo and arbitraryd.

Simulations show that the bias piis much smaller than the bias of the simple plug-in
estimatorf = [¢tr(S,)]2/ tr(S2) in the ANOVA-type statistic.
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3.5 F-Approximation (continued)

Now all relevant estimators have been derived and theinsgrties have been investiga-
ted. Thus, theg"-approximation started in Section 2.1 can be resumed ardighéution
of the statistic),,/ B, shall be approximated by &-distribution such that the first two
moments coincide.

F, = LR )

0

We need the following moments:

LEMMA 3.9 Let By = > Arand Q, = + > >, Aw, where Ay = X TX,
are symmetric bilinear forms. Then,

1. E(By) = tr(TV)
2. Var(By) = 2 tr[(TV)?]

3. Cov(Qn, By) = Var(By).

Proof: The statements follow easily using the results from Lemma8.the moments of
guadratic forms and from Lemma 3.7 on the moments of bilifieans.

2. Var (% ZAk) = % ; Var(Ay) = %tr[(TV)ﬂ

3. Cov(Qn, Bo) = E(Q.By) — E(Qn)E(By) =
_ % S° Y B4y A) — [tr(TV)]?

1
_ ZpA2
- (A5) +

n—1

B ~ [r(TV)P = 2 i(TV)] -

Thus, B, = %22:1 Ay is an unbiased, consistent and dimensonally stable estimat
of tr(TV).

The first two central moments @f, are approximately determined by a Taylor expan-
sion for the ratio of two random variabléSandY” with Var(X) < oo and Var(Y) < oo.
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The approximation for the expectatidi( X/Y) is given in (3.13) replacind3; with X
and B, with Y. For the variancd/ar(X/Y") we have

r X\ E(X)? [ Var(X) Var(Y)  Cov(X,Y)
v (5) = Bvw (moop * moop  260080)

By noting thatE(Q,,) = tr(TV), Var(Q,) = 2 tr[(TV)?], and Cov(Q,, By) =
Var(By), one obtains

E(F.) =

E(Qn) {1—1— Var(By) Cov(Qn,Bg)]
E(By) [E(Bo)?  E(Qn)E(Bo)

TX; [1 [Var(Bo) VGT(BOW =

T tr(TV)]2  [tr(TV)]?
(Qn

)
(Bo)

~

L I
(

tr

Var(F,) = (l; ) [Var(@n) Var(By) 2 C’ov(Qn,Bo)]

P LE@n)]?  [E(B)]*  E(Qn)E(B)

[ r

—~
(]
|
3
|~
~
=
—
H
=
N

Now, E(F,) and Var(F,) are equated with the first twvo moments of thgf,, f>)-
distribution

’ H E ‘ Var \
fo—2 f+2f3h —Af
PP G = R + A1) (= )
(2—2)tr[(TV)?]
E, 1 [tr(TV)]2
and one obtains
_ 2
Fog— [tr(TV)] fy = 0.

(1= 3) tr[(TV)?2]’
The distribution ofF;, can be approaximated by)@/f-distribution, where

~ B1 n Bl

f= 1-5B, n-1B,"

Obviously,f/f — 1for n — oo, wheref = B, /B,. The bias in (3.15) is reduced by the
factorn/(n —1).
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